SlideShare a Scribd company logo
1 of 24
The 6 Simple Machines
Lever
Pulley
Wheel and Axle
Wedge
Screw
Inclined Plane
Energy: Ability to do work
Work= Force x Distance
Force: A Push or a Pull
Definitions:
Inclined Plane
Inclined Plane
 The Egyptians used simple machines to build the
pyramids. One method was to build a very long
incline out of dirt that rose upward to the top of the
pyramid very gently. The blocks of stone were
placed on large logs (another type of simple machine
- the wheel and axle) and pushed slowly up the long,
gentle inclined plane to the top of the pyramid.
Inclined Planes
 An inclined plane is
a flat surface that is
higher on one end
 Inclined planes
make the work of
moving things easier
Work input and output
 Work input is the amount of work
done on a machine.
Input force x input distance
 Work output is the amount of work
done by a machine.
Output force x output distance
15 m
3 m
Wout = Win
Fout x Dout = Fin x Din
10N x 3m = 2N x 15m 10 N Fin
Din
Dout
Inclined Plane -
Mechanical Advantage
 The mechanical
advantage of an
inclined plane is equal
to the length of the
slope divided by the
height of the inclined
plane.
 While the inclined plane
produces a mechanical
advantage, it does so
by increasing the
distance through which
the force must move.
Screw
The mechanical advantage of an screw can be
calculated by dividing the circumference by the pitch of
the screw.
Pitch equals 1/ number of turns per inch.
Wedges
 Two inclined
planes joined
back to back.
 Wedges are used
to split things.
Wedge – Mechanical Advantage
 The mechanical advantage of a wedge can be found
by dividing the length of either slope (S) by the
thickness (T) of the big end.
S
 As an example, assume that the length of the slope
is 10 inches and the thickness is 4 inches. The
mechanical advantage is equal to 10/4 or 2 1/2. As
with the inclined plane, the mechanical advantage
gained by using a wedge requires a corresponding
increase in distance.
T
Fulcrum is between EF (effort) and RF (load)
Effort moves farther than Resistance.
Multiplies EF and changes its direction
The mechanical advantage of a lever is the ratio of the length
of the lever on the applied force side of the fulcrum to the
length of the lever on the resistance force side of the fulcrum.
First Class Lever
First Class Lever
.
 Common examples
of first-class levers
include crowbars,
scissors, pliers, tin
snips and seesaws.
RF (load) is between fulcrum and EF
Effort moves farther than Resistance.
Multiplies EF, but does not change its direction
The mechanical advantage of a lever is the ratio of the
distance from the applied force to the fulcrum to the
distance from the resistance force to the fulcrum.
Second Class Lever
Second Class Lever
 Examples of
second-class
levers include
nut crackers,
wheel barrows,
doors, and
bottle openers.
EF is between fulcrum and RF (load)
Does not multiply force
Resistance moves farther than Effort.
Multiplies the distance the effort force travels
The mechanical advantage of a lever is the ratio of the
distance from the applied force to the fulcrum to the
distance of the resistance force to the fulcrum
Third Class Lever
Third Class Lever
 Examples of
third-class
levers include
tweezers, arm
hammers, and
shovels.
Pulleys
 Pulley are wheels
and axles with a
groove around the
outside
 A pulley needs a
rope, chain or belt
around the groove
to make it do work
Diagrams of Pulleys
Fixed pulley:
A fixed pulley changes the
direction of a force;
however, it does not create
a mechanical advantage.
Movable Pulley: The mechanical advantage
of a moveable pulley is
equal to the number of
ropes that support the
moveable pulley.
COMBINED PULLEY
 The effort needed to
lift the load is less
than half the weight
of the load.
 The main
disadvantage is it
travels a very long
distance.
WHEEL AND AXEL
 The axle is stuck
rigidly to a large
wheel. Fan blades
are attached to the
wheel. When the
axel turns, the fan
blades spin.
Wheel and Axel
 The mechanical advantage of a wheel and axle is the
ratio of the radius of the wheel to the radius of the axle.
 In the wheel and axle illustrated above, the radius of the
wheel is five times larger than the radius of the axle.
Therefore, the mechanical advantage is 5:1 or 5.
 The wheel and axle can also increase speed by
applying the input force to the axle rather than a wheel.
This increase is computed like mechanical advantage.
This combination would increase the speed 5 times.
5
1
GEARS-Wheel and Axel
 Each gear in a
series reverses the
direction of
rotation of the
previous gear. The
smaller gear will
always turn faster
than the larger
gear.
Rube Goldberg Machines
 Rube Goldberg machines are
examples of complex machines.
 All complex machines are made
up of combinations of simple
machines.
 Rube Goldberg machines are
usually a complicated combination
of simple machines.
 By studying the components of
Rube Goldberg machines, we
learn more about simple machines
When you slip on ice, your foot kicks paddle (A),
lowering finger (B), snapping turtle (C) extends neck
to bite finger, opening ice tongs (D) and dropping pillow (E),
thus allowing you to fall on something soft.
Safety Device for Walking on Icy Pavements

More Related Content

Similar to simple_machines.ppt

Worm amd worm wheel
Worm amd worm wheelWorm amd worm wheel
Worm amd worm wheeljahanzeb Ali
 
14 4 Simple Machines (A)
14 4 Simple Machines (A)14 4 Simple Machines (A)
14 4 Simple Machines (A)robtownsend
 
Simple Machines and Its uses and characteristics.ppt
Simple Machines  and Its uses and characteristics.pptSimple Machines  and Its uses and characteristics.ppt
Simple Machines and Its uses and characteristics.pptJoan Eclarin
 
Work And Simple Machines
Work And Simple MachinesWork And Simple Machines
Work And Simple MachinesRyan Cataga
 
Workandsimplemachines
WorkandsimplemachinesWorkandsimplemachines
WorkandsimplemachinesBrenda Obando
 
Moment of force
Moment of forceMoment of force
Moment of forceja00015
 
Work And Simple Machines
Work And Simple MachinesWork And Simple Machines
Work And Simple Machineswilsone
 
Mfe chapter 4 notes
Mfe chapter 4 notesMfe chapter 4 notes
Mfe chapter 4 notescjjonesin
 
Simple pulley & pulley block
Simple pulley & pulley blockSimple pulley & pulley block
Simple pulley & pulley blockMd Shariful Islam
 
Automobile Engineering-Unit-III-Transmission system of Automobile
Automobile Engineering-Unit-III-Transmission system of Automobile    Automobile Engineering-Unit-III-Transmission system of Automobile
Automobile Engineering-Unit-III-Transmission system of Automobile Dr.S.SURESH
 
automobile power transmission
automobile power transmissionautomobile power transmission
automobile power transmissionChetan Badsar
 
Vehicle Power transmission
Vehicle Power transmissionVehicle Power transmission
Vehicle Power transmissionChetan Badsar
 

Similar to simple_machines.ppt (20)

Worm amd worm wheel
Worm amd worm wheelWorm amd worm wheel
Worm amd worm wheel
 
14 4 Simple Machines (A)
14 4 Simple Machines (A)14 4 Simple Machines (A)
14 4 Simple Machines (A)
 
Simple Machines and Its uses and characteristics.ppt
Simple Machines  and Its uses and characteristics.pptSimple Machines  and Its uses and characteristics.ppt
Simple Machines and Its uses and characteristics.ppt
 
Machines
MachinesMachines
Machines
 
Work And Simple Machines
Work And Simple MachinesWork And Simple Machines
Work And Simple Machines
 
Workandsimplemachines
WorkandsimplemachinesWorkandsimplemachines
Workandsimplemachines
 
ECGS Module 4B
ECGS Module 4BECGS Module 4B
ECGS Module 4B
 
Moment of force
Moment of forceMoment of force
Moment of force
 
Work And Simple Machines
Work And Simple MachinesWork And Simple Machines
Work And Simple Machines
 
Mfe chapter 4 notes
Mfe chapter 4 notesMfe chapter 4 notes
Mfe chapter 4 notes
 
Belt drive sYSTEM
Belt drive sYSTEMBelt drive sYSTEM
Belt drive sYSTEM
 
Gears
GearsGears
Gears
 
Belt Drive
Belt DriveBelt Drive
Belt Drive
 
Simple Machines
Simple MachinesSimple Machines
Simple Machines
 
Simple pulley & pulley block
Simple pulley & pulley blockSimple pulley & pulley block
Simple pulley & pulley block
 
Levers
LeversLevers
Levers
 
Levers
LeversLevers
Levers
 
Automobile Engineering-Unit-III-Transmission system of Automobile
Automobile Engineering-Unit-III-Transmission system of Automobile    Automobile Engineering-Unit-III-Transmission system of Automobile
Automobile Engineering-Unit-III-Transmission system of Automobile
 
automobile power transmission
automobile power transmissionautomobile power transmission
automobile power transmission
 
Vehicle Power transmission
Vehicle Power transmissionVehicle Power transmission
Vehicle Power transmission
 

Recently uploaded

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 

Recently uploaded (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 

simple_machines.ppt

  • 1. The 6 Simple Machines Lever Pulley Wheel and Axle Wedge Screw Inclined Plane
  • 2. Energy: Ability to do work Work= Force x Distance Force: A Push or a Pull Definitions:
  • 4. Inclined Plane  The Egyptians used simple machines to build the pyramids. One method was to build a very long incline out of dirt that rose upward to the top of the pyramid very gently. The blocks of stone were placed on large logs (another type of simple machine - the wheel and axle) and pushed slowly up the long, gentle inclined plane to the top of the pyramid.
  • 5. Inclined Planes  An inclined plane is a flat surface that is higher on one end  Inclined planes make the work of moving things easier
  • 6. Work input and output  Work input is the amount of work done on a machine. Input force x input distance  Work output is the amount of work done by a machine. Output force x output distance 15 m 3 m Wout = Win Fout x Dout = Fin x Din 10N x 3m = 2N x 15m 10 N Fin Din Dout
  • 7. Inclined Plane - Mechanical Advantage  The mechanical advantage of an inclined plane is equal to the length of the slope divided by the height of the inclined plane.  While the inclined plane produces a mechanical advantage, it does so by increasing the distance through which the force must move.
  • 8. Screw The mechanical advantage of an screw can be calculated by dividing the circumference by the pitch of the screw. Pitch equals 1/ number of turns per inch.
  • 9. Wedges  Two inclined planes joined back to back.  Wedges are used to split things.
  • 10. Wedge – Mechanical Advantage  The mechanical advantage of a wedge can be found by dividing the length of either slope (S) by the thickness (T) of the big end. S  As an example, assume that the length of the slope is 10 inches and the thickness is 4 inches. The mechanical advantage is equal to 10/4 or 2 1/2. As with the inclined plane, the mechanical advantage gained by using a wedge requires a corresponding increase in distance. T
  • 11. Fulcrum is between EF (effort) and RF (load) Effort moves farther than Resistance. Multiplies EF and changes its direction The mechanical advantage of a lever is the ratio of the length of the lever on the applied force side of the fulcrum to the length of the lever on the resistance force side of the fulcrum. First Class Lever
  • 12. First Class Lever .  Common examples of first-class levers include crowbars, scissors, pliers, tin snips and seesaws.
  • 13. RF (load) is between fulcrum and EF Effort moves farther than Resistance. Multiplies EF, but does not change its direction The mechanical advantage of a lever is the ratio of the distance from the applied force to the fulcrum to the distance from the resistance force to the fulcrum. Second Class Lever
  • 14. Second Class Lever  Examples of second-class levers include nut crackers, wheel barrows, doors, and bottle openers.
  • 15. EF is between fulcrum and RF (load) Does not multiply force Resistance moves farther than Effort. Multiplies the distance the effort force travels The mechanical advantage of a lever is the ratio of the distance from the applied force to the fulcrum to the distance of the resistance force to the fulcrum Third Class Lever
  • 16. Third Class Lever  Examples of third-class levers include tweezers, arm hammers, and shovels.
  • 17. Pulleys  Pulley are wheels and axles with a groove around the outside  A pulley needs a rope, chain or belt around the groove to make it do work
  • 18. Diagrams of Pulleys Fixed pulley: A fixed pulley changes the direction of a force; however, it does not create a mechanical advantage. Movable Pulley: The mechanical advantage of a moveable pulley is equal to the number of ropes that support the moveable pulley.
  • 19. COMBINED PULLEY  The effort needed to lift the load is less than half the weight of the load.  The main disadvantage is it travels a very long distance.
  • 20. WHEEL AND AXEL  The axle is stuck rigidly to a large wheel. Fan blades are attached to the wheel. When the axel turns, the fan blades spin.
  • 21. Wheel and Axel  The mechanical advantage of a wheel and axle is the ratio of the radius of the wheel to the radius of the axle.  In the wheel and axle illustrated above, the radius of the wheel is five times larger than the radius of the axle. Therefore, the mechanical advantage is 5:1 or 5.  The wheel and axle can also increase speed by applying the input force to the axle rather than a wheel. This increase is computed like mechanical advantage. This combination would increase the speed 5 times. 5 1
  • 22. GEARS-Wheel and Axel  Each gear in a series reverses the direction of rotation of the previous gear. The smaller gear will always turn faster than the larger gear.
  • 23. Rube Goldberg Machines  Rube Goldberg machines are examples of complex machines.  All complex machines are made up of combinations of simple machines.  Rube Goldberg machines are usually a complicated combination of simple machines.  By studying the components of Rube Goldberg machines, we learn more about simple machines
  • 24. When you slip on ice, your foot kicks paddle (A), lowering finger (B), snapping turtle (C) extends neck to bite finger, opening ice tongs (D) and dropping pillow (E), thus allowing you to fall on something soft. Safety Device for Walking on Icy Pavements