SlideShare a Scribd company logo
1 of 124
Download to read offline
Arief Hamdani Gunawan
1.1. Introduction to LTEIntroduction to LTE
2.2. OFDMAOFDMA
3.3. SCSC--FDMAFDMA
4.4. LTE Network and ProtocolLTE Network and Protocol
5. LTE Radio Procedures5. LTE Radio Procedures
6. LTE Uplink Physical Channels and6. LTE Uplink Physical Channels and
SignalsSignals
7. LTE Mobility7. LTE Mobility
8. LTE Test and Measurement8. LTE Test and Measurement
Arief Hamdani Gunawan
Session 1: Introduction to LTE
•Motivation•Motivation
•Requirements
•Evolution of UMTS FDD and TDD
•LTE Technology Basics
•LTE Key Parameters
•LTE Frequency Bands
Motivation: LTE background story
the early days
Work on LTE was initiated as a
3GPP release 7 study item “Evolved
UTRA and UTRAN” in December
2004:
“With enhancements such as HSDPA
and Enhanced Uplink, the 3GPP
radio-access technology will be
highly competitive for several years.
However, to ensure competitivenessHowever, to ensure competitiveness
in an even longer time frame, i.e. for
the next 10 years and beyond, a long
term evolution of the 3GPP radio-
access technology needs to be
considered.”
• Basic drivers for LTE have been:
– Reduced latency
– Higher user data rates
– Improved system capacity and
coverage
– Cost-reduction.
Major requirements for LTE
identified during study item phase in 3GPP
• Higher peak data rates: 100 Mbps (downlink) and 50 Mbps (uplink)
• Improved spectrum efficiency: 2-4 times better compared to 3GPP release
6
• Improved latency:
– Radio access network latency (user plane UE – RNC - UE) below 10 ms
– Significantly reduced control plane latency
• Support of scalable bandwidth: 1.4, 3, 5, 10, 15, 20 MHz• Support of scalable bandwidth: 1.4, 3, 5, 10, 15, 20 MHz
• Support of paired and unpaired spectrum (FDD and TDD mode)
• Support for interworking with legacy networks
• Cost-efficiency:
– Reduced CApital and OPerational EXpenditures (CAPEX, OPEX) including
backhaul
– Cost-effective migration from legacy networks
• A detailed summary of requirements has been captured in 3GPP TR
25.913 „Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-
UTRAN)”.
Evolution of UMTS FDD and TDD
driven by data rate and latency requirements
Note:
•High-Speed Downlink Packet Access (HSDPA, also known as High-Speed Data Packet Access)
•High-Speed Uplink Packet Access (HSUPA)
•High Speed Packet Access (HSPA)
3GPP Systems
Building on Releases
Release 99: Key Features
• Functional Freeze: Dec 1999
– CS and PS
– R99 Radio Bearers
– Multimedia Messaging Service (MMS)
– Location Services
• Functional Freeze: March 2000
– Basic 3.84 Mcps W-CDMA (FDD & TDD)
• Enhancements to GSM data (EDGE).
• Provides support for GSM/EDGE/GPRS/WCDMA radio-access networks.
• Majority of deployments today are based on Release 99.
Release 4: Key Features
• Functional Freeze: March 2001
– Enhancements 1.28 Mcps TDD (aka TD-SCDMA).
– Multimedia messaging support.
– First steps toward using IP transport in the core
network.
Megachips per second (Mcps) is a measure of the speed with which encoding elements,
called chips (not to be confused with microchips), are generated in Direct Sequence Spread
Spectrum (DSSS) signals. This speed is also known as the chipping rate. A speed of 1 Mcps is
equivalent to 1,000,000, or 106, chips per second.
Typical chipping rates in third-generation (3G) wireless systems are on the order of several
million chips per second. For example, in Wideband Code-Division Multiple Access (W-CDMA)
systems, the standard rate is 3.84 Mcps.
Release 5: Key Features
• Functional Freeze: June 2002
– HSDPA
– IMS: First phase of Internet Protocol Multimedia Subsystem (IMS).
– Adaptive Multi-Rate - Wideband (AMR-WB) Speech
– Full ability to use IP-based transport instead of just Asynchronous
Transfer Mode (ATM) in the core network.Transfer Mode (ATM) in the core network.
Adaptive Multi-Rate Wideband (AMR-WB) is a patented speech coding standard developed
based on Adaptive Multi-Rate encoding, using similar methodology as Algebraic Code Excited
Linear Prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech
bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are
optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and
VoiceAge and it was first specified by 3GPP.
AMR-WB is codified as G.722.2, an ITU-T standard speech codec, formally known as Wideband
coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB). G.722.2
AMR-WB is the same codec as the 3GPP AMR-WB. The corresponding 3GPP specifications are TS
26.190 for the speech codec and TS 26.194 for the Voice Activity Detector.
3GPP architecture evolution towards flat architecture
GGSN
Release 6
GGSN
Release 7
Direct Tunnel
GGSN
Release 7
Direct Tunnel and
RNC in NB
Release 8
SAE and LTE
SAE GW
SGSN
RNC
NB
SGSN
RNC
NB
SGSN
RNC
NB
MME
eNB
Control Plane User Plane
Release 6: Key Features
• Functional Freeze: March 2005
– HSUPA (E-DCH) / Enhanced Uplink
– Enhanced multimedia support through
Multimedia Broadcast/Multicast Services (MBMS).Multimedia Broadcast/Multicast Services (MBMS).
– WLAN-UMTS Internetworking: Wireless Local Area
Network (WLAN) integration option
– Performance specifications for advanced
receivers.
– IMS enhancements. Initial VoIP capability.
Release 7: Key Features
• Functional Freeze: Dec 2007 
– Evolved EDGE.
– Specifies HSPA+
– Radio enhancements to HSPA include 64 Quadrature Amplitude
Modulation (QAM) in the downlink DL and 16 QAM in the uplink.
– LTE and SAE Feasibility Study– LTE and SAE Feasibility Study
– DL MIMO,
– IMS
– Performance enhancements, improved spectral efficiency, increased
capacity, and better resistance to interference.
– Continuous Packet Connectivity (CPC) enables efficient “always-on”
service and enhanced uplink UL VoIP capacity, as well as reductions in
call set-up delay for Push-to-Talk Over Cellular (PoC).
– Optimization of MBMS capabilities through the multicast/broadcast,
single-frequency network (MBSFN) function.
LTE Release 8: Key Features
• Functional Freeze: Dec 2008
– Further HSPA improvements / HSPA Evolution,
simultaneous use of MIMO and 64 QAM.
– Includes dual-carrier HSPA (DC-HSPA) where in
two WCDMA radio channels can be combined fortwo WCDMA radio channels can be combined for
a doubling of throughput performance.
– LTE work item – OFOMA / SC-FDMA air interface
– SAE work item – new IP core network
– Specifies OFDMA-based 3GPP LTE.
– Defines EPC.
LTE Release 8: Key Features
• High spectral efficiency
– OFDM in Downlink
• Robust against multipath interference
• High affinity to advanced techniques
– Frequency domain channel-dependent scheduling
– MIMO
– DFTS-OFDM(“Single-Carrier FDMA”) in Uplink
• Low PAPR
User orthogonality in frequency domain
DFTS-OFDM
• User orthogonality in frequency domain
– Multi-antenna application
• Very low latency
– Short setup time & Short transfer delay
– Short HO latency and interruption time
• Short TTI
• RRC procedure
• Simple RRC states
• Support of variable bandwidth
– 1.4, 3, 5, 10, 15 and 20 MHz
DFTS-OFDM: DFT-spread OFDM.
DFT: Discrete Fourier Transform.
DFT-spread OFDM (DFTS-OFDM) is a transmission
scheme that can combine the desired properties
for uplink transmission i.e. :
• Small variations in the instantaneous power of
the transmitted signal (‘single carrier’ property).
• Possibility for low-complexity high-quality
equalization in the frequency domain.
• Possibility for FDMA with flexible bandwidth
assignment.
Due to these properties, DFTS-OFDM has been
selected as the uplink transmission scheme for LTE,
which is the long-term 3G evolution.
LTE-Advanced: Key Requirements
LTE-Advanced shall be deployed as an evolution of LTE Release 8 and on new
bands.
LTE-Advanced shall be backwards compatible with LTE Release 8
Smooth and flexible system migration from Rel-8 LTE to LTE-Advanced
LTE-Advanced backward compatibility with LTE Rel-8
LTE Rel-8 cell
LTE Rel-8 terminal LTE-Advanced terminal
LTE-Advanced cell
LTE Rel-8 terminal LTE-Advanced terminal
LTE-Advanced backward compatibility with LTE Rel-8
An LTE-Advanced terminal
can work in an LTE Rel-8 cell
An LTE Rel-8 terminal can
work in an LTE-Advanced cell
LTE-Advanced contains all features of LTE Rel-8&9 and
additional features for further evolution
LTE Release 9: Key Features
• Small enhancements from LTE Release 8 mainly for higher layer
– HeNB (Home eNode B)
• HeNB Access Mode
– Rel-8: Closed Access Mode
– Rel-9: Open and Hybrid Mode
• HeNB Mobility between HeNB and macro
– Rel-8: Out-bound HO
– Rel-9: in-bound and inter-CSG HO– Rel-9: in-bound and inter-CSG HO
– SON (self-organizing networks)
• Rel-8: Self configuration, Basic self-optimization
• Rel-9: RACH optimization, etc
– MBMS (Multimedia Broadcast Multicast Service)
• Rel-8: Radio physical layer specs
• Rel-9: Radio higher layer and NW interface specs
– LCS (Location Services)
• Rel-8: U-Plane solutions
• Rel-9: C-Plane solutions, e.g. OTDOA
LTE Release 9: Key Features
• HSPA and LTE enhancements including
– HSPA dual-carrier operation in combination with
MIMO,
– EPC enhancements,– EPC enhancements,
– femtocell support,
– support for regulatory features such as emergency
user-equipment positioning and Commercial
Mobile Alert System (CMAS), and
– evolution of IMS architecture.
1999
Release 99
Release 4
Release 5
Release 6
1.28Mcps TDD
HSDPA
W-CDMA
HSUPA, MBMS
LTE-Advanced: Motivation
2011
3GPP aligned to ITU-R IMT process
Allows Coordinated approach to
WRC
3GPP Releases evolve to meet:
• Future Requirements for IMT
• Future operator and end-user
Release 7 HSPA+ (MIMO, HOM etc.)
Release 8 LTE
Release 9
Release 10
LTE enhancements
Release 11+
ITU-R M.1457
IMT-2000 Recommendation
ITU-R M.[IMT.RSPEC]
IMT-Advanced Recommendation
LTE-Advanced
• Future operator and end-user
requirements
Further LTE
enhancements
3 Gbps
64QA
M
8x8 MIMO 100MHz
BW
LTE Release 10: Key Features
Support of Wider Bandwidth(Carrier Aggregation)
• Use of multiple component carriers(CC) to extend bandwidth up to 100 MHz
• Common physical layer parameters between component carrier and LTE Rel-8 carrier
Improvement of peak data rate, backward compatibility with LTE Rel-8
Advanced MIMO techniques
• Extension to up to 8-layer transmission in downlink
• Introduction of single-user MIMO up to 4-layer transmission in uplink
• Enhancements of multi-user MIMO
Improvement of peak data rate and capacity
Heterogeneous network and eICIC(enhanced Inter-Cell Interference
100 MHz
f
CC
Heterogeneous network and eICIC(enhanced Inter-Cell Interference
Coordination)
• Interference coordination for overlaid deployment of cells with different Tx power
Improvement of cell-edge throughput and coverage
Relay
• Type 1 relay supports radio backhaul and creates a separate cell and appear as Rel. 8 LTE eNB to
Rel. 8 LTE UEs
Improvement of coverage and flexibility of service area extension
Coordinated Multi-Point transmission and reception (CoMP)
• Support of multi-cell transmission and reception
Improvement of cell-edge throughput and coverage
LTE-Advanced meeting the requirements set by ITU’s IMT-Advanced project.
Also includes quad-carrier operation for HSPA+.
Spectrum Explosion in 3GPP
Recently standardized (Sep. 2011)
• UMTS/LTE 3500MHz
• Extending 850 MHz Upper Band (814 – 849 MHz)
Spectrum to be standardized by Sep. 2012
• LTE-Advanced Carrier Aggregation of Band 3 and Band 7
• LTE Advanced Carrier Aggregation of Band 4 and Band 17
• LTE Advanced Carrier Aggregation of Band 4 and Band 13
• LTE Advanced Carrier Aggregation of Band 4 and Band 12
• LTE Advanced Carrier Aggregation of Band 5 and Band 12
E-UTRA operating bands in 3GPP TS 36.101
• LTE Advanced Carrier Aggregation of Band 5 and Band 12
• LTE Advanced Carrier Aggregation of Band 20 and Band 7
• LTE Advanced Carrier Aggregation Band 2 and Band 17
• LTE Advanced Carrier Aggregation Band 4 and Band 5
• LTE Advanced Carrier Aggregation Band 5 and Band 17
• LTE Advanced Carrier Aggregation in Band 41
• LTE Advanced Carrier Aggregation in Band 38
• LTE Downlink FDD 716-728MHz
• LTE E850 - Lower Band for Region 2 (non-US)
• LTE for 700 MHz digital dividend
• Study on Extending 850MHz
• Study on Interference analysis between 800~900 MHz bands
• Study on UMTS/LTE in 900 MHz band
E-UTRA operating bands
Duplex Mode: FDD
E-UTRA operating bands
Duplex Mode: TDD
3GPP TS 36.101
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) radio transmission and reception
3GPP TS 36.101
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) radio transmission and reception
120MHz separation duplex
FDD Uplink FDD DownlinkTDD
2500 26902570 2620 MHz
The 2.6GHz band
Capacity
• Unique new band internationally harmonized
• Benefits of future economies of scale
• Capability to offer sufficient bandwidth per operator (20+20MHz)
• Avoid prejudicial interference, optimizing the spectrum use, through clear
definition of FDD (70+70MHz) and TDD (50MHz) spectrum blocks
700MHz band
Coverage
45 45105 3
698 806
703
748
758
803
MHz
Coverage
• Perfect fit to majority of countries in the region
• The alignment with Asia-Pacific permits the creation of a big market
(economies of scale, availability of terminals, etc.)
• Offer 2 continuous blocks of 45+45MHz (spectrum optimization, flexibility
on license process, better data transmission performance than US 700);
• Tool to bring the mobile broadband to rural and low density population
areas
2.6GHz + 700MHz
• Ideal combination for
– Coverage
– Capacity
– Convergence
– Device availability– Device availability
– Roaming
• Convergence for countries with the legacy US band plan
(850/1900MHz) and the legacy European band plan (900/1800MHz)
• Note: no plans/proposals in 3GPP for LTE in 450Mhz band
LTE Release 11: Key Features
(Dec/2012)
Further Downlink MIMO enhancements for LTE-Advanced
Addressing low-power modes, relay backhaul scenarios, and certain
practical antenna configurations
Provision of low-cost M2M UEs based on LTE
Studying LTE Coverage Enhancements
Network-Based Positioning Support for LTE
Further Self Optimizing Networks (SON) EnhancementsFurther Self Optimizing Networks (SON) Enhancements
Mobility Robustness Optimisation (MRO) enhancements
Addressing Inter-RAT ping-pong scenarios
Carrier based HetNet Interference co-ordination for LTE
Carriers in same or different bands in HetNet environments with
mixture of different BTS types
Enhancements to Relays, Mobile Relay for LTE
RF core requirements for relays
Mobile relay: mounted on a vehicle wirelessly connected to the macro
cells
Interworking - 3GPP EPS and fixed BB accesses, M2M, Non voice emergency communications, 8 carrier
HSDPA, Uplink MIMO study
RAN Release 11 Priorities
• Short term prioritization for the end of 2011, between RAN#53 and RAN#54
• The next Plenary - RAN#54 (Dec. 2011) – will discuss priorities beyond March 2012
H S P A Priority Work Items;
Latest
WID/SID
RAN
Working Group
Core part: Uplink Transmit Diversity for HSPA – Closed Loop RP-110374 RAN 1
New WI: Four Branch MIMO transmission for HSDPA RP-111393 RAN 1
Core Part: eight carrier HSDPA RP-101419 RAN 1
Core part: Further Enhancements to CELL_FACH RP-111321 RAN 2
New WI: HSDPA Multiflow Data Transmission RP-111375 RAN 2
Proposed WID: Single Radio Voice Call Continuity from UTRAN/GERAN to E-UTRAN/HSPA RP-111334 RAN 3
Core part: Non-contiguous 4C-HSDPA operation RP-110416 RAN 4
New SID proposal: Introduction of Hand phantoms for UE OTA antenna testing RP-111380 RAN 4
Core part: Uplink Transmit Diversity for HSPA – Open Loop RP-110374 RAN 4
UE Over the Air (Antenna) conformance testing methodology- Laptop Mounted Equipment Free Space test RP-111381 RAN 4
RAN Release 11 Priorities
L T E Priority Work Items;
Latest
WID/SID
RAN
Working Group
WI/SI Coordinated Multi-Point Operation for LTE RP-111365 RAN 1
Core part: LTE Carrier Aggregation Enhancements RP-111115 RAN 1
Core part: Further Enhanced Non CA-based ICIC for LTE RP-111369 RAN 1
Study on further Downlink MIMO enhancements for LTE-Advanced RP-111366 RAN 1
Provision of low-cost MTC UEs based on LTE RP-111112 RAN 1
Proposed SI on LTE Coverage Enhancements RP-111359 RAN 1
Core part: LTE RAN Enhancements for Diverse Data Applications RP-111372 RAN 2
Study on HetNet mobility enhancements for LTE RP-110709 RAN 2
Enhancement of Minimization of Drive Tests for E-UTRAN and UTRAN RP-111361 RAN 2
New WI: Signalling and procedure for interference avoidance for in-device coexistence RP-111355 RAN 2New WI: Signalling and procedure for interference avoidance for in-device coexistence RP-111355 RAN 2
New WI proposal: RAN overload control for Machine-Type Communications RP-111373 RAN 2
Core part: Service continuity and location information for MBMS for LTE RP-111374 RAN 2
Core Part: Network-Based Positioning Support for LTE RP-101446 RAN 2
Further Self Optimizing Networks (SON) Enhancements RP-111328 RAN 3
Core part: Carrier based HetNet ICIC for LTE RP-111111 RAN 3
New WI: Network Energy Saving for E-UTRAN RP-111376 RAN 3
Proposed WID: LIPA Mobility and SIPTO at the Local Network RAN Completion RP-111367 RAN 3
Study on further enhancements for HNB and HeNB RP-110456 RAN 3
New SI: Mobile Relay for E-UTRA RP-111377 RAN 3
Enhanced performance requirement for LTE UE RP-111378 RAN 4
New SI: Study of RF and EMC Requirements for Active Antenna Array System (AAS) Base Station RP-111349 RAN 4
Study on Measurement of Radiated Performance for MIMO and multi-antenna reception for HSPA and LTE terminals RP-090352 RAN 4
New WI: E-UTRA medium range and MSR medium range/local area BS class requirements RP-111383 RAN 4
Core part: Relays for LTE (part 2) RP-110914 RAN 4
Study on Inclusion of RF Pattern Matching Technologies as a positioning method in the E-UTRAN RP-110385 RAN 4
Plans for LTE-A Release-12
• 3GPP workshop to be held June/2012
– Main themes and strategic directions to be set, e.g.:
• Extreme capacity needs and spectrum efficiency (‘challenge
Shannon’
• Flexibility, efficient handling of smartphone diversity
• Offloading to unlicensed radio technologies• Offloading to unlicensed radio technologies
• Power efficiency
• Prime areas of interest, e.g.:
– More optimized small cell deployments
– Carrier Aggregation Enhancements (inter-site, LTE/HSPA)
– Cognitive radio aspects
– SON and MDT enhancements
– Local Area optimizations
LTE Key Parameters
Session 2: OFDMA
•OFDM and OFDMA•OFDM and OFDMA
•LTE Downlink
•OFDMA time-frequency multiplexing
•LTE Spectrum Flexibility
•LTE Frame Structure type 1 (FDD)
•LTE Frame Structure type 2(TDD)
OFDM
• Single Carrier Transmission (e.g. WCDMA)
• Orthogonal Frequency Division Multiplexing
OFDM Concept: Mengapa OFDM
• Sinyal OFDM (Orthogonal Frequency Division
Multiplexing) dapat mendukung kondisi NLOS (Non
Line of Sight) dengan mempertahankan efisiensi
spektral yang tinggi dan memaksimalkan spektrum
36
spektral yang tinggi dan memaksimalkan spektrum
yang tersedia.
• Mendukung lingkungan propagasi multi-path.
• Scalable bandwidth: menyediakan fleksibilitas dan
potensial mengurangi CAPEX (capital expense).
OFDM Concept: NLOS Performance
37
OFDM Concept: Mutipath Propagation
38
• Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang
berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima.
• Propagasi multipath berpengaruh terhadap performansi link dan coverage.
• Selubung (envelop) sinyal Rx berfluktuasi secara acak.
OFDM Concept: FFT
39
• Multi-carrier modulation/multiplexing technique
• Available bandwidth is divided into several subchannels
• Data is serial-to-parallel converted
• Symbols are transmitted on different subcarriers
OFDM Concept: IFFT
40
Basic ideas valid for various multicarrier techniques:
• OFDM: Orthogonal Frequency Division Multiplexing
• OFDMA: Orthogonal Frequency Division Multiple Access
OFDM Concept: Single-Carrier Vs. OFDM
41
Single-Carrier Mode:
• Serial Symbol Stream Used to Modulate a
Single Wideband Carrier
• Serial Datastream Converted to Symbols
(Each Symbol Can Represented 1 or More
Data Bits)
OFDM Mode:
• Each Symbol Used to Modulate a Separate
Sub-Carrier
OFDM Concept: Single-Carrier Vs. OFDM
42
Single-Carrier Mode OFDM Mode
• Dotted Area Represents Transmitted Spectrum
• Solid Area Represents Receiver Input
• OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga
dapat meningkatkan throughput data rate yang lebih tinggi.
• Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal
single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.
OFDM Concept: Motivation for Multi-carrier Approaches
• Multi-carrier transmission offers various advantagesadvantages over
traditional single carrier approaches:
– Highly scalable
– Simplified equalizer design in the frequency domain, also in cases of
large delay spread
– High spectrum density
43
– High spectrum density
– Simplified the usage of MIMO
– Good granularity to control user data rates
– Robustness against timing errors
•• WeaknessWeakness of multi-carrier systems:
– Increased peak to average power ratio (PAPR)
– Impairments due to impulsive noise
– Impairments due to frequency errors
OFDM Concept: Peak to Average Power Ratio (PAPR)
44
• PAPR merupakan ukuran dari fluktuasi tepat sebelum amplifier.
• PAPR sinyal hasil dari mapping PSK base band sebesar 0 dB karena semua symbol mempunyai daya yang
sama.
• Tetapi setelah dilakukan proses IDFT/IFFT, hasil superposisi dari dua atau lebih subcarrier dapat
menghasilkan variasi daya dengan nilai peak yang besar.
• Hal ini disebabkan oleh modulasi masing-masing subcarrier dengan frekuensi yang berbeda sehingga
apabila beberapa subcarrier mempunyai fasa yang koheren, akan muncul amplituda dengan level yang
jauh lebih besar dari daya sinyalnya.
OFDM Concept: Peak to Average Power Ratio (PAPR)
45
• Nilai PAPR yang besar pada OFDM membutuhkan amplifier dengan dynamic range yang lebar untuk
mengakomodasi amplitudo sinyal.
• Jika hal ini tidak terpenuhi maka akan terjadi distorsi linear yang menyebabkan subcarrier menjadi tidak
lagi ortogonal dan pada akhirnya menurunkan performansi OFDM.
Tipe Sub-Carrier OFDM
46
Data Sub-carriers
• Membawa simbol BPSK, QPSK, 16QAM, 64QAM
Pilot Sub-carriers
• Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver.
Null Subcarrier
• Guard Sub-carriers
• DC Sub-carrier
Guard Interval (Cyclic Prefix)
47
• Untuk mengatasi multipath delay spread
• Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32
OFDM Transceiver
48
OFDM & OFDMA
OFDM
• Semua subcarrier dialokasikan untuk satu
user
• Misal : 802.16-2004
OFDMA
• Subcarrier dialokasikan secara fleksibel
untuk banyak user tergantung pada kondisi
radio.
• Misal : 802.16e-2005 dan 802.16m
49
OFDM Parameters used in WiMAX
50
Difference between OFDM and OFDMA
• OFDM allocates users in time
domain only
• OFDMA allocates users in time
and frequency domain
OFDMA time-frequency multiplexing
LTE Downlink Physical Layer Design: Physical Resource
The physical resource can be seen as
a time-frequency grid
53
• LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink
• In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division
Multiple Access) to reduced power consumption
LTE Downlink Resource Grid
54
• Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu
durasi slot 0.5 ms.
• Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180
kHz per RB.
Parameters for DL generic frame structure
55
Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0
Subcarrier bandwidth (kHz) 15
Physical resource block (PRB)
bandwidth (kHz)
180
Number of available PRBs 6 12 25 50 75 100
Transmission BW 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Sub-frame duration 0.5 ms
Sub-carrier spacing 15 kHz
Sampling frequency
192 MHz
(1/2x3.84 3.84 MHz
7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz
Parameters for DL generic frame structure
56
Sampling frequency (1/2x3.84
MHz)
3.84 MHz
7.68 MHz
(2x3.84 MHz)
15.36 MHz
(4x3.84 MHz)
23.04 MHz
(6x3.84 MHz)
30.72 MHz
(8x3.84 MHz)
FFT size 128 256 512 1024 1536 2048
OFDM sym per slot
(short/long CP)
7/6
CP length
(usec/
samples)
Short
(4.69/9) x 6,
(5.21/10) x 1
(4.69/18) x 6,
(5.21/20) x 1
(4.69/36) x 6,
(5.21/40) x 1
(4.69/72) x 6,
(5.21/80) x 1
(4.69/108) x 6,
(5.21/120) x 1
(4.69/144) x 6,
(5.21/160) x 1
Long (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)
LTE – Spectrum Flexibility
• LTE physical layer supports any bandwidth from 1.4 MHz to 20
MHz in steps of 180 kHz (resource block).
• Current LTE specification supports a subset of 6 different
system bandwidths.
• All UEs must support the maximum bandwidth of 20 MHz.• All UEs must support the maximum bandwidth of 20 MHz.
E-UTRA channel bandwidth
Case StudyCase Study
LTE Signal Spectrum (20 MHz case)
59
• The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used
subcarriers. 15 kHz subcarrier spacing is the constant factor!
• 18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band.
• LTE used spectrum radio = 90%
• WiMAX used spectrum radio = 82%
TDD & FDD
60
• Time Division Duplex (TDD)
• Frequency Division Duplex (FDD)
• Durasi Frame : 2.5 - 20ms
Tf = 307200 x Ts = 10 ms
Tslot = 15360 x Ts = 0.5 ms
Generic LTE Frame Structure type 1 (FDD)
61
• Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms.
• Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 sub-frame.
• Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz.
• Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.
LTE Frame Structure type 1 (FDD)
62
• 2 slots form one subframe = 1 ms
• For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions.
• For TDD, a subframe is either located to downlink or uplink transmission. The 0th and 5th subframe in a radio frame is
always allocated for downlink transmission.
Downlink LTE Frame Structure type 1 (FDD)
Generic LTE Frame Structure type 2 (TDD)
64
• Struktur frame tipe-2 hanya digunakan untuk transmisi TDD.
• Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi
UL.
LTE Frame Structure type 2 (TDD)
65
Mobile WiMAX Frame Structure
66
LTE Frame Structure type 2 (TDD)
DL Peak rates for E-UTRA FDD/TDD
frame structure type 1
Downlink
Assumptions
64 QAM
Signal overhead for reference signals and
control channel occupying one OFDM symbol
Unit Mbps in 20 MHz b/s/Hz
Requirement 100 5.0Requirement 100 5.0
2x2 MIMO 172.8 8.6
4x4 MIMO 326.4 16.3
UL Peak rates for E-UTRA FDD/TDD
frame structure type 1
Uplink
Assumptions
Single TX UE
Signal overhead for reference signals and control
channel occupying 2RB
Unit Mbps in 20 MHz b/s/Hz
Requirement 50 2.5Requirement 50 2.5
16QAM 57.6 2.9
64QAM 86.4 4.3
Peak rates for E-UTRA TDD
frame structure type 2
Downlink Uplink
Assumptions 64 QAM, R=1
Single TX UE,
64 QAM, R=1
Unit
Mbps
in 20 MHz
b/s/Hz
Mbps
in 20 MHz
b/s/Hz
in 20 MHz in 20 MHz
Requirement 100 5.0 50 2.5
2x2 MIMO in DL 142 7.1
62.7 3.1
4x4 MIMO in DL 270 13.5
3GPP TR 25.912
Technical Specification Group Radio Access Network;
Feasibility study for
evolved Universal Terrestrial Radio Access (UTRA)
and Universal Terrestrial Radio Access Network (UTRAN)
Release Freeze meeting Freeze date ::
Rel-7 RP-33 2006-09-22 ::
event version available
RP-27 0.0.0 2005-03-03
RP-31 0.0.4 2006-03-20
draft 0.1.0 2006-03-20
draft 0.1.1 2006-03-20
post RP-31 0.1.2 2006-03-30
R3-51b 0.1.3 2006-05-02
draft post Shanghai 0.1.4 2006-05-22
draft 0.1.5 2006-07-10
draft 0.1.6 -
draft 0.1.7 2006-05-29
RP-32 0.2.0 2006-06-12
RP-32 7.0.0 2006-06-23
RP-33 7.1.0 2006-10-18
RP-36 7.2.0 2007-08-13
3GPP TR 25.912
Technical Specification Group Radio Access Network;
Feasibility study for
evolved Universal Terrestrial Radio Access (UTRA)
and Universal Terrestrial Radio Access Network (UTRAN)
Rel-8 SP-42 2008-12-11 :: . ETSI
event version available remarks
SP-42 8.0.0 2009-01-02 Upgraded unchanged from Rel-7
RTR/TSGR-
0025912v800
Rel-9 SP-46 2009-12-10 ::
Upgraded to Rel-9 with no technical change to enable
reference related to ITU-R IMT-Advanced submission
(reference in 36.912). .
ETSI
(reference in 36.912). .
event version available remarks
RP-45 9.0.0 2009-10-01 Technically identical to v8.0.0
RTR/TSGR-
0025912v900
Rel-10 SP-51 2011-03-23 ::
Upgraded from previous Release without technical
change .
ETSI
event version available remarks
SP-51 10.0.0 2011-04-06 Automatic upgrade from previous Release version 9.0.0
RTR/TSGR-
0025912va00
Rel-11 SP-57 2012-09-12 ::
Upgraded from previous Release without technical
change .
ETSI
event version available remarks
SP-57 11.0.0 2012-09-26 Automatic upgrade from previous Release version 10.0.0 -
Session 3: SC-FDMA
•Introduction SC-FDMA and UL frame structure•Introduction SC-FDMA and UL frame structure
•How to generate SC-FDMA
•How does SC-FDMA signal look like
•SC-FDMA Signal Generation
•SC-FDMA PAPR
•SC-FDMA Parameterization
LTE Uplink Transmission Scheme: SC-FDMA
• Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE
pada arah downlink, tetapi OFDMA memiliki properti yang kurang
menguntungkan pada arah Uplink.
• Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio
(PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink.
• Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD
didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik.
74
didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik.
• Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan
pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL
dapat diharmonisasi.
• Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT-
spread-OFDM (DFT-s-OFDM).
OFDMA and SC-FDMA
• The symbol mapping
in OFDM happens in
the frequency
domain.
• In SC-FDMA, the
symbol mapping is
done in the time
domain.
75
domain.
• Appropriate
subscriber mapping
in the frequency
domain allows to
control the PAPR.
• SC-FDMA enable
frequency domain
equalizer approaches
like OFDMA
Comparison of how OFDMA and SC-FDMA
transmit a sequence of QPSK data symbols
76
Creating the time-
domain waveform of an
SC-FDMA symbol
Comparison of how OFDMA and SC-FDMA
transmit a sequence of QPSK data symbols
77
Baseband and shifted
frequency domain
representations of an
SC-FDMA symbol
How to generate SC-FDMA?
• DFT “pre-coding” is performed on modulated data symbols to
transform them into frequency domain,
• Sub-carrier mapping allows flexible allocation of signal to available
sub-carriers,
• IFFT and cyclic prefix (CP) insertion as in OFDM,
• Each subcarrier carries a portion of superposed DFT spread data
symbols, therefore SC-FDMA is also referred to as DFT-spread-
OFDM (DFT-s-OFDM).
How does a SC-FDMA signal look like?
• Similar to OFDM signal, but…
– …in OFDMA, each sub-carrier only carries information
related to one specific symbol,
– …in SC-FDMA, each sub-carrier contains information of ALL
transmitted symbols.transmitted symbols.
SC-FDMA signal generation
Localized vs. distributed FDMA
SC-FDMA – Peak-to-average Power Ratio (PAPR)
Comparison of CCDF of PAPR for IFDMA, LFDMA, and OFDMA with M = 256 system subcarriers,
N=64 subcarriers per users, and a = 0.5 roll factor; (a) QPSK; (b) 16-QAM
Source:
H.G. Myung, J.Lim, D.J. Goodman “SC-FDMA for Uplink Wireless Transmission”,
IEEE VEHICULAR TECHNOLOGY MAGAZINE, SEPTEMBER 2006
SC-FDMA parameterization (FDD and TDD)
LTE FDD
•Same as in downlink
82
TD-LTE
•Usage of UL depends on the selected UL-DL configuration (1 to 8), each
configuration offers a different number of subframes (1ms) for uplink
transmission,
•Parameterization for those subframes, means number of SC-FDMA symbols
same as for FDD and depending on CP,
Improved UL Performance
SC-FDMA compared to ordinary OFDM
83
Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link
budget and reduced power consumption compared to OFDM
LTE Uplink SC-FDMA Physical Layer Parameters
84
Physical Channel Processing
• Scrambling: Scramble binary information
• Modulation Mapper: Maps groups of 2, 4, or 6 bits onto QPSK, 16QAM, 64QAM symbol constellation points
85
• Transform Precoder: Slices the input data vector into a set of symbol vectors and perform DFT transformation.
• Resource Element Mapper: Maps the complex constellation points into the allocated virtual resource blocks
and performs translation into physical resource blocks.
• SC-FDMA Signal Generation: Performs the IFFT processing to generate final time domain for transmission.
Single Carrier
Constellation
Mapping
S/P
Convert
M-Point
DFT
Subcarrier
Mapping
N-Point
IDFT
Cyclic
Prefix &
Pulse
Shaping
RFE
Bit
Stream
Channel
Symbol
Block
SC-FDMA and OFDMA Signal Chain
Have a High Degree of Functional Commonality
86
Const.
De-map
S/P
Convert
M-Point
IDFT
Freq
Domain
Equalizer
N-Point
DFT
Cyclic
Prefix
Removal
RFE
Bit
Stream
Symbol
Block
SC
Detector
Functions Common to OFDMA and SC-FDMA
SC-FDMA Only
Session 4: Network and Protocol
•Network architecture•Network architecture
•Protocol Stack – User plane
•Protocol Stack – Control plane
•Mapping between logical and transport channel
•LTE UE Categories
LTE Network Architecture
GGSN
UMTS 3G: UTRAN
SGSN
MMEMME
SS--GW / PGW / P--GWGW
MMEMME
SS--GW / PGW / P--GWGW
EPC
UMTS : Universal Mobile Telecommunications System
UTRAN : Universal Terrestrial Radio Access Network
GGSN : Gateway GPRS Support Node
GPRS: General Packet Radio Service
SGSN : Serving GPRS Support Node
RNC: Radio Network Controller
NB: Node B
RNC RNC
NB NB NB NB
eNB
eNB eNB
eNB
E-UTRAN
EPC ; Evolved Packet Core
MME : Mobility Management Entity
S-GC : Serving Gateway
P-GW : PDN Gateway
PDN : Packet Data Network
eNB : E-UTRAN Node B / Evolved Node B
E-UTRAN ; Evolved-UTRAN
Simplified LTE network elements and interfaces
3GPP TS 36.300 : Overall Architecture
MMEMME
SS--GW / PGW / P--GWGW
MMEMME
SS--GW / PGW / P--GWGW
EPC
EPC: Evolved Packet Core
Radio Side: LTE – Long Term Evolution
• Improvements in spectral efficiency, user
throughput, latency.
• Simplification of the radio network
• Efficient support of packet services
• Main Components:
• MME = Manages mobility, UE identity, and
security parameters.
• S-GW = Node that terminates the interface
towards E-UTRAN.
S1
eNB
eNB eNB
eNB
E-UTRAN
towards E-UTRAN.
• P-GW = Node that terminates the interface
towards PDN
E-UTRAN : Evolved-UTRAN
Network Side : SAE – System Architecture Evolution
• Improvement in latency, capacity, throughput
• Simplification of the core network
• Optimization for IP traffic services
• Simplified support and handover to non-3GPP
access technologies
• Main Components:
• eNB = All radio interface-related functions
X2
S-GW P-GW
MME
Operator’s
IP Services
LTE-Uu SGi
RxGx
S5 / S8
S6a
S1-MME
S1-U
EPS Network Elements
E-UTRAN EPC
• UE, E-UTRAN and EPC together represent the Internet Protocol (IP) Connectivity Layer.
• This part of the system is also called the Evolved Packet System (EPS).
• The main function of this layer is to provide IP based connectivity, and it is highly optimized for that purpose only.
• All services will be offered on top of IP, and circuit switched nodes and interfaces seen in earlier 3GPP
architectures are not present in E-UTRAN and EPC at all.
• IP technologies are also dominant in the transport, where everything is designed to be operated on top of IP
transport.
eNB
UE
S-GW P-GW IP Services
(e.g. IMS, PSS,
etc,)
LTE-Uu SGiS5 / S8S1-U
System architecture for E-UTRAN only network
Services
• The IP Multimedia Sub-System
(IMS) is a good example of service
machinery that can be used in the
Services Connectivity Layer to
provide services on top of the IP
connectivity provided by theconnectivity provided by the
lower layers.
• For example, to support the voice
service, IMS can provide Voice
over IP (VoIP) and
interconnectivity to legacy circuit
switched networks PSTN and
ISDN through Media Gateways it
controls.
EPC
• Functionally the EPC is equivalent to the packet
switched domain of the existing 3GPP networks.
• Significant changes in the arrangement of functions
and most nodes and the architecture in this part
should be considered to be completely new.
• SAE GW represents the combination of the two
gateways, Serving Gateway (S-GW) and Packet Data
Network Gateway (P-GW) defined for the UP
handling in EPC.
• Implementing them together as the SAE GW
represents one possible deployment scenario, butrepresents one possible deployment scenario, but
the standards define the interface between them,
and all operations have also been specified for
when they are separate.
• The Basic System Architecture Configuration and its
functionality are documented in 3GPP TS 23.401.
• We will learn the operation when the S5/S8
interface uses the GTP protocol. However, when
the S5/S8 interface uses PMIP, the functionality for
these interfaces is slightly different, and the Gxc
interface also is needed between the Policy and
Charging Resource Function (PCRF) and S-GW.
One of the big architectural changes in the
core network area is that the EPC does
not contain a circuit switched domain, and
no direct connectivity to traditional circuit
switched networks such as ISDN or PSTN
is needed in this layer.
E-UTRAN
• The development in E-UTRAN is
concentrated on one node, the
evolved Node B (eNodeB).
• All radio functionality is collapsed
there, i.e. the eNodeB is the
termination point for all radio
related protocols.related protocols.
• As a network, E-UTRAN is simply
a mesh of eNodeBs connected to
neighbouring eNodeBs with the
X2 interface.
User Equipment
• UE is the device that the end user uses for
communication.
• Typically it is a hand held device such as a smart
phone or a data card such as those used
currently in 2G and 3G, or it could be
embedded, e.g. to a laptop.
• UE also contains the Universal Subscriber
Identity Module (USIM) that is a separate
module from the rest of the UE, which is oftenmodule from the rest of the UE, which is often
called the Terminal Equipment (TE).
• USIM is an application placed into a removable
smart card called the Universal Integrated
Circuit Card (UICC).
• USIM is used to identify and authenticate the
user and to derive security keys for protecting
the radio interface transmission.
• Maybe most importantly, the UE provides the
user interface to the end user so that
applications such as a VoIP client can be used to
set up a voice call.
Functionally the UE is a platform for communication
applications, which signal with the network for setting
up, maintaining and removing the communication links
the end user needs.
This includes mobility management functions such as
handovers and reporting the terminals location, and in
these the UE performs as instructed by the network.
User Equipment Capabilities
• Support Spectrum flexibility
– Flexible bandwidth
– New and existing bands
20 MHz1.4 MHz
AnalogAnalog
1G DigitalDigital
2G PacketsPackets
3G True
Broadband
True
Broadband4G
Downlink physical layer parameter values
set by the field UE-Category
UE Category Maximum number of
DL-SCH transport block
bits received within a
TTI (Note)
Maximum number of
bits of a DL-SCH
transport block
received within a TTI
Total number of
soft channel bits
Maximum number of
supported layers for
spatial multiplexing
in DL
Category 1 10296 10296 250368 1
Category 2 51024 51024 1237248 2
Category 3 102048 75376 1237248 2
Category 4 150752 75376 1827072 2
Category 5 299552 149776 3667200 4
Category 6 301504 149776 (4 layers) 3654144 2 or 4Category 6 301504 149776 (4 layers)
75376 (2 layers)
3654144 2 or 4
Category 7 301504 149776 (4 layers)
75376 (2 layers)
3654144 2 or 4
Category 8 2998560 299856 35982720 8
NOTE: In carrier aggregation operation, the DL-SCH processing capability can be shared by the UE with that of MCH
received from a serving cell. If the total eNB scheduling for DL-SCH and an MCH in one serving cell at a given
TTI is larger than the defined processing capability, the prioritization between DL-SCH and MCH is left up to
UE implementation.
TTI = Transmission Time Interval
3GPP TS 36.306 V11.1.0 (2012-09)
3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) radio access capabilities
MIMO = Multiple Input Multiple Output
UL-SCH = Uplink Shared Channel
DL-SCH = Downlink Shared Channel
UE = User Equipment
TTI = Transmission Time Interval
Transmission Time Interval
• Transmission Time Interval: Transmission Time Interval is
defined as the inter-arrival time of Transport Block Sets, i.e.
the time it shall take to transmit a Transport Block Set.
• Transport Block Set: Transport Block Set is defined as a set of
Transport Blocks that is exchanged between L1 and MAC at
the same time instance using the same transport channel. Anthe same time instance using the same transport channel. An
equivalent term for Transport Block Set is “MAC PDU Set”.
• Transport Block: Transport Block is defined as the basic data
unit exchanged between L1 and MAC. An equivalent term for
Transport Block is “MAC PDU”.
3GPP TR 21.905 V11.2.0 (2012-09)
3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;
Vocabulary for 3GPP Specifications
(Release 11)
Uplink physical layer parameter values
set by the field UE-Category
UE Category Maximum number of UL-
SCH transport block bits
transmitted within a TTI
Maximum number of
bits of an UL-SCH
transport block
transmitted within a TTI
Support for 64QAM
in UL
Category 1 5160 5160 No
Category 2 25456 25456 No
Category 3 51024 51024 NoCategory 3 51024 51024 No
Category 4 51024 51024 No
Category 5 75376 75376 Yes
Category 6 51024 51024 No
Category 7 102048 51024 No
Category 8 1497760 149776 Yes
3GPP TS 36.306 V11.1.0 (2012-09)
3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
Evolved Universal Terrestrial Radio Access (E-UTRA);
User Equipment (UE) radio access capabilities
eNB
Functional split between E-UTRAN and Evolved Packet Core
E-UTRAN
aGW
• Paging origination
• LTE_IDLE mode management
• Ciphering of the user plane
• Header Compression (ROHC)
eNodeB
• All Radio-related issues
• Decentralized mobility
management
• MAC and RRM
• Simplified RRC
aGW
Internet
S1
The E-UTRAN consists of eNBs, providing:
• The E-UTRA U-plane (RLC/MAC/PHY) and
• The C-plane (RRC) protocol terminations
towards the UE.
• The eNBs interface to the aGW via the S1
RRM : Radio Resource Management
RRC: Radio Resource Control
MAC : Medium Access Control
ROHC: RObust Header Compression
RLC: Radio Link Control
PHY: Physical Layer
eNB
Protocol
Inter Cell RRM
RB Cont.
Connection Mobility Cont.
Radio Admission Cont.
eNB Measurement
Configuration & Provision
Dynamic Resource
Allocation (Scheduler)
MME
NAS Security
Idle State Mobility Handling
EPS Bearer Cont.
SAE GW
EPC
E-UTRAN
RRM : Radio Resource Management
RB : Radio Bearer
RRC: Radio Resource Control
PDCP : Packet Data Convergence Protocol
RLC : Radio Link Control
MAC : Medium Access Control
PHY : Physical Layer
Allocation (Scheduler)
RRC
PDCP
RLC
MAC
PHY
UE IP Address
Allocation
Packet Filtering
P-GW
Mobile Anchoring
S-GW
SAE GW
NAS : Non Access Stratum
EPS : Evolved Packet System
UE : User Equipment
IP : Internet Protocol
Internet
S1
eNB
LTE Control Plane
NAS
RRC
PDCP
RLC
MAC
PHY
S1
UE
RRC
PDCP
RLC
MAC
PHY
NAS
aGW Non Access Stratum (NAS) is a
functional layer in UMTS
protocol stack between Core
Network and User Equipment
(UE).
The layer supports signaling and
traffic between two elements.
eNB
LTE User Plane
IP
PDCP
RLC
MAC
PHY
S1
UE
PDCP
RLC
MAC
PHY
IP
aGW
Packet Data Convergence Protocol
(PDCP) is a one of the layers of
Radio Traffic Stack in UMTS
and perform as IP header
compression and
decompression, transfer of
user data and maintenance of
sequence numbers for Radio
Bearers which are configured
for lossless Serving Radio
Networks Subsystems (SRNS)
relocation.
LTE Protocol Stacks (UE and eNB)
RRC: Radio Resource Control
PDCP : Packet Data Convergence Protocol
RLC : Radio Link Control
MAC : Medium Access Control
PHY : Physical Layer
RRC
PDCP
Control-Plane
L3
User-Plane
L2
Radio Bearers
RLC
MAC
PHY:
Physical Channels
Physical Signals
L1
Transport Channels
Logical Channels
Control plane protocol stack in EPS
The topmost layer in the CP is the Non-Access Stratum (NAS), which consists of two
separate protocols that are carried on direct signaling transport between the UE
and the MME.
The content of the NAS layer protocols is not visible to the eNodeB, and the eNodeB is
not involved in these transactions by any other means, besides transporting the
messages, and providing some additional transport layer indications along with the
messages in some cases.
NAS layer protocols
The NAS layer protocols are:
• EPS Mobility Management (EMM): The EMM protocol is responsible for handling
the UE mobility within the system. It includes functions for attaching to and
detaching from the network, and performing location updating in between. This is
called Tracking Area Updating (TAU), and it happens in idle mode. Note that the
handovers in connected mode are handled by the lower layer protocols, but the
EMM layer does include functions for re-activating the UE from idle mode. The UE
initiated case is called Service Request, while Paging represents the network
initiated case. Authentication and protecting the UE identity, i.e. allocating theinitiated case. Authentication and protecting the UE identity, i.e. allocating the
temporary identity GUTI to the UE are also part of the EMM layer, as well as the
control of NAS layer security functions, encryption and integrity protection.
• EPS Session Management (ESM): This protocol may be used to handle the bearer
management between the UE and MME, and it is used in addition for E-UTRAN
bearer management procedures. Note that the intention is not to use the ESM
procedures if the bearer contexts are already available in the network and E-
UTRAN procedures can be run immediately. This would be the case, for example,
when the UE has already signaled with an operator affiliated. Application Function
in the network, and the relevant information has been made available through the
PCRF.
User plane protocol stack in EPS
The UP includes the layers below the end user IP, i.e. these protocols form the Layer 2
used for carrying the end user IP packets.
The protocol structure is very similar to the CP.
This highlights the fact that the whole system is designed for generic packet data
transport, and both CP signaling and UP data are ultimately packet data. Only the
volumes are different.
Summary of interfaces and protocols in Basic
System Architecture configuration
Protocol Architecture
LTE MAC Layer Functions
LTE Channel Architecture
Downlink layer 2 structure
Uplink layer 2 structure
LTE Downlink Channels
LTE Downlink Logical Channels 1
LTE Downlink Logical Channels 2
LTE Downlink Transport Channels 1
LTE Downlink Transport Channels 2
LTE Downlink Physical Channels 1
LTE Downlink Physical Channels 2
LTE Uplink Channels
LTE Uplink Logical Channels
LTE Uplink Transport Channels
LTE Uplink Physical Channels
End of
Thank You
See you again at

More Related Content

What's hot

Chap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewChap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewsivakumar D
 
Lte principles overview
Lte principles  overviewLte principles  overview
Lte principles overviewNdukwe Amandi
 
LTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc AspectsLTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc AspectsBP Tiwari
 
Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)Going LTE
 
Main Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedMain Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedSabir Hussain
 
02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_pptNdukwe Amandi
 
39018631 lte-overview
39018631 lte-overview39018631 lte-overview
39018631 lte-overviewcefer mecid
 
LTE Long Term Evolution
LTE Long Term EvolutionLTE Long Term Evolution
LTE Long Term Evolutionajus ady
 
Lte training an introduction-to-lte-basics
Lte training an introduction-to-lte-basicsLte training an introduction-to-lte-basics
Lte training an introduction-to-lte-basicsSaurabh Verma
 
AIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM International
 

What's hot (20)

LTE Engg Seminar
LTE Engg SeminarLTE Engg Seminar
LTE Engg Seminar
 
Chap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewChap 1. stc lte e nb overview
Chap 1. stc lte e nb overview
 
Lte
LteLte
Lte
 
Lte principles overview
Lte principles  overviewLte principles  overview
Lte principles overview
 
LTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc AspectsLTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc Aspects
 
Lte(1)
Lte(1)Lte(1)
Lte(1)
 
Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)
 
Main Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedMain Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-Advanced
 
Lte key technologies
Lte key technologiesLte key technologies
Lte key technologies
 
LTE Basic
LTE BasicLTE Basic
LTE Basic
 
LTE Advanced
LTE AdvancedLTE Advanced
LTE Advanced
 
Lte optimization
Lte optimizationLte optimization
Lte optimization
 
02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt
 
3 gpp – overview
3 gpp – overview3 gpp – overview
3 gpp – overview
 
LTE: Introduction, evolution and testing
LTE: Introduction, evolution and testingLTE: Introduction, evolution and testing
LTE: Introduction, evolution and testing
 
39018631 lte-overview
39018631 lte-overview39018631 lte-overview
39018631 lte-overview
 
LTE Long Term Evolution
LTE Long Term EvolutionLTE Long Term Evolution
LTE Long Term Evolution
 
Lte training an introduction-to-lte-basics
Lte training an introduction-to-lte-basicsLte training an introduction-to-lte-basics
Lte training an introduction-to-lte-basics
 
Lte Tutorial
Lte TutorialLte Tutorial
Lte Tutorial
 
AIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network ArchitectureAIRCOM LTE Webinar 1 - Network Architecture
AIRCOM LTE Webinar 1 - Network Architecture
 

Viewers also liked

LTE- Advanced (3GPP Rel.11) Technology Introduction
 LTE- Advanced (3GPP Rel.11) Technology Introduction LTE- Advanced (3GPP Rel.11) Technology Introduction
LTE- Advanced (3GPP Rel.11) Technology IntroductionPraveen Kumar
 
Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Deepak Sharma
 
Lte air-interface
Lte  air-interfaceLte  air-interface
Lte air-interfaceArshad Alam
 
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & Twitter
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & TwitterΒιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & Twitter
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & TwitterLevadia Library
 
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...PRN USM
 
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"Levadia Library
 
GjøR Et Spikk
GjøR Et SpikkGjøR Et Spikk
GjøR Et Spikktdahler
 
Prevalence And Factors Associated With Smoking Among Students And Staff In Upm
Prevalence And Factors Associated With Smoking Among Students And Staff In UpmPrevalence And Factors Associated With Smoking Among Students And Staff In Upm
Prevalence And Factors Associated With Smoking Among Students And Staff In UpmPRN USM
 
Ivf medical events and conference
Ivf medical events and conferenceIvf medical events and conference
Ivf medical events and conferenceovary Unraveled
 
XinSpring the system for marketing teams
XinSpring the system for marketing teamsXinSpring the system for marketing teams
XinSpring the system for marketing teamsMintTwist
 
The Mobile Future
The Mobile FutureThe Mobile Future
The Mobile FutureMintTwist
 

Viewers also liked (20)

LTE- Advanced (3GPP Rel.11) Technology Introduction
 LTE- Advanced (3GPP Rel.11) Technology Introduction LTE- Advanced (3GPP Rel.11) Technology Introduction
LTE- Advanced (3GPP Rel.11) Technology Introduction
 
Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)
 
Lte air-interface
Lte  air-interfaceLte  air-interface
Lte air-interface
 
12 checex
12 checex12 checex
12 checex
 
Primer capitulo287
Primer capitulo287Primer capitulo287
Primer capitulo287
 
Khimsar
KhimsarKhimsar
Khimsar
 
Evidencias
EvidenciasEvidencias
Evidencias
 
Nycaflt conference apr 09 2011
Nycaflt conference apr 09 2011Nycaflt conference apr 09 2011
Nycaflt conference apr 09 2011
 
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & Twitter
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & TwitterΒιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & Twitter
Βιβλιοθήκες και Κοινωνικά Δίκτυα - Facebook & Twitter
 
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...
Thoughts, Feelings And Behaviours Of Clients Attending Five Stop Smoking Clin...
 
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"
Η δικτύωση των δημοσίων βιβλιοθηκών την εποχή του "Καλλικράτη"
 
GjøR Et Spikk
GjøR Et SpikkGjøR Et Spikk
GjøR Et Spikk
 
Materisoalips
MaterisoalipsMaterisoalips
Materisoalips
 
Aj USA Inc
Aj USA IncAj USA Inc
Aj USA Inc
 
Prevalence And Factors Associated With Smoking Among Students And Staff In Upm
Prevalence And Factors Associated With Smoking Among Students And Staff In UpmPrevalence And Factors Associated With Smoking Among Students And Staff In Upm
Prevalence And Factors Associated With Smoking Among Students And Staff In Upm
 
Ivf medical events and conference
Ivf medical events and conferenceIvf medical events and conference
Ivf medical events and conference
 
XinSpring the system for marketing teams
XinSpring the system for marketing teamsXinSpring the system for marketing teams
XinSpring the system for marketing teams
 
Como crear tu primer blog
Como crear tu primer blogComo crear tu primer blog
Como crear tu primer blog
 
The Mobile Future
The Mobile FutureThe Mobile Future
The Mobile Future
 
Writing J27
Writing  J27Writing  J27
Writing J27
 

Similar to Slides dayone-121110052003-phpapp02

LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001Arief Gunawan
 
Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Abe Olandres
 
4 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 24 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 2Taiz Telecom
 
Introduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardizationIntroduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardizationAjin R Nair
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term EvolutionArief Gunawan
 
3 g to 4g transformation
3 g to 4g transformation3 g to 4g transformation
3 g to 4g transformationShehryar Khan
 
LTE Introduction - Hello World to LTE
LTE Introduction - Hello World to LTELTE Introduction - Hello World to LTE
LTE Introduction - Hello World to LTESachidananda Sahu
 
LTE_A_Telecoma_new.pptx
LTE_A_Telecoma_new.pptxLTE_A_Telecoma_new.pptx
LTE_A_Telecoma_new.pptxLibaBali
 
3 g lte tutorial
3 g lte tutorial3 g lte tutorial
3 g lte tutorialROBI17
 
Cellular technology overview
Cellular technology overviewCellular technology overview
Cellular technology overviewLee Chang Fatt
 
LTE Architecture and interfaces
LTE Architecture and interfacesLTE Architecture and interfaces
LTE Architecture and interfacesAbdulrahman Fady
 
LTE_ARCHITECTURE_INERFACE
LTE_ARCHITECTURE_INERFACELTE_ARCHITECTURE_INERFACE
LTE_ARCHITECTURE_INERFACERajiv Gupta
 

Similar to Slides dayone-121110052003-phpapp02 (20)

Slides day one
Slides   day oneSlides   day one
Slides day one
 
LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001
 
Lte basics
Lte basicsLte basics
Lte basics
 
Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)Technology briefing 11 nov2010_media_kit (1)
Technology briefing 11 nov2010_media_kit (1)
 
3 gpp – sum,it pdf
3 gpp – sum,it pdf3 gpp – sum,it pdf
3 gpp – sum,it pdf
 
4 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 24 g(lte) principle and key technology training and certificate 2
4 g(lte) principle and key technology training and certificate 2
 
Introduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardizationIntroduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardization
 
Lte By Aziz
Lte By AzizLte By Aziz
Lte By Aziz
 
LTE-White-Paper EMERSON EDUARDO RODRIGUES
LTE-White-Paper EMERSON EDUARDO RODRIGUESLTE-White-Paper EMERSON EDUARDO RODRIGUES
LTE-White-Paper EMERSON EDUARDO RODRIGUES
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term Evolution
 
3 g to 4g transformation
3 g to 4g transformation3 g to 4g transformation
3 g to 4g transformation
 
LTE Introduction - Hello World to LTE
LTE Introduction - Hello World to LTELTE Introduction - Hello World to LTE
LTE Introduction - Hello World to LTE
 
LTE_A_Telecoma_new.pptx
LTE_A_Telecoma_new.pptxLTE_A_Telecoma_new.pptx
LTE_A_Telecoma_new.pptx
 
3 g lte tutorial
3 g lte tutorial3 g lte tutorial
3 g lte tutorial
 
Cellular technology overview
Cellular technology overviewCellular technology overview
Cellular technology overview
 
LTE Workshop
LTE WorkshopLTE Workshop
LTE Workshop
 
LTE Architecture and interfaces
LTE Architecture and interfacesLTE Architecture and interfaces
LTE Architecture and interfaces
 
LTE_ARCHITECTURE_INERFACE
LTE_ARCHITECTURE_INERFACELTE_ARCHITECTURE_INERFACE
LTE_ARCHITECTURE_INERFACE
 
Lte training session_1
Lte training session_1Lte training session_1
Lte training session_1
 
Ppt2
Ppt2Ppt2
Ppt2
 

Recently uploaded

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentationphoebematthew05
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 

Recently uploaded (20)

Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
costume and set research powerpoint presentation
costume and set research powerpoint presentationcostume and set research powerpoint presentation
costume and set research powerpoint presentation
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 

Slides dayone-121110052003-phpapp02

  • 1. Arief Hamdani Gunawan 1.1. Introduction to LTEIntroduction to LTE 2.2. OFDMAOFDMA 3.3. SCSC--FDMAFDMA 4.4. LTE Network and ProtocolLTE Network and Protocol 5. LTE Radio Procedures5. LTE Radio Procedures 6. LTE Uplink Physical Channels and6. LTE Uplink Physical Channels and SignalsSignals 7. LTE Mobility7. LTE Mobility 8. LTE Test and Measurement8. LTE Test and Measurement
  • 3. Session 1: Introduction to LTE •Motivation•Motivation •Requirements •Evolution of UMTS FDD and TDD •LTE Technology Basics •LTE Key Parameters •LTE Frequency Bands
  • 4. Motivation: LTE background story the early days Work on LTE was initiated as a 3GPP release 7 study item “Evolved UTRA and UTRAN” in December 2004: “With enhancements such as HSDPA and Enhanced Uplink, the 3GPP radio-access technology will be highly competitive for several years. However, to ensure competitivenessHowever, to ensure competitiveness in an even longer time frame, i.e. for the next 10 years and beyond, a long term evolution of the 3GPP radio- access technology needs to be considered.” • Basic drivers for LTE have been: – Reduced latency – Higher user data rates – Improved system capacity and coverage – Cost-reduction.
  • 5. Major requirements for LTE identified during study item phase in 3GPP • Higher peak data rates: 100 Mbps (downlink) and 50 Mbps (uplink) • Improved spectrum efficiency: 2-4 times better compared to 3GPP release 6 • Improved latency: – Radio access network latency (user plane UE – RNC - UE) below 10 ms – Significantly reduced control plane latency • Support of scalable bandwidth: 1.4, 3, 5, 10, 15, 20 MHz• Support of scalable bandwidth: 1.4, 3, 5, 10, 15, 20 MHz • Support of paired and unpaired spectrum (FDD and TDD mode) • Support for interworking with legacy networks • Cost-efficiency: – Reduced CApital and OPerational EXpenditures (CAPEX, OPEX) including backhaul – Cost-effective migration from legacy networks • A detailed summary of requirements has been captured in 3GPP TR 25.913 „Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E- UTRAN)”.
  • 6. Evolution of UMTS FDD and TDD driven by data rate and latency requirements Note: •High-Speed Downlink Packet Access (HSDPA, also known as High-Speed Data Packet Access) •High-Speed Uplink Packet Access (HSUPA) •High Speed Packet Access (HSPA)
  • 8. Release 99: Key Features • Functional Freeze: Dec 1999 – CS and PS – R99 Radio Bearers – Multimedia Messaging Service (MMS) – Location Services • Functional Freeze: March 2000 – Basic 3.84 Mcps W-CDMA (FDD & TDD) • Enhancements to GSM data (EDGE). • Provides support for GSM/EDGE/GPRS/WCDMA radio-access networks. • Majority of deployments today are based on Release 99.
  • 9. Release 4: Key Features • Functional Freeze: March 2001 – Enhancements 1.28 Mcps TDD (aka TD-SCDMA). – Multimedia messaging support. – First steps toward using IP transport in the core network. Megachips per second (Mcps) is a measure of the speed with which encoding elements, called chips (not to be confused with microchips), are generated in Direct Sequence Spread Spectrum (DSSS) signals. This speed is also known as the chipping rate. A speed of 1 Mcps is equivalent to 1,000,000, or 106, chips per second. Typical chipping rates in third-generation (3G) wireless systems are on the order of several million chips per second. For example, in Wideband Code-Division Multiple Access (W-CDMA) systems, the standard rate is 3.84 Mcps.
  • 10. Release 5: Key Features • Functional Freeze: June 2002 – HSDPA – IMS: First phase of Internet Protocol Multimedia Subsystem (IMS). – Adaptive Multi-Rate - Wideband (AMR-WB) Speech – Full ability to use IP-based transport instead of just Asynchronous Transfer Mode (ATM) in the core network.Transfer Mode (ATM) in the core network. Adaptive Multi-Rate Wideband (AMR-WB) is a patented speech coding standard developed based on Adaptive Multi-Rate encoding, using similar methodology as Algebraic Code Excited Linear Prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and VoiceAge and it was first specified by 3GPP. AMR-WB is codified as G.722.2, an ITU-T standard speech codec, formally known as Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB). G.722.2 AMR-WB is the same codec as the 3GPP AMR-WB. The corresponding 3GPP specifications are TS 26.190 for the speech codec and TS 26.194 for the Voice Activity Detector.
  • 11. 3GPP architecture evolution towards flat architecture GGSN Release 6 GGSN Release 7 Direct Tunnel GGSN Release 7 Direct Tunnel and RNC in NB Release 8 SAE and LTE SAE GW SGSN RNC NB SGSN RNC NB SGSN RNC NB MME eNB Control Plane User Plane
  • 12. Release 6: Key Features • Functional Freeze: March 2005 – HSUPA (E-DCH) / Enhanced Uplink – Enhanced multimedia support through Multimedia Broadcast/Multicast Services (MBMS).Multimedia Broadcast/Multicast Services (MBMS). – WLAN-UMTS Internetworking: Wireless Local Area Network (WLAN) integration option – Performance specifications for advanced receivers. – IMS enhancements. Initial VoIP capability.
  • 13. Release 7: Key Features • Functional Freeze: Dec 2007 – Evolved EDGE. – Specifies HSPA+ – Radio enhancements to HSPA include 64 Quadrature Amplitude Modulation (QAM) in the downlink DL and 16 QAM in the uplink. – LTE and SAE Feasibility Study– LTE and SAE Feasibility Study – DL MIMO, – IMS – Performance enhancements, improved spectral efficiency, increased capacity, and better resistance to interference. – Continuous Packet Connectivity (CPC) enables efficient “always-on” service and enhanced uplink UL VoIP capacity, as well as reductions in call set-up delay for Push-to-Talk Over Cellular (PoC). – Optimization of MBMS capabilities through the multicast/broadcast, single-frequency network (MBSFN) function.
  • 14. LTE Release 8: Key Features • Functional Freeze: Dec 2008 – Further HSPA improvements / HSPA Evolution, simultaneous use of MIMO and 64 QAM. – Includes dual-carrier HSPA (DC-HSPA) where in two WCDMA radio channels can be combined fortwo WCDMA radio channels can be combined for a doubling of throughput performance. – LTE work item – OFOMA / SC-FDMA air interface – SAE work item – new IP core network – Specifies OFDMA-based 3GPP LTE. – Defines EPC.
  • 15. LTE Release 8: Key Features • High spectral efficiency – OFDM in Downlink • Robust against multipath interference • High affinity to advanced techniques – Frequency domain channel-dependent scheduling – MIMO – DFTS-OFDM(“Single-Carrier FDMA”) in Uplink • Low PAPR User orthogonality in frequency domain DFTS-OFDM • User orthogonality in frequency domain – Multi-antenna application • Very low latency – Short setup time & Short transfer delay – Short HO latency and interruption time • Short TTI • RRC procedure • Simple RRC states • Support of variable bandwidth – 1.4, 3, 5, 10, 15 and 20 MHz DFTS-OFDM: DFT-spread OFDM. DFT: Discrete Fourier Transform. DFT-spread OFDM (DFTS-OFDM) is a transmission scheme that can combine the desired properties for uplink transmission i.e. : • Small variations in the instantaneous power of the transmitted signal (‘single carrier’ property). • Possibility for low-complexity high-quality equalization in the frequency domain. • Possibility for FDMA with flexible bandwidth assignment. Due to these properties, DFTS-OFDM has been selected as the uplink transmission scheme for LTE, which is the long-term 3G evolution.
  • 16. LTE-Advanced: Key Requirements LTE-Advanced shall be deployed as an evolution of LTE Release 8 and on new bands. LTE-Advanced shall be backwards compatible with LTE Release 8 Smooth and flexible system migration from Rel-8 LTE to LTE-Advanced LTE-Advanced backward compatibility with LTE Rel-8 LTE Rel-8 cell LTE Rel-8 terminal LTE-Advanced terminal LTE-Advanced cell LTE Rel-8 terminal LTE-Advanced terminal LTE-Advanced backward compatibility with LTE Rel-8 An LTE-Advanced terminal can work in an LTE Rel-8 cell An LTE Rel-8 terminal can work in an LTE-Advanced cell LTE-Advanced contains all features of LTE Rel-8&9 and additional features for further evolution
  • 17. LTE Release 9: Key Features • Small enhancements from LTE Release 8 mainly for higher layer – HeNB (Home eNode B) • HeNB Access Mode – Rel-8: Closed Access Mode – Rel-9: Open and Hybrid Mode • HeNB Mobility between HeNB and macro – Rel-8: Out-bound HO – Rel-9: in-bound and inter-CSG HO– Rel-9: in-bound and inter-CSG HO – SON (self-organizing networks) • Rel-8: Self configuration, Basic self-optimization • Rel-9: RACH optimization, etc – MBMS (Multimedia Broadcast Multicast Service) • Rel-8: Radio physical layer specs • Rel-9: Radio higher layer and NW interface specs – LCS (Location Services) • Rel-8: U-Plane solutions • Rel-9: C-Plane solutions, e.g. OTDOA
  • 18. LTE Release 9: Key Features • HSPA and LTE enhancements including – HSPA dual-carrier operation in combination with MIMO, – EPC enhancements,– EPC enhancements, – femtocell support, – support for regulatory features such as emergency user-equipment positioning and Commercial Mobile Alert System (CMAS), and – evolution of IMS architecture.
  • 19. 1999 Release 99 Release 4 Release 5 Release 6 1.28Mcps TDD HSDPA W-CDMA HSUPA, MBMS LTE-Advanced: Motivation 2011 3GPP aligned to ITU-R IMT process Allows Coordinated approach to WRC 3GPP Releases evolve to meet: • Future Requirements for IMT • Future operator and end-user Release 7 HSPA+ (MIMO, HOM etc.) Release 8 LTE Release 9 Release 10 LTE enhancements Release 11+ ITU-R M.1457 IMT-2000 Recommendation ITU-R M.[IMT.RSPEC] IMT-Advanced Recommendation LTE-Advanced • Future operator and end-user requirements Further LTE enhancements 3 Gbps 64QA M 8x8 MIMO 100MHz BW
  • 20. LTE Release 10: Key Features Support of Wider Bandwidth(Carrier Aggregation) • Use of multiple component carriers(CC) to extend bandwidth up to 100 MHz • Common physical layer parameters between component carrier and LTE Rel-8 carrier Improvement of peak data rate, backward compatibility with LTE Rel-8 Advanced MIMO techniques • Extension to up to 8-layer transmission in downlink • Introduction of single-user MIMO up to 4-layer transmission in uplink • Enhancements of multi-user MIMO Improvement of peak data rate and capacity Heterogeneous network and eICIC(enhanced Inter-Cell Interference 100 MHz f CC Heterogeneous network and eICIC(enhanced Inter-Cell Interference Coordination) • Interference coordination for overlaid deployment of cells with different Tx power Improvement of cell-edge throughput and coverage Relay • Type 1 relay supports radio backhaul and creates a separate cell and appear as Rel. 8 LTE eNB to Rel. 8 LTE UEs Improvement of coverage and flexibility of service area extension Coordinated Multi-Point transmission and reception (CoMP) • Support of multi-cell transmission and reception Improvement of cell-edge throughput and coverage LTE-Advanced meeting the requirements set by ITU’s IMT-Advanced project. Also includes quad-carrier operation for HSPA+.
  • 21. Spectrum Explosion in 3GPP Recently standardized (Sep. 2011) • UMTS/LTE 3500MHz • Extending 850 MHz Upper Band (814 – 849 MHz) Spectrum to be standardized by Sep. 2012 • LTE-Advanced Carrier Aggregation of Band 3 and Band 7 • LTE Advanced Carrier Aggregation of Band 4 and Band 17 • LTE Advanced Carrier Aggregation of Band 4 and Band 13 • LTE Advanced Carrier Aggregation of Band 4 and Band 12 • LTE Advanced Carrier Aggregation of Band 5 and Band 12 E-UTRA operating bands in 3GPP TS 36.101 • LTE Advanced Carrier Aggregation of Band 5 and Band 12 • LTE Advanced Carrier Aggregation of Band 20 and Band 7 • LTE Advanced Carrier Aggregation Band 2 and Band 17 • LTE Advanced Carrier Aggregation Band 4 and Band 5 • LTE Advanced Carrier Aggregation Band 5 and Band 17 • LTE Advanced Carrier Aggregation in Band 41 • LTE Advanced Carrier Aggregation in Band 38 • LTE Downlink FDD 716-728MHz • LTE E850 - Lower Band for Region 2 (non-US) • LTE for 700 MHz digital dividend • Study on Extending 850MHz • Study on Interference analysis between 800~900 MHz bands • Study on UMTS/LTE in 900 MHz band
  • 24. 3GPP TS 36.101 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception
  • 25. 3GPP TS 36.101 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception
  • 26. 120MHz separation duplex FDD Uplink FDD DownlinkTDD 2500 26902570 2620 MHz The 2.6GHz band Capacity • Unique new band internationally harmonized • Benefits of future economies of scale • Capability to offer sufficient bandwidth per operator (20+20MHz) • Avoid prejudicial interference, optimizing the spectrum use, through clear definition of FDD (70+70MHz) and TDD (50MHz) spectrum blocks
  • 27. 700MHz band Coverage 45 45105 3 698 806 703 748 758 803 MHz Coverage • Perfect fit to majority of countries in the region • The alignment with Asia-Pacific permits the creation of a big market (economies of scale, availability of terminals, etc.) • Offer 2 continuous blocks of 45+45MHz (spectrum optimization, flexibility on license process, better data transmission performance than US 700); • Tool to bring the mobile broadband to rural and low density population areas
  • 28. 2.6GHz + 700MHz • Ideal combination for – Coverage – Capacity – Convergence – Device availability– Device availability – Roaming • Convergence for countries with the legacy US band plan (850/1900MHz) and the legacy European band plan (900/1800MHz) • Note: no plans/proposals in 3GPP for LTE in 450Mhz band
  • 29. LTE Release 11: Key Features (Dec/2012) Further Downlink MIMO enhancements for LTE-Advanced Addressing low-power modes, relay backhaul scenarios, and certain practical antenna configurations Provision of low-cost M2M UEs based on LTE Studying LTE Coverage Enhancements Network-Based Positioning Support for LTE Further Self Optimizing Networks (SON) EnhancementsFurther Self Optimizing Networks (SON) Enhancements Mobility Robustness Optimisation (MRO) enhancements Addressing Inter-RAT ping-pong scenarios Carrier based HetNet Interference co-ordination for LTE Carriers in same or different bands in HetNet environments with mixture of different BTS types Enhancements to Relays, Mobile Relay for LTE RF core requirements for relays Mobile relay: mounted on a vehicle wirelessly connected to the macro cells Interworking - 3GPP EPS and fixed BB accesses, M2M, Non voice emergency communications, 8 carrier HSDPA, Uplink MIMO study
  • 30. RAN Release 11 Priorities • Short term prioritization for the end of 2011, between RAN#53 and RAN#54 • The next Plenary - RAN#54 (Dec. 2011) – will discuss priorities beyond March 2012 H S P A Priority Work Items; Latest WID/SID RAN Working Group Core part: Uplink Transmit Diversity for HSPA – Closed Loop RP-110374 RAN 1 New WI: Four Branch MIMO transmission for HSDPA RP-111393 RAN 1 Core Part: eight carrier HSDPA RP-101419 RAN 1 Core part: Further Enhancements to CELL_FACH RP-111321 RAN 2 New WI: HSDPA Multiflow Data Transmission RP-111375 RAN 2 Proposed WID: Single Radio Voice Call Continuity from UTRAN/GERAN to E-UTRAN/HSPA RP-111334 RAN 3 Core part: Non-contiguous 4C-HSDPA operation RP-110416 RAN 4 New SID proposal: Introduction of Hand phantoms for UE OTA antenna testing RP-111380 RAN 4 Core part: Uplink Transmit Diversity for HSPA – Open Loop RP-110374 RAN 4 UE Over the Air (Antenna) conformance testing methodology- Laptop Mounted Equipment Free Space test RP-111381 RAN 4
  • 31. RAN Release 11 Priorities L T E Priority Work Items; Latest WID/SID RAN Working Group WI/SI Coordinated Multi-Point Operation for LTE RP-111365 RAN 1 Core part: LTE Carrier Aggregation Enhancements RP-111115 RAN 1 Core part: Further Enhanced Non CA-based ICIC for LTE RP-111369 RAN 1 Study on further Downlink MIMO enhancements for LTE-Advanced RP-111366 RAN 1 Provision of low-cost MTC UEs based on LTE RP-111112 RAN 1 Proposed SI on LTE Coverage Enhancements RP-111359 RAN 1 Core part: LTE RAN Enhancements for Diverse Data Applications RP-111372 RAN 2 Study on HetNet mobility enhancements for LTE RP-110709 RAN 2 Enhancement of Minimization of Drive Tests for E-UTRAN and UTRAN RP-111361 RAN 2 New WI: Signalling and procedure for interference avoidance for in-device coexistence RP-111355 RAN 2New WI: Signalling and procedure for interference avoidance for in-device coexistence RP-111355 RAN 2 New WI proposal: RAN overload control for Machine-Type Communications RP-111373 RAN 2 Core part: Service continuity and location information for MBMS for LTE RP-111374 RAN 2 Core Part: Network-Based Positioning Support for LTE RP-101446 RAN 2 Further Self Optimizing Networks (SON) Enhancements RP-111328 RAN 3 Core part: Carrier based HetNet ICIC for LTE RP-111111 RAN 3 New WI: Network Energy Saving for E-UTRAN RP-111376 RAN 3 Proposed WID: LIPA Mobility and SIPTO at the Local Network RAN Completion RP-111367 RAN 3 Study on further enhancements for HNB and HeNB RP-110456 RAN 3 New SI: Mobile Relay for E-UTRA RP-111377 RAN 3 Enhanced performance requirement for LTE UE RP-111378 RAN 4 New SI: Study of RF and EMC Requirements for Active Antenna Array System (AAS) Base Station RP-111349 RAN 4 Study on Measurement of Radiated Performance for MIMO and multi-antenna reception for HSPA and LTE terminals RP-090352 RAN 4 New WI: E-UTRA medium range and MSR medium range/local area BS class requirements RP-111383 RAN 4 Core part: Relays for LTE (part 2) RP-110914 RAN 4 Study on Inclusion of RF Pattern Matching Technologies as a positioning method in the E-UTRAN RP-110385 RAN 4
  • 32. Plans for LTE-A Release-12 • 3GPP workshop to be held June/2012 – Main themes and strategic directions to be set, e.g.: • Extreme capacity needs and spectrum efficiency (‘challenge Shannon’ • Flexibility, efficient handling of smartphone diversity • Offloading to unlicensed radio technologies• Offloading to unlicensed radio technologies • Power efficiency • Prime areas of interest, e.g.: – More optimized small cell deployments – Carrier Aggregation Enhancements (inter-site, LTE/HSPA) – Cognitive radio aspects – SON and MDT enhancements – Local Area optimizations
  • 34. Session 2: OFDMA •OFDM and OFDMA•OFDM and OFDMA •LTE Downlink •OFDMA time-frequency multiplexing •LTE Spectrum Flexibility •LTE Frame Structure type 1 (FDD) •LTE Frame Structure type 2(TDD)
  • 35. OFDM • Single Carrier Transmission (e.g. WCDMA) • Orthogonal Frequency Division Multiplexing
  • 36. OFDM Concept: Mengapa OFDM • Sinyal OFDM (Orthogonal Frequency Division Multiplexing) dapat mendukung kondisi NLOS (Non Line of Sight) dengan mempertahankan efisiensi spektral yang tinggi dan memaksimalkan spektrum 36 spektral yang tinggi dan memaksimalkan spektrum yang tersedia. • Mendukung lingkungan propagasi multi-path. • Scalable bandwidth: menyediakan fleksibilitas dan potensial mengurangi CAPEX (capital expense).
  • 37. OFDM Concept: NLOS Performance 37
  • 38. OFDM Concept: Mutipath Propagation 38 • Sinyal-sinyal multipath datang pada waktu yang berbeda dengan amplitudo dan pergeseran fasa yang berbeda, yang menyebabkan pelemahan dan penguatan daya sinyal yang diterima. • Propagasi multipath berpengaruh terhadap performansi link dan coverage. • Selubung (envelop) sinyal Rx berfluktuasi secara acak.
  • 39. OFDM Concept: FFT 39 • Multi-carrier modulation/multiplexing technique • Available bandwidth is divided into several subchannels • Data is serial-to-parallel converted • Symbols are transmitted on different subcarriers
  • 40. OFDM Concept: IFFT 40 Basic ideas valid for various multicarrier techniques: • OFDM: Orthogonal Frequency Division Multiplexing • OFDMA: Orthogonal Frequency Division Multiple Access
  • 41. OFDM Concept: Single-Carrier Vs. OFDM 41 Single-Carrier Mode: • Serial Symbol Stream Used to Modulate a Single Wideband Carrier • Serial Datastream Converted to Symbols (Each Symbol Can Represented 1 or More Data Bits) OFDM Mode: • Each Symbol Used to Modulate a Separate Sub-Carrier
  • 42. OFDM Concept: Single-Carrier Vs. OFDM 42 Single-Carrier Mode OFDM Mode • Dotted Area Represents Transmitted Spectrum • Solid Area Represents Receiver Input • OFDM mengatasi delay spread, multipath dan ISI (Inter Symbol Interference) secara efisien sehingga dapat meningkatkan throughput data rate yang lebih tinggi. • Memudahkan ekualisasi kanal terhadap sub-carrier OFDM individual, dibandingkan terhadap sinyal single-carrier yang memerlukan teknik ekualisasi adaptif lebih kompleks.
  • 43. OFDM Concept: Motivation for Multi-carrier Approaches • Multi-carrier transmission offers various advantagesadvantages over traditional single carrier approaches: – Highly scalable – Simplified equalizer design in the frequency domain, also in cases of large delay spread – High spectrum density 43 – High spectrum density – Simplified the usage of MIMO – Good granularity to control user data rates – Robustness against timing errors •• WeaknessWeakness of multi-carrier systems: – Increased peak to average power ratio (PAPR) – Impairments due to impulsive noise – Impairments due to frequency errors
  • 44. OFDM Concept: Peak to Average Power Ratio (PAPR) 44 • PAPR merupakan ukuran dari fluktuasi tepat sebelum amplifier. • PAPR sinyal hasil dari mapping PSK base band sebesar 0 dB karena semua symbol mempunyai daya yang sama. • Tetapi setelah dilakukan proses IDFT/IFFT, hasil superposisi dari dua atau lebih subcarrier dapat menghasilkan variasi daya dengan nilai peak yang besar. • Hal ini disebabkan oleh modulasi masing-masing subcarrier dengan frekuensi yang berbeda sehingga apabila beberapa subcarrier mempunyai fasa yang koheren, akan muncul amplituda dengan level yang jauh lebih besar dari daya sinyalnya.
  • 45. OFDM Concept: Peak to Average Power Ratio (PAPR) 45 • Nilai PAPR yang besar pada OFDM membutuhkan amplifier dengan dynamic range yang lebar untuk mengakomodasi amplitudo sinyal. • Jika hal ini tidak terpenuhi maka akan terjadi distorsi linear yang menyebabkan subcarrier menjadi tidak lagi ortogonal dan pada akhirnya menurunkan performansi OFDM.
  • 46. Tipe Sub-Carrier OFDM 46 Data Sub-carriers • Membawa simbol BPSK, QPSK, 16QAM, 64QAM Pilot Sub-carriers • Untuk memudahkan estimasi kanal dan demodulasi koheren pada receiver. Null Subcarrier • Guard Sub-carriers • DC Sub-carrier
  • 47. Guard Interval (Cyclic Prefix) 47 • Untuk mengatasi multipath delay spread • Guard Interval (cyclic prefix) : 1/4, 1/8, 1/16 or 1/32
  • 49. OFDM & OFDMA OFDM • Semua subcarrier dialokasikan untuk satu user • Misal : 802.16-2004 OFDMA • Subcarrier dialokasikan secara fleksibel untuk banyak user tergantung pada kondisi radio. • Misal : 802.16e-2005 dan 802.16m 49
  • 50. OFDM Parameters used in WiMAX 50
  • 51. Difference between OFDM and OFDMA • OFDM allocates users in time domain only • OFDMA allocates users in time and frequency domain
  • 53. LTE Downlink Physical Layer Design: Physical Resource The physical resource can be seen as a time-frequency grid 53 • LTE uses OFDM (Orthogonal Frequency Division Multiplexing) as its radio technology in downlink • In the uplink LTE uses a pre=coded version of OFDM, SC-FDMA (Single Carrier Frequency Division Multiple Access) to reduced power consumption
  • 54. LTE Downlink Resource Grid 54 • Suatu RB (resource block) terdiri dari 12 subcarrier pada suatu durasi slot 0.5 ms. • Satu subcarrier mempunyai BW 15 kHz, sehingga menjadi 180 kHz per RB.
  • 55. Parameters for DL generic frame structure 55 Bandwidth (MHz) 1.25 2.5 5.0 10.0 15.0 20.0 Subcarrier bandwidth (kHz) 15 Physical resource block (PRB) bandwidth (kHz) 180 Number of available PRBs 6 12 25 50 75 100
  • 56. Transmission BW 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz Sub-frame duration 0.5 ms Sub-carrier spacing 15 kHz Sampling frequency 192 MHz (1/2x3.84 3.84 MHz 7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz Parameters for DL generic frame structure 56 Sampling frequency (1/2x3.84 MHz) 3.84 MHz 7.68 MHz (2x3.84 MHz) 15.36 MHz (4x3.84 MHz) 23.04 MHz (6x3.84 MHz) 30.72 MHz (8x3.84 MHz) FFT size 128 256 512 1024 1536 2048 OFDM sym per slot (short/long CP) 7/6 CP length (usec/ samples) Short (4.69/9) x 6, (5.21/10) x 1 (4.69/18) x 6, (5.21/20) x 1 (4.69/36) x 6, (5.21/40) x 1 (4.69/72) x 6, (5.21/80) x 1 (4.69/108) x 6, (5.21/120) x 1 (4.69/144) x 6, (5.21/160) x 1 Long (16.67/32) (16.67/64) (16.67/128) (16.67/256) (16.67/384) (16.67/512)
  • 57. LTE – Spectrum Flexibility • LTE physical layer supports any bandwidth from 1.4 MHz to 20 MHz in steps of 180 kHz (resource block). • Current LTE specification supports a subset of 6 different system bandwidths. • All UEs must support the maximum bandwidth of 20 MHz.• All UEs must support the maximum bandwidth of 20 MHz.
  • 59. Case StudyCase Study LTE Signal Spectrum (20 MHz case) 59 • The LTE standard uses an over-sized LTE. The actual used bandwidth is controlled by the number of used subcarriers. 15 kHz subcarrier spacing is the constant factor! • 18 MHz out of 20 MHz is used for data, 1 MHz on each side is used as guard band. • LTE used spectrum radio = 90% • WiMAX used spectrum radio = 82%
  • 60. TDD & FDD 60 • Time Division Duplex (TDD) • Frequency Division Duplex (FDD) • Durasi Frame : 2.5 - 20ms
  • 61. Tf = 307200 x Ts = 10 ms Tslot = 15360 x Ts = 0.5 ms Generic LTE Frame Structure type 1 (FDD) 61 • Untuk struktur generik, frame radio 10 ms dibagi dalam 20 slot yang sama berukuran 0.5 ms. • Suatu sub-frame terdiri dari 2 slot berturut-turut, sehingga satu frame radio berisi 10 sub-frame. • Ts menunjukkan unit waktu dasar yang sesuai dengan 30.72 MHz. • Struktur frame tipe-1 dapat digunakan untuk transmisi FDD dan TDD.
  • 62. LTE Frame Structure type 1 (FDD) 62 • 2 slots form one subframe = 1 ms • For FDD, in each 10 ms interval, all 10 subframes are available for downlink transmission and uplink transmissions. • For TDD, a subframe is either located to downlink or uplink transmission. The 0th and 5th subframe in a radio frame is always allocated for downlink transmission.
  • 63. Downlink LTE Frame Structure type 1 (FDD)
  • 64. Generic LTE Frame Structure type 2 (TDD) 64 • Struktur frame tipe-2 hanya digunakan untuk transmisi TDD. • Slot 0 dan DwPTSdisediakan untuk transmisi DL, sedangkan slot 1 dan UpPTS disediakan untuk transmisi UL.
  • 65. LTE Frame Structure type 2 (TDD) 65
  • 66. Mobile WiMAX Frame Structure 66
  • 67. LTE Frame Structure type 2 (TDD)
  • 68. DL Peak rates for E-UTRA FDD/TDD frame structure type 1 Downlink Assumptions 64 QAM Signal overhead for reference signals and control channel occupying one OFDM symbol Unit Mbps in 20 MHz b/s/Hz Requirement 100 5.0Requirement 100 5.0 2x2 MIMO 172.8 8.6 4x4 MIMO 326.4 16.3
  • 69. UL Peak rates for E-UTRA FDD/TDD frame structure type 1 Uplink Assumptions Single TX UE Signal overhead for reference signals and control channel occupying 2RB Unit Mbps in 20 MHz b/s/Hz Requirement 50 2.5Requirement 50 2.5 16QAM 57.6 2.9 64QAM 86.4 4.3
  • 70. Peak rates for E-UTRA TDD frame structure type 2 Downlink Uplink Assumptions 64 QAM, R=1 Single TX UE, 64 QAM, R=1 Unit Mbps in 20 MHz b/s/Hz Mbps in 20 MHz b/s/Hz in 20 MHz in 20 MHz Requirement 100 5.0 50 2.5 2x2 MIMO in DL 142 7.1 62.7 3.1 4x4 MIMO in DL 270 13.5
  • 71. 3GPP TR 25.912 Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) Release Freeze meeting Freeze date :: Rel-7 RP-33 2006-09-22 :: event version available RP-27 0.0.0 2005-03-03 RP-31 0.0.4 2006-03-20 draft 0.1.0 2006-03-20 draft 0.1.1 2006-03-20 post RP-31 0.1.2 2006-03-30 R3-51b 0.1.3 2006-05-02 draft post Shanghai 0.1.4 2006-05-22 draft 0.1.5 2006-07-10 draft 0.1.6 - draft 0.1.7 2006-05-29 RP-32 0.2.0 2006-06-12 RP-32 7.0.0 2006-06-23 RP-33 7.1.0 2006-10-18 RP-36 7.2.0 2007-08-13
  • 72. 3GPP TR 25.912 Technical Specification Group Radio Access Network; Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN) Rel-8 SP-42 2008-12-11 :: . ETSI event version available remarks SP-42 8.0.0 2009-01-02 Upgraded unchanged from Rel-7 RTR/TSGR- 0025912v800 Rel-9 SP-46 2009-12-10 :: Upgraded to Rel-9 with no technical change to enable reference related to ITU-R IMT-Advanced submission (reference in 36.912). . ETSI (reference in 36.912). . event version available remarks RP-45 9.0.0 2009-10-01 Technically identical to v8.0.0 RTR/TSGR- 0025912v900 Rel-10 SP-51 2011-03-23 :: Upgraded from previous Release without technical change . ETSI event version available remarks SP-51 10.0.0 2011-04-06 Automatic upgrade from previous Release version 9.0.0 RTR/TSGR- 0025912va00 Rel-11 SP-57 2012-09-12 :: Upgraded from previous Release without technical change . ETSI event version available remarks SP-57 11.0.0 2012-09-26 Automatic upgrade from previous Release version 10.0.0 -
  • 73. Session 3: SC-FDMA •Introduction SC-FDMA and UL frame structure•Introduction SC-FDMA and UL frame structure •How to generate SC-FDMA •How does SC-FDMA signal look like •SC-FDMA Signal Generation •SC-FDMA PAPR •SC-FDMA Parameterization
  • 74. LTE Uplink Transmission Scheme: SC-FDMA • Pemilihan OFDMA dianggap optimum untuk memenuhi persyaratan LTE pada arah downlink, tetapi OFDMA memiliki properti yang kurang menguntungkan pada arah Uplink. • Hal tsb terutama disebabkan oleh lemahnya peak-to-average power ratio (PAPR) dari sinyal OFDMA, yang mengakibatkan buruknya coverage uplink. • Oleh karena itu, skema transmisi Uplink LTE untuk mode FDD maupun TDD didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik. 74 didasarkan pada SC-FDMA, yang mempunyai properti PAPR lebih baik. • Pemrosesan sinyal SC-FDMA memiliki beberapa kesamaan dengan pemrosesan sinyal OFDMA, sehingga parameter-parameter DL dan UL dapat diharmonisasi. • Untuk membangkitkan sinyal SC-FDMA, E-UTRA telah memilih DFT- spread-OFDM (DFT-s-OFDM).
  • 75. OFDMA and SC-FDMA • The symbol mapping in OFDM happens in the frequency domain. • In SC-FDMA, the symbol mapping is done in the time domain. 75 domain. • Appropriate subscriber mapping in the frequency domain allows to control the PAPR. • SC-FDMA enable frequency domain equalizer approaches like OFDMA
  • 76. Comparison of how OFDMA and SC-FDMA transmit a sequence of QPSK data symbols 76
  • 77. Creating the time- domain waveform of an SC-FDMA symbol Comparison of how OFDMA and SC-FDMA transmit a sequence of QPSK data symbols 77 Baseband and shifted frequency domain representations of an SC-FDMA symbol
  • 78. How to generate SC-FDMA? • DFT “pre-coding” is performed on modulated data symbols to transform them into frequency domain, • Sub-carrier mapping allows flexible allocation of signal to available sub-carriers, • IFFT and cyclic prefix (CP) insertion as in OFDM, • Each subcarrier carries a portion of superposed DFT spread data symbols, therefore SC-FDMA is also referred to as DFT-spread- OFDM (DFT-s-OFDM).
  • 79. How does a SC-FDMA signal look like? • Similar to OFDM signal, but… – …in OFDMA, each sub-carrier only carries information related to one specific symbol, – …in SC-FDMA, each sub-carrier contains information of ALL transmitted symbols.transmitted symbols.
  • 80. SC-FDMA signal generation Localized vs. distributed FDMA
  • 81. SC-FDMA – Peak-to-average Power Ratio (PAPR) Comparison of CCDF of PAPR for IFDMA, LFDMA, and OFDMA with M = 256 system subcarriers, N=64 subcarriers per users, and a = 0.5 roll factor; (a) QPSK; (b) 16-QAM Source: H.G. Myung, J.Lim, D.J. Goodman “SC-FDMA for Uplink Wireless Transmission”, IEEE VEHICULAR TECHNOLOGY MAGAZINE, SEPTEMBER 2006
  • 82. SC-FDMA parameterization (FDD and TDD) LTE FDD •Same as in downlink 82 TD-LTE •Usage of UL depends on the selected UL-DL configuration (1 to 8), each configuration offers a different number of subframes (1ms) for uplink transmission, •Parameterization for those subframes, means number of SC-FDMA symbols same as for FDD and depending on CP,
  • 83. Improved UL Performance SC-FDMA compared to ordinary OFDM 83 Single-carrier transmission in uplink enables low PAPR that gives more 4 dB better link budget and reduced power consumption compared to OFDM
  • 84. LTE Uplink SC-FDMA Physical Layer Parameters 84
  • 85. Physical Channel Processing • Scrambling: Scramble binary information • Modulation Mapper: Maps groups of 2, 4, or 6 bits onto QPSK, 16QAM, 64QAM symbol constellation points 85 • Transform Precoder: Slices the input data vector into a set of symbol vectors and perform DFT transformation. • Resource Element Mapper: Maps the complex constellation points into the allocated virtual resource blocks and performs translation into physical resource blocks. • SC-FDMA Signal Generation: Performs the IFFT processing to generate final time domain for transmission.
  • 86. Single Carrier Constellation Mapping S/P Convert M-Point DFT Subcarrier Mapping N-Point IDFT Cyclic Prefix & Pulse Shaping RFE Bit Stream Channel Symbol Block SC-FDMA and OFDMA Signal Chain Have a High Degree of Functional Commonality 86 Const. De-map S/P Convert M-Point IDFT Freq Domain Equalizer N-Point DFT Cyclic Prefix Removal RFE Bit Stream Symbol Block SC Detector Functions Common to OFDMA and SC-FDMA SC-FDMA Only
  • 87. Session 4: Network and Protocol •Network architecture•Network architecture •Protocol Stack – User plane •Protocol Stack – Control plane •Mapping between logical and transport channel •LTE UE Categories
  • 88. LTE Network Architecture GGSN UMTS 3G: UTRAN SGSN MMEMME SS--GW / PGW / P--GWGW MMEMME SS--GW / PGW / P--GWGW EPC UMTS : Universal Mobile Telecommunications System UTRAN : Universal Terrestrial Radio Access Network GGSN : Gateway GPRS Support Node GPRS: General Packet Radio Service SGSN : Serving GPRS Support Node RNC: Radio Network Controller NB: Node B RNC RNC NB NB NB NB eNB eNB eNB eNB E-UTRAN EPC ; Evolved Packet Core MME : Mobility Management Entity S-GC : Serving Gateway P-GW : PDN Gateway PDN : Packet Data Network eNB : E-UTRAN Node B / Evolved Node B E-UTRAN ; Evolved-UTRAN
  • 89. Simplified LTE network elements and interfaces 3GPP TS 36.300 : Overall Architecture MMEMME SS--GW / PGW / P--GWGW MMEMME SS--GW / PGW / P--GWGW EPC EPC: Evolved Packet Core Radio Side: LTE – Long Term Evolution • Improvements in spectral efficiency, user throughput, latency. • Simplification of the radio network • Efficient support of packet services • Main Components: • MME = Manages mobility, UE identity, and security parameters. • S-GW = Node that terminates the interface towards E-UTRAN. S1 eNB eNB eNB eNB E-UTRAN towards E-UTRAN. • P-GW = Node that terminates the interface towards PDN E-UTRAN : Evolved-UTRAN Network Side : SAE – System Architecture Evolution • Improvement in latency, capacity, throughput • Simplification of the core network • Optimization for IP traffic services • Simplified support and handover to non-3GPP access technologies • Main Components: • eNB = All radio interface-related functions X2
  • 90. S-GW P-GW MME Operator’s IP Services LTE-Uu SGi RxGx S5 / S8 S6a S1-MME S1-U EPS Network Elements E-UTRAN EPC • UE, E-UTRAN and EPC together represent the Internet Protocol (IP) Connectivity Layer. • This part of the system is also called the Evolved Packet System (EPS). • The main function of this layer is to provide IP based connectivity, and it is highly optimized for that purpose only. • All services will be offered on top of IP, and circuit switched nodes and interfaces seen in earlier 3GPP architectures are not present in E-UTRAN and EPC at all. • IP technologies are also dominant in the transport, where everything is designed to be operated on top of IP transport. eNB UE S-GW P-GW IP Services (e.g. IMS, PSS, etc,) LTE-Uu SGiS5 / S8S1-U
  • 91. System architecture for E-UTRAN only network
  • 92. Services • The IP Multimedia Sub-System (IMS) is a good example of service machinery that can be used in the Services Connectivity Layer to provide services on top of the IP connectivity provided by theconnectivity provided by the lower layers. • For example, to support the voice service, IMS can provide Voice over IP (VoIP) and interconnectivity to legacy circuit switched networks PSTN and ISDN through Media Gateways it controls.
  • 93. EPC • Functionally the EPC is equivalent to the packet switched domain of the existing 3GPP networks. • Significant changes in the arrangement of functions and most nodes and the architecture in this part should be considered to be completely new. • SAE GW represents the combination of the two gateways, Serving Gateway (S-GW) and Packet Data Network Gateway (P-GW) defined for the UP handling in EPC. • Implementing them together as the SAE GW represents one possible deployment scenario, butrepresents one possible deployment scenario, but the standards define the interface between them, and all operations have also been specified for when they are separate. • The Basic System Architecture Configuration and its functionality are documented in 3GPP TS 23.401. • We will learn the operation when the S5/S8 interface uses the GTP protocol. However, when the S5/S8 interface uses PMIP, the functionality for these interfaces is slightly different, and the Gxc interface also is needed between the Policy and Charging Resource Function (PCRF) and S-GW. One of the big architectural changes in the core network area is that the EPC does not contain a circuit switched domain, and no direct connectivity to traditional circuit switched networks such as ISDN or PSTN is needed in this layer.
  • 94. E-UTRAN • The development in E-UTRAN is concentrated on one node, the evolved Node B (eNodeB). • All radio functionality is collapsed there, i.e. the eNodeB is the termination point for all radio related protocols.related protocols. • As a network, E-UTRAN is simply a mesh of eNodeBs connected to neighbouring eNodeBs with the X2 interface.
  • 95. User Equipment • UE is the device that the end user uses for communication. • Typically it is a hand held device such as a smart phone or a data card such as those used currently in 2G and 3G, or it could be embedded, e.g. to a laptop. • UE also contains the Universal Subscriber Identity Module (USIM) that is a separate module from the rest of the UE, which is oftenmodule from the rest of the UE, which is often called the Terminal Equipment (TE). • USIM is an application placed into a removable smart card called the Universal Integrated Circuit Card (UICC). • USIM is used to identify and authenticate the user and to derive security keys for protecting the radio interface transmission. • Maybe most importantly, the UE provides the user interface to the end user so that applications such as a VoIP client can be used to set up a voice call. Functionally the UE is a platform for communication applications, which signal with the network for setting up, maintaining and removing the communication links the end user needs. This includes mobility management functions such as handovers and reporting the terminals location, and in these the UE performs as instructed by the network.
  • 96. User Equipment Capabilities • Support Spectrum flexibility – Flexible bandwidth – New and existing bands 20 MHz1.4 MHz AnalogAnalog 1G DigitalDigital 2G PacketsPackets 3G True Broadband True Broadband4G
  • 97. Downlink physical layer parameter values set by the field UE-Category UE Category Maximum number of DL-SCH transport block bits received within a TTI (Note) Maximum number of bits of a DL-SCH transport block received within a TTI Total number of soft channel bits Maximum number of supported layers for spatial multiplexing in DL Category 1 10296 10296 250368 1 Category 2 51024 51024 1237248 2 Category 3 102048 75376 1237248 2 Category 4 150752 75376 1827072 2 Category 5 299552 149776 3667200 4 Category 6 301504 149776 (4 layers) 3654144 2 or 4Category 6 301504 149776 (4 layers) 75376 (2 layers) 3654144 2 or 4 Category 7 301504 149776 (4 layers) 75376 (2 layers) 3654144 2 or 4 Category 8 2998560 299856 35982720 8 NOTE: In carrier aggregation operation, the DL-SCH processing capability can be shared by the UE with that of MCH received from a serving cell. If the total eNB scheduling for DL-SCH and an MCH in one serving cell at a given TTI is larger than the defined processing capability, the prioritization between DL-SCH and MCH is left up to UE implementation. TTI = Transmission Time Interval 3GPP TS 36.306 V11.1.0 (2012-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities MIMO = Multiple Input Multiple Output UL-SCH = Uplink Shared Channel DL-SCH = Downlink Shared Channel UE = User Equipment TTI = Transmission Time Interval
  • 98. Transmission Time Interval • Transmission Time Interval: Transmission Time Interval is defined as the inter-arrival time of Transport Block Sets, i.e. the time it shall take to transmit a Transport Block Set. • Transport Block Set: Transport Block Set is defined as a set of Transport Blocks that is exchanged between L1 and MAC at the same time instance using the same transport channel. Anthe same time instance using the same transport channel. An equivalent term for Transport Block Set is “MAC PDU Set”. • Transport Block: Transport Block is defined as the basic data unit exchanged between L1 and MAC. An equivalent term for Transport Block is “MAC PDU”. 3GPP TR 21.905 V11.2.0 (2012-09) 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications (Release 11)
  • 99. Uplink physical layer parameter values set by the field UE-Category UE Category Maximum number of UL- SCH transport block bits transmitted within a TTI Maximum number of bits of an UL-SCH transport block transmitted within a TTI Support for 64QAM in UL Category 1 5160 5160 No Category 2 25456 25456 No Category 3 51024 51024 NoCategory 3 51024 51024 No Category 4 51024 51024 No Category 5 75376 75376 Yes Category 6 51024 51024 No Category 7 102048 51024 No Category 8 1497760 149776 Yes 3GPP TS 36.306 V11.1.0 (2012-09) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio access capabilities
  • 100. eNB Functional split between E-UTRAN and Evolved Packet Core E-UTRAN aGW • Paging origination • LTE_IDLE mode management • Ciphering of the user plane • Header Compression (ROHC) eNodeB • All Radio-related issues • Decentralized mobility management • MAC and RRM • Simplified RRC aGW Internet S1 The E-UTRAN consists of eNBs, providing: • The E-UTRA U-plane (RLC/MAC/PHY) and • The C-plane (RRC) protocol terminations towards the UE. • The eNBs interface to the aGW via the S1 RRM : Radio Resource Management RRC: Radio Resource Control MAC : Medium Access Control ROHC: RObust Header Compression RLC: Radio Link Control PHY: Physical Layer
  • 101. eNB Protocol Inter Cell RRM RB Cont. Connection Mobility Cont. Radio Admission Cont. eNB Measurement Configuration & Provision Dynamic Resource Allocation (Scheduler) MME NAS Security Idle State Mobility Handling EPS Bearer Cont. SAE GW EPC E-UTRAN RRM : Radio Resource Management RB : Radio Bearer RRC: Radio Resource Control PDCP : Packet Data Convergence Protocol RLC : Radio Link Control MAC : Medium Access Control PHY : Physical Layer Allocation (Scheduler) RRC PDCP RLC MAC PHY UE IP Address Allocation Packet Filtering P-GW Mobile Anchoring S-GW SAE GW NAS : Non Access Stratum EPS : Evolved Packet System UE : User Equipment IP : Internet Protocol Internet S1
  • 102. eNB LTE Control Plane NAS RRC PDCP RLC MAC PHY S1 UE RRC PDCP RLC MAC PHY NAS aGW Non Access Stratum (NAS) is a functional layer in UMTS protocol stack between Core Network and User Equipment (UE). The layer supports signaling and traffic between two elements. eNB LTE User Plane IP PDCP RLC MAC PHY S1 UE PDCP RLC MAC PHY IP aGW Packet Data Convergence Protocol (PDCP) is a one of the layers of Radio Traffic Stack in UMTS and perform as IP header compression and decompression, transfer of user data and maintenance of sequence numbers for Radio Bearers which are configured for lossless Serving Radio Networks Subsystems (SRNS) relocation.
  • 103. LTE Protocol Stacks (UE and eNB) RRC: Radio Resource Control PDCP : Packet Data Convergence Protocol RLC : Radio Link Control MAC : Medium Access Control PHY : Physical Layer RRC PDCP Control-Plane L3 User-Plane L2 Radio Bearers RLC MAC PHY: Physical Channels Physical Signals L1 Transport Channels Logical Channels
  • 104. Control plane protocol stack in EPS The topmost layer in the CP is the Non-Access Stratum (NAS), which consists of two separate protocols that are carried on direct signaling transport between the UE and the MME. The content of the NAS layer protocols is not visible to the eNodeB, and the eNodeB is not involved in these transactions by any other means, besides transporting the messages, and providing some additional transport layer indications along with the messages in some cases.
  • 105. NAS layer protocols The NAS layer protocols are: • EPS Mobility Management (EMM): The EMM protocol is responsible for handling the UE mobility within the system. It includes functions for attaching to and detaching from the network, and performing location updating in between. This is called Tracking Area Updating (TAU), and it happens in idle mode. Note that the handovers in connected mode are handled by the lower layer protocols, but the EMM layer does include functions for re-activating the UE from idle mode. The UE initiated case is called Service Request, while Paging represents the network initiated case. Authentication and protecting the UE identity, i.e. allocating theinitiated case. Authentication and protecting the UE identity, i.e. allocating the temporary identity GUTI to the UE are also part of the EMM layer, as well as the control of NAS layer security functions, encryption and integrity protection. • EPS Session Management (ESM): This protocol may be used to handle the bearer management between the UE and MME, and it is used in addition for E-UTRAN bearer management procedures. Note that the intention is not to use the ESM procedures if the bearer contexts are already available in the network and E- UTRAN procedures can be run immediately. This would be the case, for example, when the UE has already signaled with an operator affiliated. Application Function in the network, and the relevant information has been made available through the PCRF.
  • 106. User plane protocol stack in EPS The UP includes the layers below the end user IP, i.e. these protocols form the Layer 2 used for carrying the end user IP packets. The protocol structure is very similar to the CP. This highlights the fact that the whole system is designed for generic packet data transport, and both CP signaling and UP data are ultimately packet data. Only the volumes are different.
  • 107. Summary of interfaces and protocols in Basic System Architecture configuration
  • 109. LTE MAC Layer Functions
  • 111. Downlink layer 2 structure
  • 112. Uplink layer 2 structure
  • 114. LTE Downlink Logical Channels 1
  • 115. LTE Downlink Logical Channels 2
  • 116. LTE Downlink Transport Channels 1
  • 117. LTE Downlink Transport Channels 2
  • 118. LTE Downlink Physical Channels 1
  • 119. LTE Downlink Physical Channels 2
  • 121. LTE Uplink Logical Channels
  • 122. LTE Uplink Transport Channels
  • 123. LTE Uplink Physical Channels
  • 124. End of Thank You See you again at