Determination of Soil Stiffness
Parameters
Short Course on Computational Geotechnics + Dynamics
Boulder, Colorado
January 5-8, 2004
Stein Sture
Professor of Civil Engineering
University of Colorado at Boulder
Contents
General concepts and stiffness of sand
Hooke’s law
E-moduli from triaxial testing
E-moduli from oedometer testing
Examples on the estimation of E
Stiffness of clays
Undrained clay behavior
Drained clay behavior
Examples on the estimation of E
Computational Geotechnics Determination of Soil Stiffness Parameters
Idealized and real stress-
strain behavior of soils
Idealized types of stress-strain behaviors: (a) nonlinear elastic
Model, (b) linear elastic model, and (c) elastoplastic model
Computational Geotechnics Determination of Soil Stiffness Parameters
Idealized and real stress-
strain behavior of soils
Various types of elastoplastic behaviors: (a) strain hardening, (b)
perfectly plastic, (c) strain softening, and (d) combination of a to c.
Computational Geotechnics Determination of Soil Stiffness Parameters
Hooke’s Law of Isotropic
Elasticity
Computational Geotechnics Determination of Soil Stiffness Parameters
Hooke’s Law of Isotropic
Elasticity
Computational Geotechnics Determination of Soil Stiffness Parameters
Standard Drained Triaxial Test on
Sand
Computational Geotechnics Determination of Soil Stiffness Parameters
Standard Drained Triaxial Test on
Sand
Computational Geotechnics Determination of Soil Stiffness Parameters
Oedometer Test on Sand
Computational Geotechnics Determination of Soil Stiffness Parameters
Oedometer Test on Sand
Computational Geotechnics Determination of Soil Stiffness Parameters
Oedometer Test on Sand
Hooke:
Loose:
Dense:
oed
oed E
E
E
3
2
)
2
1
(
1
1




 



(  1
3 )
ref
y
ref
p
p
E
3
2
150



ref
y
ref
p
p
E
3
2
500



Computational Geotechnics Determination of Soil Stiffness Parameters
Oedometer Test on Sand

y
'

x
'
K0
 2x
'
ref
x
ref
x
ref
p
p
p
E
150
2
3
2
150





ref
x
ref
x
ref
p
p
p
E
500
2
3
2
500





E  E50
Loose:
Dense:
This implies:
Computational Geotechnics Determination of Soil Stiffness Parameters
Summary on Stiffness Parameters:
Sand
(Laboratory based experience)
E  E50 
2
3
Eoed

  1
3

E
pref
150
x
'
pref

E
pref
 500
x
'
pref


E  Eref x
'
pref

E 15MPa
x
'
pref

E  50MPa
x
'
pref
pref
100kPa
Loose:
Dense:
Loose:
Dense:
Unloading: About 4 times stiffer.  small
Computational Geotechnics Determination of Soil Stiffness Parameters
Selection of Moduli for FEM-Computation

E50
ref
15MPa

y0
/
 70kPa

y
'
 50kPa
y
'
 95kPa x
'
 50kPa
E50 15000 0.5 10000kPa
Layer 1 (extremely loose sand
Layer 1:
Average
Mohr-Coulomb model:
Example 1 (loading):
Computational Geotechnics Determination of Soil Stiffness Parameters
Selection of Moduli for FEM-Computation
Example 2 (unloading):

E50
ref
 45MPa

E50
ref
 30MPa
15
.
0
,
4 50 
 
ref
ref
ur E
E

y
'
 2 1.5'
 55kPa

x
'
 27.5kPa
E  4  45000 27.5
100  95000kPa
x
'
10kPa kPa
E 38000
10
.
0
30000
4 


Layer 1 (dense): Layer 3 (medium):
Unloading: for both layers
Mohr-Coulomb model:
Layer 1:
Layer 3:
Computational Geotechnics Determination of Soil Stiffness Parameters
Eoed from Cone Penetration Test in
Sands

qc

Eoed qc
 = 1 to 3
 = 3
ref
c
oed p
q
E )
10
30
( 

Cone Resistance:
Correlation:
Literature NC-Sand:
Vermeer’s Experience:
Alternatively:
Computational Geotechnics Determination of Soil Stiffness Parameters
Undrained Triaxial Test on
Clay

Eu
50

15000Cu
Ip%
Eu
50
 3G50
Normally consolidated clay:
Cu = undrained shear strength (or Su)
Computational Geotechnics Determination of Soil Stiffness Parameters
Idealized and real stress-strain
behavior of soils
Computational Geotechnics Determination of Soil Stiffness Parameters
Idealized and real stress-strain
behavior of soils
Computational Geotechnics Determination of Soil Stiffness Parameters
Plate Loading Tests
Duncan & Buchignani (1976)
Computational Geotechnics Determination of Soil Stiffness Parameters
Plate Loading Tests
Computational Geotechnics Determination of Soil Stiffness Parameters
Summary on Stiffness Parameters:
Clay
Undrained Conditions
Do not use empirical relationships only. Get good quality experimental data from lab tests, cone
penetration tests and vane tests
Computational Geotechnics Determination of Soil Stiffness Parameters
Drained Behavior for Clays
Computational Geotechnics Determination of Soil Stiffness Parameters
Drained Behavior for Clays
Computational Geotechnics Determination of Soil Stiffness Parameters

Soil Stiffness.ppt

  • 1.
    Determination of SoilStiffness Parameters Short Course on Computational Geotechnics + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder
  • 2.
    Contents General concepts andstiffness of sand Hooke’s law E-moduli from triaxial testing E-moduli from oedometer testing Examples on the estimation of E Stiffness of clays Undrained clay behavior Drained clay behavior Examples on the estimation of E Computational Geotechnics Determination of Soil Stiffness Parameters
  • 3.
    Idealized and realstress- strain behavior of soils Idealized types of stress-strain behaviors: (a) nonlinear elastic Model, (b) linear elastic model, and (c) elastoplastic model Computational Geotechnics Determination of Soil Stiffness Parameters
  • 4.
    Idealized and realstress- strain behavior of soils Various types of elastoplastic behaviors: (a) strain hardening, (b) perfectly plastic, (c) strain softening, and (d) combination of a to c. Computational Geotechnics Determination of Soil Stiffness Parameters
  • 5.
    Hooke’s Law ofIsotropic Elasticity Computational Geotechnics Determination of Soil Stiffness Parameters
  • 6.
    Hooke’s Law ofIsotropic Elasticity Computational Geotechnics Determination of Soil Stiffness Parameters
  • 7.
    Standard Drained TriaxialTest on Sand Computational Geotechnics Determination of Soil Stiffness Parameters
  • 8.
    Standard Drained TriaxialTest on Sand Computational Geotechnics Determination of Soil Stiffness Parameters
  • 9.
    Oedometer Test onSand Computational Geotechnics Determination of Soil Stiffness Parameters
  • 10.
    Oedometer Test onSand Computational Geotechnics Determination of Soil Stiffness Parameters
  • 11.
    Oedometer Test onSand Hooke: Loose: Dense: oed oed E E E 3 2 ) 2 1 ( 1 1          (  1 3 ) ref y ref p p E 3 2 150    ref y ref p p E 3 2 500    Computational Geotechnics Determination of Soil Stiffness Parameters
  • 12.
    Oedometer Test onSand  y '  x ' K0  2x ' ref x ref x ref p p p E 150 2 3 2 150      ref x ref x ref p p p E 500 2 3 2 500      E  E50 Loose: Dense: This implies: Computational Geotechnics Determination of Soil Stiffness Parameters
  • 13.
    Summary on StiffnessParameters: Sand (Laboratory based experience) E  E50  2 3 Eoed    1 3  E pref 150 x ' pref  E pref  500 x ' pref   E  Eref x ' pref  E 15MPa x ' pref  E  50MPa x ' pref pref 100kPa Loose: Dense: Loose: Dense: Unloading: About 4 times stiffer.  small Computational Geotechnics Determination of Soil Stiffness Parameters
  • 14.
    Selection of Modulifor FEM-Computation  E50 ref 15MPa  y0 /  70kPa  y '  50kPa y '  95kPa x '  50kPa E50 15000 0.5 10000kPa Layer 1 (extremely loose sand Layer 1: Average Mohr-Coulomb model: Example 1 (loading): Computational Geotechnics Determination of Soil Stiffness Parameters
  • 15.
    Selection of Modulifor FEM-Computation Example 2 (unloading):  E50 ref  45MPa  E50 ref  30MPa 15 . 0 , 4 50    ref ref ur E E  y '  2 1.5'  55kPa  x '  27.5kPa E  4  45000 27.5 100  95000kPa x ' 10kPa kPa E 38000 10 . 0 30000 4    Layer 1 (dense): Layer 3 (medium): Unloading: for both layers Mohr-Coulomb model: Layer 1: Layer 3: Computational Geotechnics Determination of Soil Stiffness Parameters
  • 16.
    Eoed from ConePenetration Test in Sands  qc  Eoed qc  = 1 to 3  = 3 ref c oed p q E ) 10 30 (   Cone Resistance: Correlation: Literature NC-Sand: Vermeer’s Experience: Alternatively: Computational Geotechnics Determination of Soil Stiffness Parameters
  • 17.
    Undrained Triaxial Teston Clay  Eu 50  15000Cu Ip% Eu 50  3G50 Normally consolidated clay: Cu = undrained shear strength (or Su) Computational Geotechnics Determination of Soil Stiffness Parameters
  • 18.
    Idealized and realstress-strain behavior of soils Computational Geotechnics Determination of Soil Stiffness Parameters
  • 19.
    Idealized and realstress-strain behavior of soils Computational Geotechnics Determination of Soil Stiffness Parameters
  • 20.
    Plate Loading Tests Duncan& Buchignani (1976) Computational Geotechnics Determination of Soil Stiffness Parameters
  • 21.
    Plate Loading Tests ComputationalGeotechnics Determination of Soil Stiffness Parameters
  • 22.
    Summary on StiffnessParameters: Clay Undrained Conditions Do not use empirical relationships only. Get good quality experimental data from lab tests, cone penetration tests and vane tests Computational Geotechnics Determination of Soil Stiffness Parameters
  • 23.
    Drained Behavior forClays Computational Geotechnics Determination of Soil Stiffness Parameters
  • 24.
    Drained Behavior forClays Computational Geotechnics Determination of Soil Stiffness Parameters