SlideShare a Scribd company logo
Solving DEs by Separation of Variables.
Introduction and procedure
Separation of variables allows us to solve differential equations of the form
dy
dx
= g(x)f(y)
The steps to solving such DEs are as follows:
1. Make the DE look like
dy
dx
= g(x)f(y). This may be already done for you (in which case you can just identify
the various parts), or you may have to do some algebra to get it into the correct form.
2. Separate the variables:
Get all the y’s on the LHS by multiplying both sides by 1
f(y) (i.e., dividing by f(y)):
1
f(y)
dy
dx
= g(x)
and get all the x’s on the RHS by ‘multiplying’ both sides by dx:
1
f(y)
dy = g(x) dx
3. Integrate both sides: Z
1
f(y)
dy =
Z
g(x) dx
This gives us an implicit solution.
4. Solve for y (if possible). This gives us an explicit solution.
5. If there is an initial condition, use it to solve for the unknown parameter in the solution function.
6. Check for any constant singular solutions. Remember: they must satisfy both the DE and the initial condition
(if there is one).
7. If you have an initial condition, specify the interval of validity. If you don’t have an initial condition, indicate
the domain of the solution (even if it’s not a single interval).
Note: We will make use of the following two integration formulae to avoid basic, repetitive u-substitutions. You
may use these on the homework and test (if they apply) without citing them:
Z
1
y + A
dy = ln |y + A| + C,
Z
1
A − y
dy = − ln |A − y| + C
= − ln |y − A| + C
1
Examples
Example 1. Find an implicit solution of the IVP
y0
=
xy + 2y − x − 2
xy − 3y + x − 3
, y(4) = 2
1. Rewriting the LHS in differential form and factoring the RHS we get
dy
dx
=
(x + 2)(y − 1)
(x − 3)(y + 1)
2. Separating the variables leads to:
y + 1
y − 1
dy =
x + 2
x − 3
dx
3. To evaluate the integrals Z
y + 1
y − 1
dy =
Z
x + 2
x − 3
dx
we need u-substitution on both sides. On the LHS, let u = y − 1 and then du = dy and y = u + 1. On the RHS
we need another variable name, so let w = x − 3 and then dw = dx and x = w + 3. Substituting (0.1 below),
rewriting some more (0.2), integrating (0.3), and reversing the substitution (0.4) yields:
Z
u + 2
u
du =
Z
w + 5
w
dw (0.1)
Z
1 +
2
u
du =
Z
1 +
5
w
dw (0.2)
u + 2 ln |u| = w + 5 ln |w| + C1 (0.3)
y − 1 + 2 ln |y − 1| = x − 3 + 5 ln |x − 3| + C1 (0.4)
Further simplification leads to:
y + 2 ln |y − 1| = x + 5 ln |x − 3| + C2
y + ln
(y − 1)2
= x + ln
(x − 3)5

More Related Content

Similar to separation_of_var_examples.pdf

Differential Equation
Differential EquationDifferential Equation
19 6
19 619 6
21 3 ztransform
21 3 ztransform21 3 ztransform
21 3 ztransform
Mahyar Alzobaidy
 
19 2
19 219 2
19 2
Mayar Zo
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
Hazel Joy Chong
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
PlanningHCEGC
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
shahzadebaujiti
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
Abdul Hannan
 
cursul 3.pdf
cursul 3.pdfcursul 3.pdf
cursul 3.pdf
AndaOajdea1
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010akabaka12
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
Krishna Peshivadiya
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 

Similar to separation_of_var_examples.pdf (20)

Sol83
Sol83Sol83
Sol83
 
Sol83
Sol83Sol83
Sol83
 
Differential Equation
Differential EquationDifferential Equation
Differential Equation
 
19 6
19 619 6
19 6
 
21 3 ztransform
21 3 ztransform21 3 ztransform
21 3 ztransform
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
19 2
19 219 2
19 2
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Sect1 R
Sect1 RSect1 R
Sect1 R
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
DIFFERENTIAL EQUATION
DIFFERENTIAL EQUATIONDIFFERENTIAL EQUATION
DIFFERENTIAL EQUATION
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
cursul 3.pdf
cursul 3.pdfcursul 3.pdf
cursul 3.pdf
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Ch02 2
Ch02 2Ch02 2
Ch02 2
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
first order ode with its application
 first order ode with its application first order ode with its application
first order ode with its application
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 

More from AlelignAsfaw

Miyazia.pdf
Miyazia.pdfMiyazia.pdf
Miyazia.pdf
AlelignAsfaw
 
assignment.pdf
assignment.pdfassignment.pdf
assignment.pdf
AlelignAsfaw
 
Megabit.pdf
Megabit.pdfMegabit.pdf
Megabit.pdf
AlelignAsfaw
 
CENG 6211 Pavement Materials - Course Outline.pdf
CENG 6211 Pavement Materials -  Course Outline.pdfCENG 6211 Pavement Materials -  Course Outline.pdf
CENG 6211 Pavement Materials - Course Outline.pdf
AlelignAsfaw
 
seminar.pdf
seminar.pdfseminar.pdf
seminar.pdf
AlelignAsfaw
 
SeminarTitles.pdf
SeminarTitles.pdfSeminarTitles.pdf
SeminarTitles.pdf
AlelignAsfaw
 
List of lab experiment.pdf
List of lab experiment.pdfList of lab experiment.pdf
List of lab experiment.pdf
AlelignAsfaw
 
complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDF
AlelignAsfaw
 
Qustions.pdf
Qustions.pdfQustions.pdf
Qustions.pdf
AlelignAsfaw
 

More from AlelignAsfaw (9)

Miyazia.pdf
Miyazia.pdfMiyazia.pdf
Miyazia.pdf
 
assignment.pdf
assignment.pdfassignment.pdf
assignment.pdf
 
Megabit.pdf
Megabit.pdfMegabit.pdf
Megabit.pdf
 
CENG 6211 Pavement Materials - Course Outline.pdf
CENG 6211 Pavement Materials -  Course Outline.pdfCENG 6211 Pavement Materials -  Course Outline.pdf
CENG 6211 Pavement Materials - Course Outline.pdf
 
seminar.pdf
seminar.pdfseminar.pdf
seminar.pdf
 
SeminarTitles.pdf
SeminarTitles.pdfSeminarTitles.pdf
SeminarTitles.pdf
 
List of lab experiment.pdf
List of lab experiment.pdfList of lab experiment.pdf
List of lab experiment.pdf
 
complex numbers and functions.PDF
complex numbers and functions.PDFcomplex numbers and functions.PDF
complex numbers and functions.PDF
 
Qustions.pdf
Qustions.pdfQustions.pdf
Qustions.pdf
 

Recently uploaded

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 

Recently uploaded (20)

MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 

separation_of_var_examples.pdf

  • 1. Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form dy dx = g(x)f(y) The steps to solving such DEs are as follows: 1. Make the DE look like dy dx = g(x)f(y). This may be already done for you (in which case you can just identify the various parts), or you may have to do some algebra to get it into the correct form. 2. Separate the variables: Get all the y’s on the LHS by multiplying both sides by 1 f(y) (i.e., dividing by f(y)): 1 f(y) dy dx = g(x) and get all the x’s on the RHS by ‘multiplying’ both sides by dx: 1 f(y) dy = g(x) dx 3. Integrate both sides: Z 1 f(y) dy = Z g(x) dx This gives us an implicit solution. 4. Solve for y (if possible). This gives us an explicit solution. 5. If there is an initial condition, use it to solve for the unknown parameter in the solution function. 6. Check for any constant singular solutions. Remember: they must satisfy both the DE and the initial condition (if there is one). 7. If you have an initial condition, specify the interval of validity. If you don’t have an initial condition, indicate the domain of the solution (even if it’s not a single interval). Note: We will make use of the following two integration formulae to avoid basic, repetitive u-substitutions. You may use these on the homework and test (if they apply) without citing them: Z 1 y + A dy = ln |y + A| + C, Z 1 A − y dy = − ln |A − y| + C = − ln |y − A| + C 1
  • 2. Examples Example 1. Find an implicit solution of the IVP y0 = xy + 2y − x − 2 xy − 3y + x − 3 , y(4) = 2 1. Rewriting the LHS in differential form and factoring the RHS we get dy dx = (x + 2)(y − 1) (x − 3)(y + 1) 2. Separating the variables leads to: y + 1 y − 1 dy = x + 2 x − 3 dx 3. To evaluate the integrals Z y + 1 y − 1 dy = Z x + 2 x − 3 dx we need u-substitution on both sides. On the LHS, let u = y − 1 and then du = dy and y = u + 1. On the RHS we need another variable name, so let w = x − 3 and then dw = dx and x = w + 3. Substituting (0.1 below), rewriting some more (0.2), integrating (0.3), and reversing the substitution (0.4) yields: Z u + 2 u du = Z w + 5 w dw (0.1) Z 1 + 2 u du = Z 1 + 5 w dw (0.2) u + 2 ln |u| = w + 5 ln |w| + C1 (0.3) y − 1 + 2 ln |y − 1| = x − 3 + 5 ln |x − 3| + C1 (0.4) Further simplification leads to: y + 2 ln |y − 1| = x + 5 ln |x − 3| + C2 y + ln
  • 3.
  • 5.
  • 6. = x + ln
  • 7.
  • 9.
  • 11.
  • 13.
  • 15.
  • 17.
  • 18. = x − y + C2 ln
  • 19.
  • 20.
  • 21.
  • 22. (y − 1)2 (x − 3)5
  • 23.
  • 24.
  • 25.
  • 26. = x − y + C2
  • 27.
  • 28.
  • 29.
  • 30. (y − 1)2 (x − 3)5
  • 31.
  • 32.
  • 33.
  • 34. = ex−y+C2 = ex−y eC2 = C3 · ex−y (y − 1)2 (x − 3)5 = C · ex−y 4. [Not applicable since we’re only trying to find an implicit solution.] 5. Applying the initial condition y(4) = 2 and solving for C yields: (2 − 1)2 (4 − 3)5 = C · e4−2 1 = C · e2 e−2 = C So our implicit solution is (y − 1)2 (x − 3)5 = ex−y−2 2
  • 35. 6. No singular solutions (y = 1 is a singular solution of the DE, but it doesn’t satisfy the initial condition). 7. The original DE and the solution are undefined when x = 3, so the domain is (−∞, 3) ∪ (3, ∞). Since our initial condition is for x = 4, our interval of definition is I = (3, ∞) (we use the largest connected subset of the domain that covers our initial condition). Example 2. Solve the DE y0 = kM − ky subject to the initial condition y(0) = 0 (this is the differential equation describing the velocity of a sky diver). 1. Factoring k out of the RHS, we get dy dx = k |{z} g(x) (M − y) | {z } f(y) 2. Separate the variables: 1 M − y dy = k dx 3. Integrate both sides: Z 1 M − y dy = Z k dx − ln |y − M| = kx + C0 4. Solve for y: − ln |y − M| = kx + C0 ln |y − M| = −kx + C1 eln |y−M| = e−kx+C1 |y − M| = e−kt+C1 = e−kx eC1 = C2e−kx ±(y − M) = C2e−kx y − M = ±C2e−kx y = M + Ce−kx 5. Apply the initial condition y(0) = 0 and solve for C: 0 = M + Ce−k·0 = M + Ce0 = M + C −M = C 6. Check for constant singular solutions: 0 = kM − ky = k(M − y) So y = M is a solution to the DE. However, it doesn’t satisfy the initial condition, so y = M is not a solution to the IVP. 7. The domain of the solution function is all real numbers, so our interval is (−∞, ∞). So, the final solution is y = M − Me−kx = M(1 − e−kx ), I = (−∞, ∞) 3
  • 36. Example 3. Solve the DE y0 = xe2y subject to the initial condition y(0) = −1. 1. This one is already in the correct form: dy dx = x |{z} g(x) e2y |{z} f(y) 2. Separate the variables: 1 e2y dy = x dx e−2y dy = x dx 3. Integrate both sides: Z e−2y dy = Z x dx − 1 2 e−2y = x2 2 + C0 4. Solve for y: e−2y = −2 x2 2 + C e−2y = −x2 + C ln(e−2y ) = ln(−x2 + C) −2y = ln(−x2 + C) y = − 1 2 ln(−x2 + C) Note: It’s okay to end up with the C inside the natural log; since it’s being added inside the log, there are no properties that allow us to move it to outside. 5. Apply the initial condition y(0) = −1 and solve for C: −1 = − 1 2 ln(0 + C) 2 = ln(C) e2 = eln(C) e2 = C 6. e2y is never equal to 0, so there are no constant singular solutions. 7. The domain of the solution function is (−e, e) and this is also the solution interval (since the domain is a single interval). So, the final solution is y = − 1 2 ln(−x2 + e2 ), I = (−e, e) Example 4. Solve the DE y0 = x2 y subject to the initial condition y(0) = −5. 4
  • 37. 1. This one is essentially already in the correct form: dy dx = x2 y = x2 |{z} g(x) 1 y |{z} f(y) 2. Separate the variables: y dy = x2 dx 3. Integrate both sides: Z y dy = Z x2 dx y2 2 = x3 3 + C0 4. Solve for y: y2 2 = x3 3 + C0 y2 = 2x3 3 + C y = ± r 2x3 3 + C Note that we get two possible solutions from the ±. If we didn’t have an initial condition, then we would leave the ± in the final answer, or we would stop at the implicit solution y2 = 2x3 3 + C. In this case, since we have an initial condition, we’ll decide which one we want when we apply the it in the next step: 5. Applying the initial condition y(0) = −5, we get −5 = ± r 2 · 0 3 + C = ± √ C Since we have a negative number on the LHS, we’ll use the negative square root for our solution function. Solving for C, we get: −5 = − √ C 5 = √ C 25 = C 6. No value of y will make x2 y = 0, so there are no constant singular solutions. 7. The domain of the solution function is h 3 q −75 2 , ∞ and this is also the solution interval (since the domain is a single interval). So, the solution is y = − r 2x3 3 + 25 I = 3 r − 75 2 , ∞ ! Example 5. Solve the DE y0 = e3x+2y subject to the initial condition y(0) = 4. 5
  • 38. 1. Using properties of exponents on the RHS, we get dy dx = e3x |{z} g(x) e2y |{z} f(y) 2. Separate the variables: 1 e2y dy = e3x dx e−2y dy = e3x dx 3. Integrate both sides: Z e−2y dy = Z e3x dx 1 −2 e−2y = 1 3 e3x + C0 4. Solve for y: 1 −2 e−2y = 1 3 e3x + C0 e−2y = −2 3 e3x + C ln(e−2y ) = ln − 2 3 e3x + C −2y = ln − 2 3 e3x + C y = − 1 2 ln − 2 3 e3x + C 5. Apply the initial condition y(0) = 4 and solve for C: 4 = − 1 2 ln − 2 3 e3·0 + C 4 = − 1 2 ln − 2 3 + C −8 = ln − 2 3 + C e−8 = eln(− 2 3 +C) e−8 = − 2 3 + C e−8 + 2 3 = C 6. No value of y makes e3x+2y = 0, so there are no constant singular solutions. 7. The domain of the solution function is −∞, 1 3 ln 1 + 3 2 e−8 and this is also the solution interval (since the domain is a single interval). So, the final solution is y = − 1 2 ln − 2 3 e3x + e−8 + 2 3 I = −∞, 1 3 ln 1 + 3 2 e−8 6
  • 39. Example 6. Solve the DE y0 = y2 − e3x y2 subject to the initial condition y(0) = 1. 1. Factoring out y2 on the RHS, we get dy dx = 1 − e3x | {z } g(x) · y2 |{z} f(y) 2. Separate the variables: 1 y2 dy = 1 − e3x dx y−2 dy = 1 − e3x dx 3. Integrate both sides: Z y−2 dy = Z 1 − e3x dx y−1 −1 = x − 1 3 e3x + C0 − 1 y = x − 1 3 e3x + C0 4. Solve for y: 1 y = −x + 1 3 e3x + C y = 1 −x + 1 3 e3x + C 5. Apply the initial condition y(0) = 1 and solve for C: 1 = 1 −0 + 1 3 e3(0) + C 1 1 = 1 3 e3(0) + C 1 = 1 3 + C 2 3 = C 6. Check for constant singular solutions: 0 = y2 − e3x y2 = y2 (1 − e3x ) So y = 0 is a solution to the DE. However, it doesn’t satisfy the initial condition, so y = 0 is not a solution to the IVP. 7. The domain of the solution function is all real numbers. [Note: this is not immediately obvious. We would need to show that the denominator, −x + 1 3 e3x + 2 3 , is never equal to zero. One way to do this is by showing that the absolute minimum is this denominator is a positive number.] So the solution interval is (∞, ∞). So, the final solution is y = 1 −x + 1 3 e3x + 2 3 = 3 −3x + e3x + 2 , I = (∞, ∞) 7
  • 40. Example 7. Solve the DE y0 = 1 xy + y 1. Factoring y out of the denominator on the RHS, we get dy dx = 1 x + 1 | {z } g(x) · 1 y |{z} f(y) 2. Separate the variables: y dy = 1 x + 1 dx 3. Integrate both sides: Z y dy = Z 1 x + 1 dx y2 2 = ln |x + 1| + C0 (an implicit solution) 4. Solve for y: y2 = 2 ln |x + 1| + C y = ± p 2 ln |x + 1| + C (explicit solution) 5. No initial conditions given, so we can’t solve for C. 6. There are no values of y that make 1 xy+y equal to zero, so there are no constant singular solutions. 7. The domain of the solution function is {x | 2 ln |x + 1| + C 0} (without an initial condition, we can’t get a better description of the domain). So, the final solution is y = ± p 2 ln |x + 1| + C, I = {x | 2 ln |x + 1| + C 0} Example 8. Solve the DE y0 = 5xy − 2x subject to the initial condition y(0) = 1. 1. We could factor out just x from the RHS, but factoring out 5x leaves us with a coefficient of 1 on the y, which will make the integration a little easier later on: dy dx = 5x |{z} g(x) · y − 2 5 | {z } f(y) 2. Separate the variables: 1 y − 2 5 dy = 5x dx 8
  • 41. 3. Integrate both sides: Z 1 y − 2 5 dy = Z 5x dx ln
  • 42.
  • 43.
  • 44.
  • 46.
  • 47.
  • 48.
  • 49. = 5x2 2 + C0 (an implicit solution) 4. Solve for y: eln|y− 2 5 | = e 5x2 2 +C0
  • 50.
  • 51.
  • 52.
  • 54.
  • 55.
  • 56.
  • 57. = e 5x2 2 eC0 = C1e 5x2 2 ± y − 2 5 = C1e 5x2 2 y − 2 5 = ±C1e 5x2 2 y − 2 5 = Ce 5x2 2 y = Ce 5x2 2 + 2 5 5. Apply the initial condition y(0) = 1 and solve for C: 1 = Ce 5(02) 2 + 2 5 1 = Ce0 + 2 5 1 = C + 2 5 3 5 = C 6. Check for constant singular solutions: 0 = 5xy − 2x = x(5y − 2) So y = 2 5 is a solution to the DE. However, it doesn’t satisfy the initial condition, so y = 2 5 is not a solution to the IVP. 7. The domain of the solution function is all real numbers, so our interval is (−∞, ∞). So, the final solution is y = 3 5 e 5x2 2 + 2 5 , I = (−∞, ∞) 9