SlideShare a Scribd company logo
Soil moisture retrieval over bare surfaces using time-series radar observations and a lookup table representation of forward scattering Seung-bum Kim, Shaowu Huang*, Leung Tsang*, Joel Johnson**,  Eni Njoku Jet Propulsion Lab., California Inst. Technology * Univ. Washington ** The Ohio State Univ. IGARSS 2011, Vancouver, Canada
Objectives A ‘bare and sparsely vegetation surface covers 13% of the world’s land surface. Over vegetated surfaces, a soil moisture signal comes from the bare surface. Accurate soil moisture retrieval over the bare surface forms the basis of global soil moisture retrieval We focus on the soil surface where the roughness has the isotropic random distribution. We study the retrieval of soil moisture at L-band at 40deg incidence angle to apply to the Soil Moisture Active Passive (SMAP) mission NASA’s SMAP mission Global, high-resolution mapping of soil moisture (top 5cm)  and its freeze/thaw state Three year mission, due for launch in 2015 1000 km-wide swath, enabling 2−3 day revisit Retrievals with radiometer (36km resolution), SAR (3km), and SAR/radiometer combined (9km) Multi-pol (HH, VV, HV) To achieve the global coverage, the number of single looks was compromised (60, worst case), leading to somewhat large speckle. Total radar measurement error ranges from 0.5dB (13%) to 0.7dB (17%)
Issues with bare surface soil moisture retrieval Four parameters dominating the radar scattering from bare surface: surface roughness (s), soil moisture (Mv), correlation length of roughness (l), correlation function (F) Issues to resolve for accurate soil moisture retrieval With HH, VV, HV, we cannot determine all 4 unknowns Knowledge of correlation length and function is very inaccurate (50% error). Ambiguity: dry & rough soil σ0~ wet & smooth soil simga0  can lead to multiple solutions 13% to 17% radar measurement error Past literature Empirical retrieval model without considering l or F (Oh et al. 1992; Dubois et al. 1995) The exponential function fits data well (Shi et al. 1997; Mattia et al. 1997) Estimate s and l after assuming temporally static Using ancillary dry condition (Rahman et al. 2008) Using one time measurement (Joseph 2008) Statistical estimate (Verhoest et al. 2007) Using ancillary weather model (Mattia et al. 2009) Eliminate s during retrieval (Shi et al. 1997) Our goal: develop non-empirical and simple method that does not need ancillary information
Soil moisture retrieval method A forward model (Numerical Maxwell Model in 3-Dimension, NMM3D, Huang et al. 2010; 2011) is inverted using its lookup table representation.  The NMM3D computes numerical solutions of Maxwell’s equations without approximate parameterizations or tuning.  The NMM3D predictions compare well with in situ datasets representing wide ranges of roughness, soil moisture, and correlation length. rmse=1.49dB (VV) 1.64dB (HH) Huang, Tsang, Njoku, Chen, TGRS, 2010  Results with correlation length/rms height (l/s) =4,7,10 is also available.
Retrieval with a lookup table ,[object Object],Lookup table RMS Error = 0.0016 cm3/cm3 Courtesy: J.J. van Zyl Parameterized IEM based  on 3 Mv and 3 ks simulations RMS Error = 0.0067 cm3/cm3
Soil moisture retrieval method Two-polarization (HH and VV) are used for input. HV channel is set aside for vegetation information for future. Mv and roughness are retrieved. 2N independent input (HH and VV, N is the number of time-series) N+1 unknowns assuming roughness does not change in time. The retrieval of the soil moisture is accomplished by the least square minimization. Time-invariant roughness is estimated first. Then time-varying soil moisture is retrieved.
Monte-Carlo simulation Time-series search of lookup table The radar measurement noise (0.7dB, 17%) is modeled by a Gaussian random process. Errors in roughness estimate is smaller than 10%. Real part of the dielectric constant (εr) is retrieved first and Mv error is smaller than 0.06 cm3/cm3. Snap-shot search of lookup table A snapshot search of the same lookup table has no constraint on roughness, is subject to the ambiguity, and the rmse is very large.
Validation with in situ data Truck-mounted radar measurements in Ypsilanti, Michigan were obtained over a two-month campaign (Oh et al. 2002). The LUT time-series and snap-shot performs comparably most likely because the radar measurement error (~0.4dB) is smaller than 0.7dB. Dubois method has outliers.
Validation with in situ data The retrievals from all 4 sites are combined in one scatter plot.  Many retrievals of the Dubois retrieval become outliers. Overall the LUT time-series retrieval shows the best correlation with the in situ mv and the best rmse in soil moisture estimation.
Effects of correlation length The validation with the Michigan data is performed: (a) uses l (correlation length) / s (rms height) of 10 (= the same as forward model). (b) uses the truth. The choice of l/s does not affect the Mv retrieval. Change of l/s merely adds a bias to the cost function +.. Even if the value of the cost function changes, the location of the minimum (=Mv retrieval) does not. Retrieved Mv
Effects of correlation length If a single scattering process is dominant, the IEM shows that the roughness effect and the dielectric effect can be decoupled (Fung et al. 1992; Shi et al. 1997): σ0 (Mv, s, l/s) = f(Mv) + g(s, l/s)       Then σ0 (Mv, s, l/s=a)  - σ0 (Mv, s, l/s= b )         = g(s, l/s=a) - g(s, l/s=b)         = independent of Mv. The bias offset is uniform wrt dielectric constant and polarization. l/s=4 l/s=15
Summary Findings Time-invariant roughness and soil moisture are estimated using the time-series method (2N inputs solve N+1 unknowns). Does not require ancillary information. Simple search of a lookup table. Tested with in situ data: the error is 0.044 cm3/cm3 using 6-11 time-series inputs. The time-series method performs better than the other methods. Retrieval is mostly independent of the knowledge of correlation length  one degree of freedom is reduced. Discussion Increase in time-series window will further reduce the radar measurement noise  improve roughness estimate  improve Mv retrieval.
backup
Soil moisture: retrieval performance

More Related Content

What's hot

Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correction
Amin khalil
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
Luca Brocca
 
4_Presentation.DE+EnVA.20110727.ppt
4_Presentation.DE+EnVA.20110727.ppt4_Presentation.DE+EnVA.20110727.ppt
4_Presentation.DE+EnVA.20110727.ppt
grssieee
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
irjes
 
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
grssieee
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
Ali Osman Öncel
 
A distributed physically based model to predict timing and spatial distributi...
A distributed physically based model to predict timing and spatial distributi...A distributed physically based model to predict timing and spatial distributi...
A distributed physically based model to predict timing and spatial distributi...
Grigoris Anagnostopoulos
 
Hydrological Modelling of Shallow Landslides
Hydrological Modelling of Shallow LandslidesHydrological Modelling of Shallow Landslides
Hydrological Modelling of Shallow Landslides
Grigoris Anagnostopoulos
 
LanniC_EGU2010
LanniC_EGU2010LanniC_EGU2010
LanniC_EGU2010
guestca23f5
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
Ali Osman Öncel
 
igarss11_2.ppt
igarss11_2.pptigarss11_2.ppt
igarss11_2.ppt
grssieee
 
Estimation of soil organic carbon stocks in the northeast Tibetan Plateau
Estimation of soil organic carbon stocks in the northeast Tibetan PlateauEstimation of soil organic carbon stocks in the northeast Tibetan Plateau
Estimation of soil organic carbon stocks in the northeast Tibetan Plateau
ExternalEvents
 
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
ExternalEvents
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
Ali Osman Öncel
 
#5
#5#5
3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt
grssieee
 
Claude Mugler
Claude MuglerClaude Mugler
minor project ppt (2)
minor project ppt (2)minor project ppt (2)
minor project ppt (2)
Charu Kamra
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni

What's hot (19)

Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correction
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
4_Presentation.DE+EnVA.20110727.ppt
4_Presentation.DE+EnVA.20110727.ppt4_Presentation.DE+EnVA.20110727.ppt
4_Presentation.DE+EnVA.20110727.ppt
 
Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...Prediction of the daily global solar irradiance received on a horizontal surf...
Prediction of the daily global solar irradiance received on a horizontal surf...
 
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
FR1.L09.3 - SAR TOMOGRAPHIC FOCUSING BY COMPRESSIVE SAMPLING: EXPERIMENTS ON ...
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
A distributed physically based model to predict timing and spatial distributi...
A distributed physically based model to predict timing and spatial distributi...A distributed physically based model to predict timing and spatial distributi...
A distributed physically based model to predict timing and spatial distributi...
 
Hydrological Modelling of Shallow Landslides
Hydrological Modelling of Shallow LandslidesHydrological Modelling of Shallow Landslides
Hydrological Modelling of Shallow Landslides
 
LanniC_EGU2010
LanniC_EGU2010LanniC_EGU2010
LanniC_EGU2010
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
igarss11_2.ppt
igarss11_2.pptigarss11_2.ppt
igarss11_2.ppt
 
Estimation of soil organic carbon stocks in the northeast Tibetan Plateau
Estimation of soil organic carbon stocks in the northeast Tibetan PlateauEstimation of soil organic carbon stocks in the northeast Tibetan Plateau
Estimation of soil organic carbon stocks in the northeast Tibetan Plateau
 
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
Comparison of RUSLE model and UAV-GIS methodology to assess the effectiveness...
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
#5
#5#5
#5
 
3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt3_Xorbits_InSAR_IGARSS2011.ppt
3_Xorbits_InSAR_IGARSS2011.ppt
 
Claude Mugler
Claude MuglerClaude Mugler
Claude Mugler
 
minor project ppt (2)
minor project ppt (2)minor project ppt (2)
minor project ppt (2)
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Gabriele Baroni
 

Viewers also liked

AT_MB_MM_IGARSS2011.ppt
AT_MB_MM_IGARSS2011.pptAT_MB_MM_IGARSS2011.ppt
AT_MB_MM_IGARSS2011.ppt
grssieee
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
grssieee
 
TH3.L10.4 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
TH3.L10.4	 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...TH3.L10.4	 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
TH3.L10.4 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
grssieee
 
Measurement of Moisture Content
Measurement of Moisture ContentMeasurement of Moisture Content
Measurement of Moisture Content
Behzad Mustafa
 
Soil moisture
Soil moistureSoil moisture
Soil moisture
SrutiSudha Mohanty
 
Luca Brocca seminario trento
Luca Brocca seminario trentoLuca Brocca seminario trento
Luca Brocca seminario trento
AboutHydrology Slides
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
Rohit Kumar
 
Soil Moisture Monitoring
Soil Moisture MonitoringSoil Moisture Monitoring
Soil Moisture Monitoring
Caleb M Carter
 
Soil Moisture Sensor and Arduino
Soil Moisture Sensor and Arduino Soil Moisture Sensor and Arduino
Soil Moisture Sensor and Arduino
Parvesh Taneja
 
Vision and mission of companies
Vision and mission of companies Vision and mission of companies
Vision and mission of companies
Syed Taimoor Hussain Shah
 

Viewers also liked (10)

AT_MB_MM_IGARSS2011.ppt
AT_MB_MM_IGARSS2011.pptAT_MB_MM_IGARSS2011.ppt
AT_MB_MM_IGARSS2011.ppt
 
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
TU4.L10 - A REVISED GEOPHYSICAL MODEL FUNCTION FOR THE ADVANCED SCATTEROMETER...
 
TH3.L10.4 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
TH3.L10.4	 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...TH3.L10.4	 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
TH3.L10.4 - SOIL MOISTURE ACTIVE PASSIVE (SMAP) CALIBRATION AND VALIDATION P...
 
Measurement of Moisture Content
Measurement of Moisture ContentMeasurement of Moisture Content
Measurement of Moisture Content
 
Soil moisture
Soil moistureSoil moisture
Soil moisture
 
Luca Brocca seminario trento
Luca Brocca seminario trentoLuca Brocca seminario trento
Luca Brocca seminario trento
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 
Soil Moisture Monitoring
Soil Moisture MonitoringSoil Moisture Monitoring
Soil Moisture Monitoring
 
Soil Moisture Sensor and Arduino
Soil Moisture Sensor and Arduino Soil Moisture Sensor and Arduino
Soil Moisture Sensor and Arduino
 
Vision and mission of companies
Vision and mission of companies Vision and mission of companies
Vision and mission of companies
 

Similar to soil moisture retrieval.pptx

FR4.T05.4.ppt
FR4.T05.4.pptFR4.T05.4.ppt
FR4.T05.4.ppt
grssieee
 
Sabaghy_Workshop
Sabaghy_WorkshopSabaghy_Workshop
Sabaghy_Workshop
Sabah Sabaghy
 
Pierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.pptPierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
Pierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.pptPierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
grssieee
 
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
grssieee
 
inverse theory and inversion of seismic
inverse theory and inversion of seismic inverse theory and inversion of seismic
inverse theory and inversion of seismic
Abdullah Abderahman
 
Inversão com sigmoides
Inversão com sigmoidesInversão com sigmoides
Inversão com sigmoides
juarezsa
 
20110723IGARSS_ZHAO-yang.ppt
20110723IGARSS_ZHAO-yang.ppt20110723IGARSS_ZHAO-yang.ppt
20110723IGARSS_ZHAO-yang.ppt
grssieee
 
DRONES IN HYDROLOGY
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
Salvatore Manfreda
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
grssieee
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
grssieee
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
grssieee
 
Hayashi masw gravity
Hayashi masw gravityHayashi masw gravity
Hayashi masw gravity
hugang2003
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
grssieee
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...
ExternalEvents
 
Use of UAS for Hydrological Monitoring
Use of UAS for Hydrological MonitoringUse of UAS for Hydrological Monitoring
Use of UAS for Hydrological Monitoring
Salvatore Manfreda
 
Ravasi_etal_EAGE2015b
Ravasi_etal_EAGE2015bRavasi_etal_EAGE2015b
Ravasi_etal_EAGE2015b
Matteo Ravasi
 
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
grssieee
 
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
grssieee
 

Similar to soil moisture retrieval.pptx (20)

FR4.T05.4.ppt
FR4.T05.4.pptFR4.T05.4.ppt
FR4.T05.4.ppt
 
Sabaghy_Workshop
Sabaghy_WorkshopSabaghy_Workshop
Sabaghy_Workshop
 
Pierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.pptPierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.ppt
 
Pierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.pptPierdicca-Igarss2011_july2011.ppt
Pierdicca-Igarss2011_july2011.ppt
 
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
 
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
MODELING DAILY NET SHORTWAVE RADIATION OVER RUGGED SURFACES USING MODIS ATMOS...
 
inverse theory and inversion of seismic
inverse theory and inversion of seismic inverse theory and inversion of seismic
inverse theory and inversion of seismic
 
Inversão com sigmoides
Inversão com sigmoidesInversão com sigmoides
Inversão com sigmoides
 
20110723IGARSS_ZHAO-yang.ppt
20110723IGARSS_ZHAO-yang.ppt20110723IGARSS_ZHAO-yang.ppt
20110723IGARSS_ZHAO-yang.ppt
 
DRONES IN HYDROLOGY
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
 
IEM-2011-shi.ppt
IEM-2011-shi.pptIEM-2011-shi.ppt
IEM-2011-shi.ppt
 
Hayashi masw gravity
Hayashi masw gravityHayashi masw gravity
Hayashi masw gravity
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
 
A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...A knowledge-based model for identifying and mapping tropical wetlands and pea...
A knowledge-based model for identifying and mapping tropical wetlands and pea...
 
Use of UAS for Hydrological Monitoring
Use of UAS for Hydrological MonitoringUse of UAS for Hydrological Monitoring
Use of UAS for Hydrological Monitoring
 
Ravasi_etal_EAGE2015b
Ravasi_etal_EAGE2015bRavasi_etal_EAGE2015b
Ravasi_etal_EAGE2015b
 
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
 
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
2 ShengleiZhang_IGARSS2011_MO3.T04.2.ppt
 

More from grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
Test
TestTest
Test
grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
grssieee
 

More from grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

soil moisture retrieval.pptx

  • 1. Soil moisture retrieval over bare surfaces using time-series radar observations and a lookup table representation of forward scattering Seung-bum Kim, Shaowu Huang*, Leung Tsang*, Joel Johnson**, Eni Njoku Jet Propulsion Lab., California Inst. Technology * Univ. Washington ** The Ohio State Univ. IGARSS 2011, Vancouver, Canada
  • 2. Objectives A ‘bare and sparsely vegetation surface covers 13% of the world’s land surface. Over vegetated surfaces, a soil moisture signal comes from the bare surface. Accurate soil moisture retrieval over the bare surface forms the basis of global soil moisture retrieval We focus on the soil surface where the roughness has the isotropic random distribution. We study the retrieval of soil moisture at L-band at 40deg incidence angle to apply to the Soil Moisture Active Passive (SMAP) mission NASA’s SMAP mission Global, high-resolution mapping of soil moisture (top 5cm) and its freeze/thaw state Three year mission, due for launch in 2015 1000 km-wide swath, enabling 2−3 day revisit Retrievals with radiometer (36km resolution), SAR (3km), and SAR/radiometer combined (9km) Multi-pol (HH, VV, HV) To achieve the global coverage, the number of single looks was compromised (60, worst case), leading to somewhat large speckle. Total radar measurement error ranges from 0.5dB (13%) to 0.7dB (17%)
  • 3. Issues with bare surface soil moisture retrieval Four parameters dominating the radar scattering from bare surface: surface roughness (s), soil moisture (Mv), correlation length of roughness (l), correlation function (F) Issues to resolve for accurate soil moisture retrieval With HH, VV, HV, we cannot determine all 4 unknowns Knowledge of correlation length and function is very inaccurate (50% error). Ambiguity: dry & rough soil σ0~ wet & smooth soil simga0  can lead to multiple solutions 13% to 17% radar measurement error Past literature Empirical retrieval model without considering l or F (Oh et al. 1992; Dubois et al. 1995) The exponential function fits data well (Shi et al. 1997; Mattia et al. 1997) Estimate s and l after assuming temporally static Using ancillary dry condition (Rahman et al. 2008) Using one time measurement (Joseph 2008) Statistical estimate (Verhoest et al. 2007) Using ancillary weather model (Mattia et al. 2009) Eliminate s during retrieval (Shi et al. 1997) Our goal: develop non-empirical and simple method that does not need ancillary information
  • 4. Soil moisture retrieval method A forward model (Numerical Maxwell Model in 3-Dimension, NMM3D, Huang et al. 2010; 2011) is inverted using its lookup table representation. The NMM3D computes numerical solutions of Maxwell’s equations without approximate parameterizations or tuning. The NMM3D predictions compare well with in situ datasets representing wide ranges of roughness, soil moisture, and correlation length. rmse=1.49dB (VV) 1.64dB (HH) Huang, Tsang, Njoku, Chen, TGRS, 2010 Results with correlation length/rms height (l/s) =4,7,10 is also available.
  • 5.
  • 6. Soil moisture retrieval method Two-polarization (HH and VV) are used for input. HV channel is set aside for vegetation information for future. Mv and roughness are retrieved. 2N independent input (HH and VV, N is the number of time-series) N+1 unknowns assuming roughness does not change in time. The retrieval of the soil moisture is accomplished by the least square minimization. Time-invariant roughness is estimated first. Then time-varying soil moisture is retrieved.
  • 7. Monte-Carlo simulation Time-series search of lookup table The radar measurement noise (0.7dB, 17%) is modeled by a Gaussian random process. Errors in roughness estimate is smaller than 10%. Real part of the dielectric constant (εr) is retrieved first and Mv error is smaller than 0.06 cm3/cm3. Snap-shot search of lookup table A snapshot search of the same lookup table has no constraint on roughness, is subject to the ambiguity, and the rmse is very large.
  • 8. Validation with in situ data Truck-mounted radar measurements in Ypsilanti, Michigan were obtained over a two-month campaign (Oh et al. 2002). The LUT time-series and snap-shot performs comparably most likely because the radar measurement error (~0.4dB) is smaller than 0.7dB. Dubois method has outliers.
  • 9. Validation with in situ data The retrievals from all 4 sites are combined in one scatter plot. Many retrievals of the Dubois retrieval become outliers. Overall the LUT time-series retrieval shows the best correlation with the in situ mv and the best rmse in soil moisture estimation.
  • 10. Effects of correlation length The validation with the Michigan data is performed: (a) uses l (correlation length) / s (rms height) of 10 (= the same as forward model). (b) uses the truth. The choice of l/s does not affect the Mv retrieval. Change of l/s merely adds a bias to the cost function +.. Even if the value of the cost function changes, the location of the minimum (=Mv retrieval) does not. Retrieved Mv
  • 11. Effects of correlation length If a single scattering process is dominant, the IEM shows that the roughness effect and the dielectric effect can be decoupled (Fung et al. 1992; Shi et al. 1997): σ0 (Mv, s, l/s) = f(Mv) + g(s, l/s) Then σ0 (Mv, s, l/s=a) - σ0 (Mv, s, l/s= b ) = g(s, l/s=a) - g(s, l/s=b) = independent of Mv. The bias offset is uniform wrt dielectric constant and polarization. l/s=4 l/s=15
  • 12. Summary Findings Time-invariant roughness and soil moisture are estimated using the time-series method (2N inputs solve N+1 unknowns). Does not require ancillary information. Simple search of a lookup table. Tested with in situ data: the error is 0.044 cm3/cm3 using 6-11 time-series inputs. The time-series method performs better than the other methods. Retrieval is mostly independent of the knowledge of correlation length  one degree of freedom is reduced. Discussion Increase in time-series window will further reduce the radar measurement noise  improve roughness estimate  improve Mv retrieval.

Editor's Notes

  1. Prune: Due to the attenuation and scattering by the vegetation layer, soil moisture retrieval becomes more difficult
  2. Fig from LUT bare surface paper
  3. If we use 1 IEM simulation to obtain the parameters, the IEM’s error will be larger.
  4. Mv ranges from 0.06 to 0.3 cm3/cm3; Rms height from 0.5 to 3.5 cm; l/s from 3 to 17.
  5. [prune]l is hard to measure. The number of degrees of freedom would be reduced if we can ignore l. The maximum error of ignoring l error is 0.015 cm3/cm3 (very rough surface). The error is negligible for smooth surface.
  6. /Users/seungbum/d/sm/TS/TS1/uwgr3/success110424_mironov/ts1_sgp1_site3n6dwc0.1gr3bMC.eps