SlideShare a Scribd company logo
Secure Mining of Association Rules in Horizontally Distributed
Databases
Abstract
We propose a protocol for secure mining of association rules in horizontally distributed databases. Our protocol,
like theirs, is based on the Fast Distributed Mining (FDM) algorithm which is an unsecured distributed version
of the Apriori algorithm.
The main ingredients in our protocol are two novel secure multi-party algorithms — one that computes
the union of private subsets that each of the interacting players hold, and another that tests the inclusion of an
element held by one player in a subset held by another. Our protocol offers enhanced privacy with respect to the
protocol. In addition, it is simpler and is significantly more efficient in terms of communication rounds,
communication cost and computational cost.
Existing System
In Existing System, the problem of secure mining of association rules in horizontally partitioned
databases. In that setting, there are several sites (or players) that hold homogeneous databases, i.e., databases
that share the same schema but hold information on different entities. The inputs are the partial databases, and
the required output is the list of association rules that hold in the unified database with support and confidence
no smaller.
Disadvantage:
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
o Less number of features in previous system.
o Difficulty to get accurate item set.
Proposed System
In Proposed System, propose an alternative protocol for the secure computation of the union of private subsets.
The proposed protocol improves upon that in terms of simplicity and efficiency as well as privacy. In particular,
our protocol does not depend on commutative encryption and oblivious transfer (what simplifies it significantly
and contributes towards much reduced communication and computational costs). While our solution is still not
perfectly secure, it leaks excess information only to a small number (three) of possible coalitions, unlike the
protocol of that discloses information also to some single players. In addition, we claim that the excess
information that our protocol may leak is less sensitive than the excess information leaked by the protocol.
Advantage:
1) As a rising subject, data mining is playing an increasingly important role in the decision support activity
of every walk of life.
2) Get Efficient Item set result based on the customer request.
Modules
1. User Module.
2. Admin Module.
3. Association Rule.
4. Apriori Algorithm.
Modules Description
User Module
In this module, privacy preserving data mining has considered two related settings. One, in which the
data owner and the data miner are two different entities, and another, in which the data is distributed among
several parties who aim to jointly perform data mining on the unified corpus of data that they hold.
In the first setting, the goal is to protect the data records from the data miner. Hence, the data owner
aims at anonymizing the data prior to its release. The main approach in this context is to apply data
perturbation. He perturbed data can be used to infer general trends in the data, without revealing original record
information.
In the second setting, the goal is to perform data mining while protecting the data records of each of the
data owners from the other data owners.
Admin Module
In this module, is used to view user details. Admin to view the item set based on the user processing
details using association role with Apriori algorithm.
Association Rule:
Association rules are if/then statements that help uncover relationships between seemingly unrelated
data in a relational database or other information repository. An example of an association rule would be "If a
customer buys a dozen eggs, he is 80% likely to also purchase milk."
Association rules are created by analyzing data for frequent if/then patterns and using the criteria
support and confidence to identify the most important relationships. Support is an indication of how frequently
the items appear in the database. Confidence indicates the number of times the if/then statements have been
found to be true.
Apriori Algorithm:
Apriori is designed to operate on databases containing transactions. The purpose of the Apriori
Algorithm is to find associations between different sets of data. It is sometimes referred to as "Market Basket
Analysis". Each set of data has a number of items and is called a transaction. The output of Apriori is sets of
rules that tell us how often items are contained in sets of data.
Algorithm - Fast Distributed Mining (FDM)
The FDM algorithm proceeds as follows:
(1) Initialization
(2) Candidate Sets Generation
(3) Local Pruning
(4) Unifying the candidate item sets
(5) Computing local supports
(6) Broadcast Mining Results
SYSTEM SPECIFICATION
Hardware Requirements:
• System : Pentium IV 2.4 GHz.
• Hard Disk : 40 GB.
• Floppy Drive : 1.44 Mb.
• Monitor : 14’ Colour Monitor.
• Mouse : Optical Mouse.
• Ram : 512 Mb.
• Keyboard : 101 Keyboards.
Software Requirements:
• Operating system : Windows 7 Ultimate (32-bit)
• Front End : VS2010
• Coding Language : ASP.Net with C#
• Data Base : SQL Server 2008

More Related Content

What's hot

Oruta privacy preserving public auditing
Oruta privacy preserving public auditingOruta privacy preserving public auditing
Oruta privacy preserving public auditing
Papitha Velumani
 
Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud
Adz91 Digital Ads Pvt Ltd
 
Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloudOruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud
Nexgen Technology
 
Free net
Free netFree net
Free net
Rajesh Bodapati
 
Blockchain-Based Data Preservation System for Medical Data
Blockchain-Based Data Preservation System for Medical DataBlockchain-Based Data Preservation System for Medical Data
Blockchain-Based Data Preservation System for Medical Data
Swarup Saha
 
A secure erasure code based cloud storage
A secure erasure code based cloud storageA secure erasure code based cloud storage
A secure erasure code based cloud storage
IMPULSE_TECHNOLOGY
 
Privacy preserving multi-keyword ranked search over encrypted cloud data
Privacy preserving multi-keyword ranked search over encrypted cloud dataPrivacy preserving multi-keyword ranked search over encrypted cloud data
Privacy preserving multi-keyword ranked search over encrypted cloud data
IGEEKS TECHNOLOGIES
 
Homomorphic authentication with random masking technique ensuring privacy
Homomorphic authentication with random masking technique ensuring privacyHomomorphic authentication with random masking technique ensuring privacy
Homomorphic authentication with random masking technique ensuring privacy
Shakas Technologies
 

What's hot (8)

Oruta privacy preserving public auditing
Oruta privacy preserving public auditingOruta privacy preserving public auditing
Oruta privacy preserving public auditing
 
Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud
 
Oruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloudOruta privacy preserving public auditing for shared data in the cloud
Oruta privacy preserving public auditing for shared data in the cloud
 
Free net
Free netFree net
Free net
 
Blockchain-Based Data Preservation System for Medical Data
Blockchain-Based Data Preservation System for Medical DataBlockchain-Based Data Preservation System for Medical Data
Blockchain-Based Data Preservation System for Medical Data
 
A secure erasure code based cloud storage
A secure erasure code based cloud storageA secure erasure code based cloud storage
A secure erasure code based cloud storage
 
Privacy preserving multi-keyword ranked search over encrypted cloud data
Privacy preserving multi-keyword ranked search over encrypted cloud dataPrivacy preserving multi-keyword ranked search over encrypted cloud data
Privacy preserving multi-keyword ranked search over encrypted cloud data
 
Homomorphic authentication with random masking technique ensuring privacy
Homomorphic authentication with random masking technique ensuring privacyHomomorphic authentication with random masking technique ensuring privacy
Homomorphic authentication with random masking technique ensuring privacy
 

Similar to JAVA 2013 IEEE DATAMINING PROJECT Secure mining of association rules in horizontally distributed databases

2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
IEEEMEMTECHSTUDENTSPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEEFINALYEARSTUDENTPROJECTS
 
JPD1416 Secure Mining Of Association Rules In Horizantally Distributed Data...
JPD1416   Secure Mining Of Association Rules In Horizantally Distributed Data...JPD1416   Secure Mining Of Association Rules In Horizantally Distributed Data...
JPD1416 Secure Mining Of Association Rules In Horizantally Distributed Data...
chennaijp
 
Efficient Data Mining Of Association Rules in Horizontally Distributed Databases
Efficient Data Mining Of Association Rules in Horizontally Distributed DatabasesEfficient Data Mining Of Association Rules in Horizontally Distributed Databases
Efficient Data Mining Of Association Rules in Horizontally Distributed Databases
ijircee
 
Secure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databasesSecure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databases
Shakas Technologies
 
Secure mining-of-association-rules-in-horizontally-distributed-databases-docx
Secure mining-of-association-rules-in-horizontally-distributed-databases-docxSecure mining-of-association-rules-in-horizontally-distributed-databases-docx
Secure mining-of-association-rules-in-horizontally-distributed-databases-docx
Shakas Technologies
 
Secure Mining of Association Rules in Horizontally Distributed Databases
Secure Mining of Association Rules in Horizontally Distributed DatabasesSecure Mining of Association Rules in Horizontally Distributed Databases
Secure Mining of Association Rules in Horizontally Distributed Databases
IJSRD
 
Secure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databasesSecure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databases
JPINFOTECH JAYAPRAKASH
 
Enforcing secure and privacy preserving information brokering in distributed ...
Enforcing secure and privacy preserving information brokering in distributed ...Enforcing secure and privacy preserving information brokering in distributed ...
Enforcing secure and privacy preserving information brokering in distributed ...
IEEEFINALYEARPROJECTS
 
Association rule mining.pptx
Association rule mining.pptxAssociation rule mining.pptx
Association rule mining.pptx
maha797959
 
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
ijsrd.com
 
Bi4201403406
Bi4201403406Bi4201403406
Bi4201403406
IJERA Editor
 
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
IRJET Journal
 
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
IJCSIS Research Publications
 
Data Security And The Security
Data Security And The SecurityData Security And The Security
Data Security And The Security
Rachel Phillips
 
secure mining of association rules in horizontally distributed databases
secure mining of association rules in horizontally distributed databasessecure mining of association rules in horizontally distributed databases
secure mining of association rules in horizontally distributed databases
swathi78
 
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUENEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
cscpconf
 
Vinay bamane
Vinay bamaneVinay bamane
Vinay bamane
Vinay Bamane
 
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
Editor IJMTER
 
Hardware enhanced association rule mining
Hardware enhanced association rule miningHardware enhanced association rule mining
Hardware enhanced association rule mining
StudsPlanet.com
 

Similar to JAVA 2013 IEEE DATAMINING PROJECT Secure mining of association rules in horizontally distributed databases (20)

2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
2014 IEEE JAVA DATA MINING PROJECT Secure mining of association rules in hori...
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
 
JPD1416 Secure Mining Of Association Rules In Horizantally Distributed Data...
JPD1416   Secure Mining Of Association Rules In Horizantally Distributed Data...JPD1416   Secure Mining Of Association Rules In Horizantally Distributed Data...
JPD1416 Secure Mining Of Association Rules In Horizantally Distributed Data...
 
Efficient Data Mining Of Association Rules in Horizontally Distributed Databases
Efficient Data Mining Of Association Rules in Horizontally Distributed DatabasesEfficient Data Mining Of Association Rules in Horizontally Distributed Databases
Efficient Data Mining Of Association Rules in Horizontally Distributed Databases
 
Secure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databasesSecure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databases
 
Secure mining-of-association-rules-in-horizontally-distributed-databases-docx
Secure mining-of-association-rules-in-horizontally-distributed-databases-docxSecure mining-of-association-rules-in-horizontally-distributed-databases-docx
Secure mining-of-association-rules-in-horizontally-distributed-databases-docx
 
Secure Mining of Association Rules in Horizontally Distributed Databases
Secure Mining of Association Rules in Horizontally Distributed DatabasesSecure Mining of Association Rules in Horizontally Distributed Databases
Secure Mining of Association Rules in Horizontally Distributed Databases
 
Secure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databasesSecure mining of association rules in horizontally distributed databases
Secure mining of association rules in horizontally distributed databases
 
Enforcing secure and privacy preserving information brokering in distributed ...
Enforcing secure and privacy preserving information brokering in distributed ...Enforcing secure and privacy preserving information brokering in distributed ...
Enforcing secure and privacy preserving information brokering in distributed ...
 
Association rule mining.pptx
Association rule mining.pptxAssociation rule mining.pptx
Association rule mining.pptx
 
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
Multiple Minimum Support Implementations with Dynamic Matrix Apriori Algorith...
 
Bi4201403406
Bi4201403406Bi4201403406
Bi4201403406
 
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
D-Eclat Association Rules on Vertically Partitioned Dynamic Data to Outsource...
 
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
Privacy Preserving Distributed Association Rule Mining Algorithm for Vertical...
 
Data Security And The Security
Data Security And The SecurityData Security And The Security
Data Security And The Security
 
secure mining of association rules in horizontally distributed databases
secure mining of association rules in horizontally distributed databasessecure mining of association rules in horizontally distributed databases
secure mining of association rules in horizontally distributed databases
 
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUENEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
NEW ALGORITHM FOR SENSITIVE RULE HIDING USING DATA DISTORTION TECHNIQUE
 
Vinay bamane
Vinay bamaneVinay bamane
Vinay bamane
 
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
SECURED FREQUENT ITEMSET DISCOVERY IN MULTI PARTY DATA ENVIRONMENT FREQUENT I...
 
Hardware enhanced association rule mining
Hardware enhanced association rule miningHardware enhanced association rule mining
Hardware enhanced association rule mining
 

More from IEEEGLOBALSOFTTECHNOLOGIES

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
IEEEGLOBALSOFTTECHNOLOGIES
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
IEEEGLOBALSOFTTECHNOLOGIES
 

More from IEEEGLOBALSOFTTECHNOLOGIES (20)

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Vampire attacks draining life from w...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT SSD a robust rf location fingerprint...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Privacy preserving distributed profi...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Model based analysis of wireless sys...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
 

Recently uploaded

Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
KAMESHS29
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Zilliz
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex ProofszkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
Alex Pruden
 

Recently uploaded (20)

Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...Building RAG with self-deployed Milvus vector database and Snowpark Container...
Building RAG with self-deployed Milvus vector database and Snowpark Container...
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex ProofszkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
zkStudyClub - Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs
 

JAVA 2013 IEEE DATAMINING PROJECT Secure mining of association rules in horizontally distributed databases

  • 1. Secure Mining of Association Rules in Horizontally Distributed Databases Abstract We propose a protocol for secure mining of association rules in horizontally distributed databases. Our protocol, like theirs, is based on the Fast Distributed Mining (FDM) algorithm which is an unsecured distributed version of the Apriori algorithm. The main ingredients in our protocol are two novel secure multi-party algorithms — one that computes the union of private subsets that each of the interacting players hold, and another that tests the inclusion of an element held by one player in a subset held by another. Our protocol offers enhanced privacy with respect to the protocol. In addition, it is simpler and is significantly more efficient in terms of communication rounds, communication cost and computational cost. Existing System In Existing System, the problem of secure mining of association rules in horizontally partitioned databases. In that setting, there are several sites (or players) that hold homogeneous databases, i.e., databases that share the same schema but hold information on different entities. The inputs are the partial databases, and the required output is the list of association rules that hold in the unified database with support and confidence no smaller. Disadvantage: GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. o Less number of features in previous system. o Difficulty to get accurate item set. Proposed System In Proposed System, propose an alternative protocol for the secure computation of the union of private subsets. The proposed protocol improves upon that in terms of simplicity and efficiency as well as privacy. In particular, our protocol does not depend on commutative encryption and oblivious transfer (what simplifies it significantly and contributes towards much reduced communication and computational costs). While our solution is still not perfectly secure, it leaks excess information only to a small number (three) of possible coalitions, unlike the protocol of that discloses information also to some single players. In addition, we claim that the excess information that our protocol may leak is less sensitive than the excess information leaked by the protocol. Advantage: 1) As a rising subject, data mining is playing an increasingly important role in the decision support activity of every walk of life. 2) Get Efficient Item set result based on the customer request. Modules 1. User Module. 2. Admin Module. 3. Association Rule. 4. Apriori Algorithm. Modules Description User Module In this module, privacy preserving data mining has considered two related settings. One, in which the data owner and the data miner are two different entities, and another, in which the data is distributed among several parties who aim to jointly perform data mining on the unified corpus of data that they hold. In the first setting, the goal is to protect the data records from the data miner. Hence, the data owner aims at anonymizing the data prior to its release. The main approach in this context is to apply data
  • 3. perturbation. He perturbed data can be used to infer general trends in the data, without revealing original record information. In the second setting, the goal is to perform data mining while protecting the data records of each of the data owners from the other data owners. Admin Module In this module, is used to view user details. Admin to view the item set based on the user processing details using association role with Apriori algorithm. Association Rule: Association rules are if/then statements that help uncover relationships between seemingly unrelated data in a relational database or other information repository. An example of an association rule would be "If a customer buys a dozen eggs, he is 80% likely to also purchase milk." Association rules are created by analyzing data for frequent if/then patterns and using the criteria support and confidence to identify the most important relationships. Support is an indication of how frequently the items appear in the database. Confidence indicates the number of times the if/then statements have been found to be true. Apriori Algorithm: Apriori is designed to operate on databases containing transactions. The purpose of the Apriori Algorithm is to find associations between different sets of data. It is sometimes referred to as "Market Basket Analysis". Each set of data has a number of items and is called a transaction. The output of Apriori is sets of rules that tell us how often items are contained in sets of data.
  • 4. Algorithm - Fast Distributed Mining (FDM) The FDM algorithm proceeds as follows: (1) Initialization (2) Candidate Sets Generation (3) Local Pruning (4) Unifying the candidate item sets (5) Computing local supports (6) Broadcast Mining Results SYSTEM SPECIFICATION Hardware Requirements: • System : Pentium IV 2.4 GHz. • Hard Disk : 40 GB. • Floppy Drive : 1.44 Mb. • Monitor : 14’ Colour Monitor. • Mouse : Optical Mouse. • Ram : 512 Mb. • Keyboard : 101 Keyboards. Software Requirements: • Operating system : Windows 7 Ultimate (32-bit) • Front End : VS2010 • Coding Language : ASP.Net with C# • Data Base : SQL Server 2008