SlideShare a Scribd company logo
14/7/2014
Summary
• Technological and sustainability gap in mining
• The lowering of ore grade
• Energy sources and reserves
• Water
• Several possible technical solutions presented
• Systemic interaction of these issues in the industrial sector
2
Conventional Model for Sustainable Priorities
A completely new
business model is
now appropriate
Business has been done a certain way for the last
100 years. Now lets do it for another 100.
3
At this time, globally it seems, all sustainability work in mining is totally
targeted at community and social engagement; even the environmental aspects
are about planting trees and supporting local wildlife; nothing on reducing
waste/energy/toxins
Dynamic Self Regulating Finite System
This system is not growing and
has been stable for some time
4
Oil
Coal
Gas
5
Exponential growth in a finite system is not
sustainable
Consumption of all natural resources are
following this basic pattern over time
Try this for size…
Enough for everyone, for ever
If you are not considering all three of these things then you are not
sustainable
6
48% Decrease in Multifactor Productivity
50
60
70
80
90
100
110
Indexed2000-01=100
Topp et al. (2008) Australian Bureau of Statistics (2012)
7
MFP growth in Australia, selected sectors,
average annual growth
Most of the slowdown in Australia MFP
attributable to mining and electricity
generation, water and waste 8
Conventional mining practice is struggling to remain
economically viable
Ore Grades Are Decreasing
9
1800’s North American Continent
Large nuggets found in river beds
Yes that’s a nugget of pure copper!
Smaller nuggets found in streams
Grade 15-20%Finally started to dig Cu out of the ground 1850’s
10
11
Metal Price Cost (Indexed to the year 2000)
0
100
200
300
400
500
600
700
RealPrice
Indexed2000-01=100
Au Cu
Pb Zn
Ag Ni
Al Fe Ore
Year 2008
(GFC)
CurrentMiningcrash
ABS 1350.0 Financial Markets - Long term
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
ABARES - Australian Mineral Statistics March 2011 12
Source: Nature 26 Jan 2012, Vol 481 Comment Price $50 USD/barrel Price $147 USD/barrel
Peak Conventional Oil Production - 2006
International Energy Agency
http://makewealthhistory.org/2010/11/11/iea-peak-oil-happened-in-2006/
Source: EIA, en.wikipedia.org/wiki/Oil_Megaprojects, Tony
Erikson “ace” theoildrum.com
GFC
2008
World Crude Oil & Lease Condensate Production,
Including Canada Oil Sands
13
Oil Demand & supply & the GFC
GFC
Oil is the ability to do work
14
GFC
Oil Production Static
15
China industrial demand dominated the
rest of the planet
China now dominates manufacturing and resource consumption
16
We are 8 years into an era of industrial
transformation
0
100
200
300
400
500
600
700
RealPrice
Indexed2000-01=100
Au Cu
Pb Zn
Ag Ni
Al Fe Ore
Oil supply became
inelastic
Chinese industrial
demand
17
Total Mining costs have also risen
0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
200,000
Total Income
Total Expenses
ABS 1350.0 Financial Markets - Long term
http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument
ABARES - Australian Mineral Statistics March 2011 18
Source: Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) 2008
Energy consumption in mining increased 450% in the last 40 years
19
20
Total energy consumption by process path
This is a very different conversation to recovery efficiency.
Different mineralogy's require different process paths
Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
Energy efficiency may be a priority for process design as soon as 2018 21
Total energy consumption as a function of ore
head grade for various process routes
Many new proposed operations are considering a cut-off grade of 0.1% on leach pads
Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
22
Rock breakage - There is no free lunch, or short cuts
Kambalda
0.01
0.1
1
10
100
0 5 10 15 20
Cumulative Energy, kWh/t
P80Size,mm
Flowsheet 1
Flowsheet 2
Flowsheet 3
Flowsheet 4
Flowsheet 5
40x10mm Feed
-9.5mm Crush
-3.35mm
Crush
HPGR Pass 1
HPGR Pass 2
Bond Test -
125um CS
Bond Test -
75um CS
Leinster
0.01
0.1
1
10
100
0 5 10 15 20 25 30
Cumulative Energy, kWh/t
P80Size,mm
Flowsheet 1
Flowsheet 2
Flowsheet 3
Flowsheet 4
Flowsheet 5
Flowsheet 3a
Flowsheet 4a
40x10mm Feed
-9.5mm Crush
-3.35mm
Crush
HPGR Pass 1
HPGR Pass 2
Batch Grind 2
HPGR Pass 3
HPGR Pass 4
Batch Grind 3
Batch Grind 1
Mine Site ‘X’ Mine Site ‘Y’
The cumulative energy consumed to process a sample to a target P80 is
very similar across all conventional process paths.
M. Hilden
23
Energy Consumed kJ per lb of copper produced
Mining 6,000 (kJ/lb)
Primary crushing
& conveying
900 (kJ/lb)
SAG Milling
10,700 (kJ/lb)
Ball Milling
10,590 (kJ/lb)
Flotation &
regrinding
1,870 (kJ/lb)
Smelting
5,150 (kJ/lb)
Refining
2,700 (kJ/lb)
Transport to market 120 (kJ/lb)
Primary Crush, SAG mill, ball mill, flotation, smelt, refine
Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
Energy Consumed kJ per lb of copper produced
Mining 6,000 (kJ/lb)
Primary crushing
& conveying
900 (kJ/lb)
Secondary
crushing
450 (kJ/lb)
Tertiary
crushing
450 (kJ/lb)
HPGR
1,100 (kJ/lb)
Ball Milling,
10,590 (kJ/lb)
Flotation &
regrinding
1,870 (kJ/lb)
Smelting
5,150 (kJ/lb)
Refining
2,700 (kJ/lb)
Transport to market 120 (kJ/lb)
C
V
C
V
C
V
C
V
C
V
C
V
Primary Crush, Secondary Crush, Tertiary Crush, HPGR, ball mill, flotation, smelt, refine
Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
Energy Consumed kJ per lb of copper produced
Mining 8,000
(kJ/lb)ROM Leaching
1,440 (kJ/lb)
Solution
Extraction
1,980 (kJ/lb)
Electrowinning
3,840 (kJ/lb)
Transport to market
120 (kJ/lb)
Run of Mine (ROM) Leach, Electrowinning
Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
Its all about oil, gas and coal
US Shale Gas ‘Fracking’ Boom
96% downgrade of Monterey shale oil reserves (2/3 of US reserves)
extractable with current technology ~ 600 million barrels down from 13.7
billion barrels (Source EIA) 28
• Production from shale gas ‘fracked’ wells typically declines 80
to 95% in the first 36 months of operation
• For US shale gas industry to maintain 2013 production rates,
it needs to drill approx. 7200 new wells each year
• CSG in Australia is considered less productive than US
unconventional gas plays
US Shale Gas ‘Fracking’ Bust
• How did the EIA get these fantastic future predictions?
– Take the content of the best gas ‘sweet spots’ in each fracking field
– Take the highest recovery rates of the best fracking wells in each fracking
field
– Extend both of these to the entire volume of the fracking gas field
– Sum all fields together, ignore logistical issues and process issues
29
Peak Gas
Year 2018
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
CSG and shale gas has pushed Peak Gas back from approx. 2010
30
Peak Coal
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
Year 2020
Peak date contingent on China selling us their coal
31
Supply and demand of Uranium
There is probably enough U for existing nuclear power stations
32
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
Future projection of Uranium production
2014
Nuclear power would have to increase 12-13 times capacity at peak
potential to make up for total energy supply to replace fossil fuels
33
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
Existing nuclear infrastructure needs replacing
Someone has to pay for these new reactor sites
34
Storage of spent fuel rods
• Spent fuel rods are
very radioactive and
generate a lot of heat
• Need to be stored in cooled
water for 10-20 years
before dry storage
This is the Achilles Heel of
nuclear technology as a solution
to our energy supply problem
35
Peak Oil
Tar and oil sands have pushed back the peak of total oil
supply back 6-7 years from approx. 2006
Conventional and unconventional oil supply
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
Discovery & Production
Year 2012
36
http://www.zerohedge.com/news/2014-05-30/us-gasoline-consumption-plummets-nearly-75
Source: Zero Hedge, Submitted by Jeff Nielsen via BullionBullsCanada blog
2008
(GFC)
U.S. “gasoline consumption” – as measured by the U.S.
Energy Information Administration (EIA)
– has plummeted by nearly 75%
37
But peak oil has no influence on mining
and is not our problem
(right?)
38
Ore is shifted with diesel fuel (oil)
255 tonne load capacity 200kg (?) load capacity
1 truck = 3400 donkey loads
Bingham: Would we cart
5000tph of rock for
10tph of copper (0.2%
grade) without oil? Or
run 66 000 donkey loads
an hour…..
Not without its
logistical problems
There comes a point when
something has to give.
Escondida: 1/3 of total
energy consumed is in
haulage of ore from pit
floor to plant 39
Energy Return on Energy Invested
(EROEI Ratio)
40
Current industrial based society requires and EROEI of 10:1
New conventional oil (12-18:1)
EROEI
(The song and dance needed to get the energy)
• Conventional Oil 12-18:1
• Tar Sands Oil 3:1
• Shale Oil 5:1
• Coal 50-80:1
• Conventional LNG gas 10:1
• Shale Gas 6.5:1
• Hydro Power 20-40:1
• Solar Power 2-8:1
• Wind Power 18:1
• Conventional Nuclear 5:1 including the energy cost of
mining U (10:1 as quoted)
Some Perspective
European medieval
society EROEI was
Approx 1.5:1
• Biogas 1.3:1
• Bio-ethanol 1.3:1
41
Quantity of Energy at Application
• Current oil demand is 87.4 Mb/day or 31.9Gb a year
• This translates to a little under 62 GW of energy
• The average coal power station outputs 650MW
• The average gas power station outputs 550 MW
• The average Nuclear power station outputs 850MW
• The gigantic Three Gorges Dam hydro project in China outputs
18.2 GW
• The new solar power stations being commissioned output
350MW
• An offshore wind turbine on average outputs 3.6MW
42
So one year current demand for oil, could
be replaced with:
• 191 coal fired power stations each year for 50 years
• 248 gas power stations each year for 50 years
• 354 industrial scale solar power stations each year for 50
years
• 146 nuclear power plants each year for 50 years
• 7 Three Gorges Dams projects each year for 50 years
• 34 400 off shore wind turbines each year for 50 years
43
World supply of fossil fuels and uranium
Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
Peak energy approx. 2017
Industrialisation in a global context will soon tip into
contracting economies - the end of growth based economics 44
45
Corporate culture genuinely does not know where to start to instigate a
major shake-up of technology and approach; instead across the board,
focus has been on short term risk aversion
1900
• Cu Grades of approx. 20%
• Energy EROEI of approx. 100:1
2014
• Cu Grades of approx. 0.3% (considering 0.1%)
• Energy EROEI of approx. 12-18:1
46
Economies of Scale Has Carried the Industry
Cheap abundant energy
Available credit for
industrial procurement
47
48
Global Potable Water Consumption Over Time
0
500
1000
1500
2000
2500
3000
3500
4000
4500
1930 1940 1950 1960 1970 1980 1990 1995 2000
Waterdraw(km3/year)
Worldwater use by economic sector (km3
/year)
(Shiklomanov 2000)
Agriculture use
Municipal use
Industrial use
Reservoirs
Total (rounded)
49
Global water use is
divided as follow:
•70% Agriculture
•22% Industry
•8% Domestic
Global physical and economic water scarcity
50
Source: World Water Development Report 4. World Water Assessment Programme (WWAP), March 2012.
Development of industrial sites with high potable water volume requirements will
increasingly conflict with the needs of the growing population
The amount of fresh water
supply provided by the
hydrological cycle does not
increase. Water everywhere
on the planet is an integral
part of the hydrologic cycle.
Many major rivers; Colorado, Ganges, Indus, Rio
Grande and Yellow are so over-tapped that they
now run dry for part of the year.
Freshwater wetland has shrunk by about half worldwide.
51
Access to Potable Water
In the West, we take water for granted. Most people don’t actually
think about the supply of water. Water is easy to ignore provided
you can still turn on a tap and water comes out!
We still have the same amount of water in our ecosystem but the
supply of freshwater faces a three-pronged attack from population
growth, climate change and industrialisation. As it currently stands,
there’s not enough water to go around.
The same mentality is within our industrial culture
52
71.5
62.3
61.6
55.0
57.0
59.0
61.0
63.0
65.0
67.0
69.0
71.0
73.0
75.0
1980's 1990's 2000's
AverageA*b
ComminutionImpact Breakage A*b
Ore has been progressively getting harder
Softer
Harder
~3000 Drop Weight Tests
What does this
mean?
More power draw is required
to break the rock 53
Target Grind Size is Decreasing
54
1 mm
Target ore P80 = 150mm
10 mm
Target ore P80 = 4mm
General form of the Energy-Size relationship
An exponential
increase in required
power draw
A decrease in
plant final grind
size P80
=A decrease in
metal grain size
=
Energy,kWh/t
Hukki 1962
55
Dynamic Interaction and Exacerbation
• Power & water shortages
• Decreasing grade requires more tonnes of rock extracted for the
same resulting amount of target metal.
– More energy is needed (diesel and electrical power draw) per unit of
extracted metal
– More potable water is needed per unit of extracted metal
• Increasing ore hardness requires more power draw to crush and
grind the ore
56
Dynamic Interaction and Exacerbation
• Decreasing grind size due to finer mineral grains requires more
power draw to crush and grind the ore
– More water is needed per unit of extracted metal
– Water recycling is more difficult
– More disseminated finer grained rocks are usually harder to crush and
grind
• To remain economically viable operation scale has to
double/triple in size
• Metal demand is growing fast
Once our society understands what is happening and why,
everything will need to be re-engineered.
Which will require vast amounts of metal! - QUICKLY
This is where you
will be needed
57
Energy,kWh/t
Hukki 1962
Fine grained minerals are almost
always associated with low grade
The exponential increase in required energy as mineral
grain size gets smaller is happening at a time when
available quantity of energy is vastly reduced
Dynamic Interaction and Exacerbation
58
M. Lardelli
Driven by increasing demand
Production is Increasing
59
Economic goal posts are shifting for future
deposits
• Huge low grade deposits
• Penalty minerals more prominently present in deposit
that prevent efficient processing
• Ever decreasing grind sizes (close size 10-20mm)
• Operating on an economy of scale never been seen
before (4MT blasted rock a day, 40% of which is ore!)
• To stay economically viable, economics of scale have to
be applied. Operations will double and triple in size.
All of this based on the assumption that there is no energy or water shortage
60
Future underground block caves are going to be the size of
existing open pits. Open pits of unprecedented size.
61
With a continuing grade of 0.5% this
will require 20000Mt of Rock
With a decrease of grade to 0.2%
this then requires 50000Mt of Rock
Copper Demand Outlook
Is this sustainable?
World Cu grade 0.5%
17Mt
3400Mt of RockWorld
Cu grade
1.6%
Eventually the cost of dealing with the wastes will exceed the value of the metal…
With current estimations the demand for
copper will increase to ~100Mt by 2100
62
Copper is a finite resource like any other
Forecast
Historical
Global Cu production by
principal geological
deposit types
63
Conventional mining problem solving is if the numbers don’t
stack up, its not viable and the project doesn’t start
There is no ‘Plan B’ if higher grade easier to
work deposits are unavailable 64
This is not a tickling competition
• Raw materials supplied by mining are required for our industrial
society to run. That supply must continue in some form
• Engineering problem solving according to new target parameters
• Knowledge of deposit ore variability needs to be matched with
sophisticated flexible engineering design
• Put less ore in the mill for the same metal output
– Sorting technology
– Unconventional exploitation of geological characteristics
• Dry process
• More sophisticated system based modelling of existing technology
• Bacterial leach
• Remove all time pressure
– NPV is no longer important
– Take the time to process each ore parcel at maximum efficiency
65
1 - One process stream, flexible operation
• Engineered ability to more easily adapt to variable feed
• And to a series of dynamic conditions, that are not a steady state
• More sophisticated process control capabilities to manage
dynamic non steady state conditions
Operation can liberate and separate
most efficiently each ore parcel
in a responsive manner, resulting in
higher operational revenue
66
2 - Multiple process streams in the same operation,
each with its own stockpile
Each stream with its own closing size and cutoff grade returning
the same recovery with lower CAPEX/OPEX
Geomet
Block Model
Blast
Sorting
Dump
Leach
Pad
Tank
Leach
Flash
Flotation
Flotation
Flotation
67
3 - Flexible operation to process different
size fractions in different streams
• SAG mill critical particle size -
75+40mm
• SAG needs coarse fragments
and fines to run
• HPGR needs over size to be
crushed to protect it
ball Mill
2 x Cone
crush
RoM
20 mm
5mm
2mm
Pump
Sump
deagglomerate
HPGR
SAG
50 mm
pebbles
Variable
splitter
2000 tph
1000 tph
600 tph
300 tph 1000 tph
fresh
300 tph
Recycle surplus
pebbles
Cyclone
1600 tph
Each comminution unit operates
at peak efficiency resulting
in higher throughput
Prof. Malcolm Powell
68
4 - Flexible operation that uses sorting to remove
waste rock throughout the whole mining system
Geomet
Block Model
Blast
Sorting
Dump
Leach
Pad
Flotation
Flotation
Sorting Sorting
Future Ore
Working Ore
Waste dump
Problem ore with
‘show stoppers’
Only a fraction of the ore volume goes to ball mil for same recovery
resulting in lower CAPEX/OPEX
69
5 - Flexible Operation to meet challenging
external conditions
Engineered ability to more easily adapt to changes to external circumstances
• Power shortages, outages, power spikes
• Potable water shortages
• Fluctuating price of steel consumables
• Fluctuating price of saleable metal
Operation can still operate
and produce revenue
70
Change the fundamental process flow path
• All solutions presented so far are step changes to the existing
conventional mining process
• What is required is a fundamental rethink and restructure of
the mining process from the fundamental science foundation
all the way to engineering design
• A radical change in business model is also required
– We no longer have the time or capacity to meet desired production
targets
71
So completely change the approach
72
The engineering to do this at an industrial scale
is already here
73
Solar power stations now have a capacity of the order of 350MW
Solar smelting of ore
• Mine then crush ore to optimum size
• Process through solar smelter unit in batches
• Exploit difference in melting temperatures
• To either extract target element directly or,
• Upgrade a low grade disseminated texture into something
more feasible
– As molten rock cools, could it be mixed in a way to bond like with like
so metal grains are larger and closer together
– Easier to process texture
– Rock more brittle and weakened in strength
74
Remove NPV time pressure and requirement for high throughput tonnages
Approximate Temperature
(°C)
Minerals which are molten
1200°C All molten
1000°C
Olivine, pyroxene, Ca-rich
plagioclase
800°C
Amphibole, Ca/Na-
plagioclase
600°C
Quartz, K-feldspar, Na-
plagioclase, micas.
Metal
Approximate Melting
Temperature (°C)
Density
(g/cm3
)
Aluminum 659°C 2.70 g/cm3
Iron 1538 °C 7.86 g/cm3
Copper 1083°C 8.96 g/cm3
Gold 1063°C 19.3 g/cm3
Lead 163°C 11.34 g/cm3
Magnesium 651°C 1.738 g/cm3
Nickel 1452°C 8.908 g/cm3
Silver 951°C 10.49 g/cm3
Tungsten 3399°C 19.25 g/cm3
Zinc 419°C 7.14 g/cm3
Density 1.8-3.5g/cm3
Exploit the difference in melting temperature
and density
75
ROCK ELEMENT METAL
All mineral processing exploits a physical or chemical difference
between the target element and its host rock
Mine Crush
0.6 MW2-5 MW
Grind Flotation Smelt
50 MW
Potable water
5 MW
Potable water
20 MW
76
A job for the JKMRC
~ 1 MW?
Dry process
Solar Smelting
Decreasing
Grade
Sovereign Debt
Default
Decreasing
Grind size+
Increasing
Depth+
Peak Fossil
Fuel
+
Peak
Mining
Credit
Freeze
+ Structural
Inflation
+FIAT
Currency
Devaluation
+
Peak
Finance
Peak
Manufacturing
Peak
Industrialisation
=
=
The End of the
Industrial Revolution
Expansion of production needed to stay viable
Expansion of money needed to service debt
The Industrial Big Picture
160 years after it started
77
The writing on the wall
• Everything we need/want to operate is drawn from non-
renewable natural resources in a finite system
• Most of those natural resources are depleting or will soon
• Demand for everything we need/want is expanding fast
• When these trends meet, there will come a point where how
we do things will fundamentally change
• None of these issues can be seen in isolation.
78
‘Must’ expand exponentially Can’t expand
Deteriorating
Chris
Martenson
http://www.peakprosperity.com/crashcourse
The Pickle and the Rub…
This is the only thing that can change
79
Forced
Transformation
Understand
true implications
Deterioration and
Fragmentation
Decay/Collapse
Write-
off/Reset
Mounting
Stress
Weare
here Conquest of
another system
Fundamental Reform
Mounting
Stress
Existential large
scale crisis
Existential large
scale crisis
business as usual
Early small
scale crisis
All 5 Stages of Human Grief at all scales
Deterioration and
Fragmentation
Temporary solution loop
Where
we are
Where we
should be
Inelastic oil
supply 2005
Peak Total Energy
2017
With 20/20 hindsight
business as usual
Early small
scale crisis
This diagnoses a certain outcome 80
Systemic environmental
disruption
Natural raw materials
unavailable for
industrialisation
Energy supply
disrupted then
unavailable
• Reset all FIAT currencies – asset based
• Restructure all debt
• Need to grow into new system
• Cannot sustain growth
• Cannot grow economy system
• Change to alternative energy system
• Rebuild all infrastructure to meet
requirements of new energy system
• Cannot supply raw materials for
construction or manufacture at needed
rate or volume, if at all
• Need to reassess what is really needed
• Mine our rubbish dumps
• Cannot run any existing system for
very long
Financial
Systemic
Meltdown
GrowingPopulation
• Puts pressure on all other sectors except finance
Paradigm changing information is right in
front of us if we choose to see it…
Everyone should try thinking for themselves at least once
Now would be a good time 82
Thank you for your time
Simon Michaux Bach App Sc. PhD simonpetermichaux@gmail.com
83
84
Case Study 2: Mogalakwena
• Mogalakwena platinum mine in South Africa hit several
sustainability limits
• The mining corporation in question was not doing
anything unusual in mining operational parameters (no
unusual site restrictions)
• Operation expanded several times
• Villages were sometimes moved to accommodate this
• Operation was in direct competition with local
population for water and power supply
• Local population depended on mine operations
economically
• Multiple power shortages & water shortages
• Mine site would occasionally crash local power grid
• In this case, the conventional mining process was in
direct conflict with the sustainability of local population
This site put the spot light on the
sustainability issue in all its forms 85
Peak Oil
The NET peakoil curve (or "Net Hubbert
Curve") is what really counts ... and
given that two-thirds of all global crude
oil supplies is now HEAVY SOUR (and
thus much more energy intensive to
refine), and only 1/3 is LIGHT SWEET
crude i.e., given that most of the low-
hanging fruit has already been extracted.
EROEI Ratio for
Oil extraction
Net Hubbert Curve
86
Energy Density of Oil
1 litre of Petrol = 132 hours of hard labour
• Put 1 litre of petrol in your car
• Drive it till it runs out
• Push car back to start point
At $15/hour
1 litre of petrol = $1981.20
87
Oil producing countries past their peak
Source: Ludwig-Bolkow Systemtechnik GmbH 2007 HIS 2006; PEMEX, petrobas ; NPD, DTI,
ENS(Dk), NEB, RRC, US-EIA, January 2007 Forecast: LBST estimate, 25 January 2007
88
Production stable
Number of rigs
going up
Has Saudi Arabia Peaked?
89

More Related Content

What's hot

BESI India Coal Thematic
BESI India Coal ThematicBESI India Coal Thematic
BESI India Coal ThematicJay Kakkad
 
Carbon Trading rev G
Carbon Trading rev GCarbon Trading rev G
Carbon Trading rev GGarry Kolafa
 
Review of Indian coal sector
Review of Indian coal sectorReview of Indian coal sector
Review of Indian coal sector
Manoj Jhawar
 
Northern resource development - tax policy and infrastructure
Northern resource development - tax policy and infrastructure Northern resource development - tax policy and infrastructure
Northern resource development - tax policy and infrastructure
Nadim Kara
 
Cypress Development Clayton Valley Lithium Project Presentation
Cypress Development Clayton Valley Lithium Project PresentationCypress Development Clayton Valley Lithium Project Presentation
Cypress Development Clayton Valley Lithium Project Presentation
Cypress Development Corp.
 
Cypress Development Corporate Presentation
Cypress Development Corporate Presentation Cypress Development Corporate Presentation
Cypress Development Corporate Presentation
Cypress Development Corp.
 
Pancontinental Uranium Corp. June 2013 Corporate Presentation
Pancontinental Uranium Corp. June 2013 Corporate PresentationPancontinental Uranium Corp. June 2013 Corporate Presentation
Pancontinental Uranium Corp. June 2013 Corporate Presentationruptajac
 
CCS learnings from the LNG sector
CCS learnings from the LNG sectorCCS learnings from the LNG sector
CCS learnings from the LNG sector
Global CCS Institute
 
New base 24 january 2018 energy news issue 1132 by khaled al awadi
New base 24 january 2018 energy news issue   1132  by khaled al awadiNew base 24 january 2018 energy news issue   1132  by khaled al awadi
New base 24 january 2018 energy news issue 1132 by khaled al awadi
Khaled Al Awadi
 
Globex short 20110906
Globex short 20110906Globex short 20110906
Globex short 20110906
hellisteve
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
Cypress Development Corp.
 
Clayton Valley Lithium Project, Nevada, USA
Clayton Valley Lithium Project, Nevada, USAClayton Valley Lithium Project, Nevada, USA
Clayton Valley Lithium Project, Nevada, USA
Cypress Development Corp.
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
Cypress Development Corp.
 
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
The Business Council of Mongolia
 
Critical metals in strategic energy technology
Critical metals in strategic energy technologyCritical metals in strategic energy technology
Critical metals in strategic energy technology
Objective Capital Conferences
 
Making An Economic Assessment of Frac Sand
Making An Economic Assessment of Frac SandMaking An Economic Assessment of Frac Sand
Making An Economic Assessment of Frac Sand
Capstone Headwaters
 
Andalusia Bumi Energi
Andalusia Bumi EnergiAndalusia Bumi Energi
Andalusia Bumi EnergiHCI-IT
 
Expert Perspectives on the Frac Sand Market and Supply Chain
Expert Perspectives on the Frac Sand Market and Supply ChainExpert Perspectives on the Frac Sand Market and Supply Chain
Expert Perspectives on the Frac Sand Market and Supply Chain
Capstone Headwaters
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
Cypress Development Corp.
 

What's hot (20)

BESI India Coal Thematic
BESI India Coal ThematicBESI India Coal Thematic
BESI India Coal Thematic
 
Carbon Trading rev G
Carbon Trading rev GCarbon Trading rev G
Carbon Trading rev G
 
Review of Indian coal sector
Review of Indian coal sectorReview of Indian coal sector
Review of Indian coal sector
 
Northern resource development - tax policy and infrastructure
Northern resource development - tax policy and infrastructure Northern resource development - tax policy and infrastructure
Northern resource development - tax policy and infrastructure
 
Cypress Development Clayton Valley Lithium Project Presentation
Cypress Development Clayton Valley Lithium Project PresentationCypress Development Clayton Valley Lithium Project Presentation
Cypress Development Clayton Valley Lithium Project Presentation
 
Cypress Development Corporate Presentation
Cypress Development Corporate Presentation Cypress Development Corporate Presentation
Cypress Development Corporate Presentation
 
Pancontinental Uranium Corp. June 2013 Corporate Presentation
Pancontinental Uranium Corp. June 2013 Corporate PresentationPancontinental Uranium Corp. June 2013 Corporate Presentation
Pancontinental Uranium Corp. June 2013 Corporate Presentation
 
CCS learnings from the LNG sector
CCS learnings from the LNG sectorCCS learnings from the LNG sector
CCS learnings from the LNG sector
 
New base 24 january 2018 energy news issue 1132 by khaled al awadi
New base 24 january 2018 energy news issue   1132  by khaled al awadiNew base 24 january 2018 energy news issue   1132  by khaled al awadi
New base 24 january 2018 energy news issue 1132 by khaled al awadi
 
Globex short 20110906
Globex short 20110906Globex short 20110906
Globex short 20110906
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
 
Clayton Valley Lithium Project, Nevada, USA
Clayton Valley Lithium Project, Nevada, USAClayton Valley Lithium Project, Nevada, USA
Clayton Valley Lithium Project, Nevada, USA
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
 
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
20.06.2013 Sharyn Gol – A New Dawn, Anarbold Odonkhuu
 
Critical metals in strategic energy technology
Critical metals in strategic energy technologyCritical metals in strategic energy technology
Critical metals in strategic energy technology
 
Making An Economic Assessment of Frac Sand
Making An Economic Assessment of Frac SandMaking An Economic Assessment of Frac Sand
Making An Economic Assessment of Frac Sand
 
Andalusia Bumi Energi
Andalusia Bumi EnergiAndalusia Bumi Energi
Andalusia Bumi Energi
 
Expert Perspectives on the Frac Sand Market and Supply Chain
Expert Perspectives on the Frac Sand Market and Supply ChainExpert Perspectives on the Frac Sand Market and Supply Chain
Expert Perspectives on the Frac Sand Market and Supply Chain
 
Clayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada PresentationClayton Valley Lithium Project, Nevada Presentation
Clayton Valley Lithium Project, Nevada Presentation
 
financial succes
financial succesfinancial succes
financial succes
 

Viewers also liked

GoldDiggers_Bible_Rough_v12
GoldDiggers_Bible_Rough_v12GoldDiggers_Bible_Rough_v12
GoldDiggers_Bible_Rough_v12Jason B. Delaney
 
Placer gold mining in alaska
Placer gold mining in alaskaPlacer gold mining in alaska
Placer gold mining in alaska
Dylan McFarlane
 
Assessment of placer mining area extension and impacts image report
Assessment of placer mining area extension and impacts image reportAssessment of placer mining area extension and impacts image report
Assessment of placer mining area extension and impacts image report
Thayalankali
 
Gold mining process
Gold mining processGold mining process
Gold mining processphysics101
 
Topic 7-mining methods-part iii -surface mining- placer mining
Topic 7-mining methods-part iii -surface mining- placer miningTopic 7-mining methods-part iii -surface mining- placer mining
Topic 7-mining methods-part iii -surface mining- placer mining
Geology Department, Faculty of Science, Tanta University
 
Topic 5: Mining Methods-Part I-Surface mining
Topic 5: Mining Methods-Part I-Surface mining Topic 5: Mining Methods-Part I-Surface mining
Topic 5: Mining Methods-Part I-Surface mining
Geology Department, Faculty of Science, Tanta University
 
Lecture 4: Underground Mining
Lecture 4: Underground MiningLecture 4: Underground Mining

Viewers also liked (7)

GoldDiggers_Bible_Rough_v12
GoldDiggers_Bible_Rough_v12GoldDiggers_Bible_Rough_v12
GoldDiggers_Bible_Rough_v12
 
Placer gold mining in alaska
Placer gold mining in alaskaPlacer gold mining in alaska
Placer gold mining in alaska
 
Assessment of placer mining area extension and impacts image report
Assessment of placer mining area extension and impacts image reportAssessment of placer mining area extension and impacts image report
Assessment of placer mining area extension and impacts image report
 
Gold mining process
Gold mining processGold mining process
Gold mining process
 
Topic 7-mining methods-part iii -surface mining- placer mining
Topic 7-mining methods-part iii -surface mining- placer miningTopic 7-mining methods-part iii -surface mining- placer mining
Topic 7-mining methods-part iii -surface mining- placer mining
 
Topic 5: Mining Methods-Part I-Surface mining
Topic 5: Mining Methods-Part I-Surface mining Topic 5: Mining Methods-Part I-Surface mining
Topic 5: Mining Methods-Part I-Surface mining
 
Lecture 4: Underground Mining
Lecture 4: Underground MiningLecture 4: Underground Mining
Lecture 4: Underground Mining
 

Similar to Sandvik - Michaux

Wfs Conference The Energy Revolution By Michael Lee Pdf
Wfs Conference   The Energy Revolution By Michael Lee  PdfWfs Conference   The Energy Revolution By Michael Lee  Pdf
Wfs Conference The Energy Revolution By Michael Lee Pdf
Michael Lee
 
Presentation coal oil and gas scenario in the context of power sector-by-rake...
Presentation coal oil and gas scenario in the context of power sector-by-rake...Presentation coal oil and gas scenario in the context of power sector-by-rake...
Presentation coal oil and gas scenario in the context of power sector-by-rake...
Prashantkarhade72
 
PPT1.7.Energy-Resources.ppt
PPT1.7.Energy-Resources.pptPPT1.7.Energy-Resources.ppt
PPT1.7.Energy-Resources.ppt
satwiky
 
What is the energy of the future?
What is the energy of the future?What is the energy of the future?
What is the energy of the future?
Nicolas Meilhan
 
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
Global CCS Institute
 
David Sandalow - Columbia University.
David Sandalow - Columbia University.  David Sandalow - Columbia University.
David Sandalow - Columbia University.
Fundación Ramón Areces
 
Important issues for fossil power plants for the 21st Century - Robin Irons a...
Important issues for fossil power plants for the 21st Century - Robin Irons a...Important issues for fossil power plants for the 21st Century - Robin Irons a...
Important issues for fossil power plants for the 21st Century - Robin Irons a...
UK Carbon Capture and Storage Research Centre
 
Longwall exp india-expectations
Longwall exp india-expectationsLongwall exp india-expectations
Longwall exp india-expectationsVR M
 
PLG Provides Industry Update to Stifel Nicolaus Investors
PLG Provides Industry Update to Stifel Nicolaus InvestorsPLG Provides Industry Update to Stifel Nicolaus Investors
PLG Provides Industry Update to Stifel Nicolaus Investors
PLG Consulting
 
Prospect of Coal Based IGCC to Meet the Clean Energy Challenge
Prospect of Coal Based IGCC to Meet the Clean Energy ChallengeProspect of Coal Based IGCC to Meet the Clean Energy Challenge
Prospect of Coal Based IGCC to Meet the Clean Energy Challenge
IJERA Editor
 
Energy Crisis Essay
Energy Crisis EssayEnergy Crisis Essay
Energy Crisis Essay
Help With A Paper Provo
 
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaajha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
saifuddinkhan34
 
Renewables in Mining
Renewables in MiningRenewables in Mining
Renewables in Mining
Turlough Guerin GAICD FGIA
 
Plg stifel presentation v gb final 120913
Plg stifel presentation v gb final 120913Plg stifel presentation v gb final 120913
Plg stifel presentation v gb final 120913
PLG Consulting
 
Geog 102 Topic 7.ppt
Geog 102 Topic 7.pptGeog 102 Topic 7.ppt
Geog 102 Topic 7.ppt
NachiketKadlag1
 
Geog 102 Topic 7.ppt
Geog 102 Topic 7.pptGeog 102 Topic 7.ppt
Geog 102 Topic 7.ppt
MariaHoffmann8
 
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
Solar Molar
 
Energy Survey Future Use
Energy Survey  Future UseEnergy Survey  Future Use
Energy Survey Future UseDavid Tennant
 

Similar to Sandvik - Michaux (20)

Wfs Conference The Energy Revolution By Michael Lee Pdf
Wfs Conference   The Energy Revolution By Michael Lee  PdfWfs Conference   The Energy Revolution By Michael Lee  Pdf
Wfs Conference The Energy Revolution By Michael Lee Pdf
 
Presentation coal oil and gas scenario in the context of power sector-by-rake...
Presentation coal oil and gas scenario in the context of power sector-by-rake...Presentation coal oil and gas scenario in the context of power sector-by-rake...
Presentation coal oil and gas scenario in the context of power sector-by-rake...
 
PPT1.7.Energy-Resources.ppt
PPT1.7.Energy-Resources.pptPPT1.7.Energy-Resources.ppt
PPT1.7.Energy-Resources.ppt
 
What is the energy of the future?
What is the energy of the future?What is the energy of the future?
What is the energy of the future?
 
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
 
David Sandalow - Columbia University.
David Sandalow - Columbia University.  David Sandalow - Columbia University.
David Sandalow - Columbia University.
 
Important issues for fossil power plants for the 21st Century - Robin Irons a...
Important issues for fossil power plants for the 21st Century - Robin Irons a...Important issues for fossil power plants for the 21st Century - Robin Irons a...
Important issues for fossil power plants for the 21st Century - Robin Irons a...
 
Longwall exp india-expectations
Longwall exp india-expectationsLongwall exp india-expectations
Longwall exp india-expectations
 
PLG Provides Industry Update to Stifel Nicolaus Investors
PLG Provides Industry Update to Stifel Nicolaus InvestorsPLG Provides Industry Update to Stifel Nicolaus Investors
PLG Provides Industry Update to Stifel Nicolaus Investors
 
F O S S I L F U E L S
F O S S I L  F U E L SF O S S I L  F U E L S
F O S S I L F U E L S
 
Fossil fuels
Fossil fuelsFossil fuels
Fossil fuels
 
Prospect of Coal Based IGCC to Meet the Clean Energy Challenge
Prospect of Coal Based IGCC to Meet the Clean Energy ChallengeProspect of Coal Based IGCC to Meet the Clean Energy Challenge
Prospect of Coal Based IGCC to Meet the Clean Energy Challenge
 
Energy Crisis Essay
Energy Crisis EssayEnergy Crisis Essay
Energy Crisis Essay
 
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaajha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
jha_indian_coal-sector aaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Renewables in Mining
Renewables in MiningRenewables in Mining
Renewables in Mining
 
Plg stifel presentation v gb final 120913
Plg stifel presentation v gb final 120913Plg stifel presentation v gb final 120913
Plg stifel presentation v gb final 120913
 
Geog 102 Topic 7.ppt
Geog 102 Topic 7.pptGeog 102 Topic 7.ppt
Geog 102 Topic 7.ppt
 
Geog 102 Topic 7.ppt
Geog 102 Topic 7.pptGeog 102 Topic 7.ppt
Geog 102 Topic 7.ppt
 
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
IEEE PVSC presentation: Solar PV’s pivotal role in the great global energy tr...
 
Energy Survey Future Use
Energy Survey  Future UseEnergy Survey  Future Use
Energy Survey Future Use
 

Sandvik - Michaux

  • 2. Summary • Technological and sustainability gap in mining • The lowering of ore grade • Energy sources and reserves • Water • Several possible technical solutions presented • Systemic interaction of these issues in the industrial sector 2
  • 3. Conventional Model for Sustainable Priorities A completely new business model is now appropriate Business has been done a certain way for the last 100 years. Now lets do it for another 100. 3 At this time, globally it seems, all sustainability work in mining is totally targeted at community and social engagement; even the environmental aspects are about planting trees and supporting local wildlife; nothing on reducing waste/energy/toxins
  • 4. Dynamic Self Regulating Finite System This system is not growing and has been stable for some time 4
  • 5. Oil Coal Gas 5 Exponential growth in a finite system is not sustainable Consumption of all natural resources are following this basic pattern over time
  • 6. Try this for size… Enough for everyone, for ever If you are not considering all three of these things then you are not sustainable 6
  • 7. 48% Decrease in Multifactor Productivity 50 60 70 80 90 100 110 Indexed2000-01=100 Topp et al. (2008) Australian Bureau of Statistics (2012) 7
  • 8. MFP growth in Australia, selected sectors, average annual growth Most of the slowdown in Australia MFP attributable to mining and electricity generation, water and waste 8
  • 9. Conventional mining practice is struggling to remain economically viable Ore Grades Are Decreasing 9
  • 10. 1800’s North American Continent Large nuggets found in river beds Yes that’s a nugget of pure copper! Smaller nuggets found in streams Grade 15-20%Finally started to dig Cu out of the ground 1850’s 10
  • 11. 11
  • 12. Metal Price Cost (Indexed to the year 2000) 0 100 200 300 400 500 600 700 RealPrice Indexed2000-01=100 Au Cu Pb Zn Ag Ni Al Fe Ore Year 2008 (GFC) CurrentMiningcrash ABS 1350.0 Financial Markets - Long term http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument ABARES - Australian Mineral Statistics March 2011 12
  • 13. Source: Nature 26 Jan 2012, Vol 481 Comment Price $50 USD/barrel Price $147 USD/barrel Peak Conventional Oil Production - 2006 International Energy Agency http://makewealthhistory.org/2010/11/11/iea-peak-oil-happened-in-2006/ Source: EIA, en.wikipedia.org/wiki/Oil_Megaprojects, Tony Erikson “ace” theoildrum.com GFC 2008 World Crude Oil & Lease Condensate Production, Including Canada Oil Sands 13
  • 14. Oil Demand & supply & the GFC GFC Oil is the ability to do work 14
  • 16. China industrial demand dominated the rest of the planet China now dominates manufacturing and resource consumption 16
  • 17. We are 8 years into an era of industrial transformation 0 100 200 300 400 500 600 700 RealPrice Indexed2000-01=100 Au Cu Pb Zn Ag Ni Al Fe Ore Oil supply became inelastic Chinese industrial demand 17
  • 18. Total Mining costs have also risen 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 Total Income Total Expenses ABS 1350.0 Financial Markets - Long term http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1350.0Jul%202012?OpenDocument ABARES - Australian Mineral Statistics March 2011 18
  • 19. Source: Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) 2008 Energy consumption in mining increased 450% in the last 40 years 19
  • 20. 20
  • 21. Total energy consumption by process path This is a very different conversation to recovery efficiency. Different mineralogy's require different process paths Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold Energy efficiency may be a priority for process design as soon as 2018 21
  • 22. Total energy consumption as a function of ore head grade for various process routes Many new proposed operations are considering a cut-off grade of 0.1% on leach pads Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold 22
  • 23. Rock breakage - There is no free lunch, or short cuts Kambalda 0.01 0.1 1 10 100 0 5 10 15 20 Cumulative Energy, kWh/t P80Size,mm Flowsheet 1 Flowsheet 2 Flowsheet 3 Flowsheet 4 Flowsheet 5 40x10mm Feed -9.5mm Crush -3.35mm Crush HPGR Pass 1 HPGR Pass 2 Bond Test - 125um CS Bond Test - 75um CS Leinster 0.01 0.1 1 10 100 0 5 10 15 20 25 30 Cumulative Energy, kWh/t P80Size,mm Flowsheet 1 Flowsheet 2 Flowsheet 3 Flowsheet 4 Flowsheet 5 Flowsheet 3a Flowsheet 4a 40x10mm Feed -9.5mm Crush -3.35mm Crush HPGR Pass 1 HPGR Pass 2 Batch Grind 2 HPGR Pass 3 HPGR Pass 4 Batch Grind 3 Batch Grind 1 Mine Site ‘X’ Mine Site ‘Y’ The cumulative energy consumed to process a sample to a target P80 is very similar across all conventional process paths. M. Hilden 23
  • 24. Energy Consumed kJ per lb of copper produced Mining 6,000 (kJ/lb) Primary crushing & conveying 900 (kJ/lb) SAG Milling 10,700 (kJ/lb) Ball Milling 10,590 (kJ/lb) Flotation & regrinding 1,870 (kJ/lb) Smelting 5,150 (kJ/lb) Refining 2,700 (kJ/lb) Transport to market 120 (kJ/lb) Primary Crush, SAG mill, ball mill, flotation, smelt, refine Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
  • 25. Energy Consumed kJ per lb of copper produced Mining 6,000 (kJ/lb) Primary crushing & conveying 900 (kJ/lb) Secondary crushing 450 (kJ/lb) Tertiary crushing 450 (kJ/lb) HPGR 1,100 (kJ/lb) Ball Milling, 10,590 (kJ/lb) Flotation & regrinding 1,870 (kJ/lb) Smelting 5,150 (kJ/lb) Refining 2,700 (kJ/lb) Transport to market 120 (kJ/lb) C V C V C V C V C V C V Primary Crush, Secondary Crush, Tertiary Crush, HPGR, ball mill, flotation, smelt, refine Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
  • 26. Energy Consumed kJ per lb of copper produced Mining 8,000 (kJ/lb)ROM Leaching 1,440 (kJ/lb) Solution Extraction 1,980 (kJ/lb) Electrowinning 3,840 (kJ/lb) Transport to market 120 (kJ/lb) Run of Mine (ROM) Leach, Electrowinning Source: Energy efficiency and copper hydrometallurgy J.Marsden 2008 Freeport McMoran Copper & Gold
  • 27. Its all about oil, gas and coal
  • 28. US Shale Gas ‘Fracking’ Boom 96% downgrade of Monterey shale oil reserves (2/3 of US reserves) extractable with current technology ~ 600 million barrels down from 13.7 billion barrels (Source EIA) 28
  • 29. • Production from shale gas ‘fracked’ wells typically declines 80 to 95% in the first 36 months of operation • For US shale gas industry to maintain 2013 production rates, it needs to drill approx. 7200 new wells each year • CSG in Australia is considered less productive than US unconventional gas plays US Shale Gas ‘Fracking’ Bust • How did the EIA get these fantastic future predictions? – Take the content of the best gas ‘sweet spots’ in each fracking field – Take the highest recovery rates of the best fracking wells in each fracking field – Extend both of these to the entire volume of the fracking gas field – Sum all fields together, ignore logistical issues and process issues 29
  • 30. Peak Gas Year 2018 Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013 CSG and shale gas has pushed Peak Gas back from approx. 2010 30
  • 31. Peak Coal Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013 Year 2020 Peak date contingent on China selling us their coal 31
  • 32. Supply and demand of Uranium There is probably enough U for existing nuclear power stations 32 Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
  • 33. Future projection of Uranium production 2014 Nuclear power would have to increase 12-13 times capacity at peak potential to make up for total energy supply to replace fossil fuels 33 Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013
  • 34. Existing nuclear infrastructure needs replacing Someone has to pay for these new reactor sites 34
  • 35. Storage of spent fuel rods • Spent fuel rods are very radioactive and generate a lot of heat • Need to be stored in cooled water for 10-20 years before dry storage This is the Achilles Heel of nuclear technology as a solution to our energy supply problem 35
  • 36. Peak Oil Tar and oil sands have pushed back the peak of total oil supply back 6-7 years from approx. 2006 Conventional and unconventional oil supply Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013 Discovery & Production Year 2012 36
  • 37. http://www.zerohedge.com/news/2014-05-30/us-gasoline-consumption-plummets-nearly-75 Source: Zero Hedge, Submitted by Jeff Nielsen via BullionBullsCanada blog 2008 (GFC) U.S. “gasoline consumption” – as measured by the U.S. Energy Information Administration (EIA) – has plummeted by nearly 75% 37
  • 38. But peak oil has no influence on mining and is not our problem (right?) 38
  • 39. Ore is shifted with diesel fuel (oil) 255 tonne load capacity 200kg (?) load capacity 1 truck = 3400 donkey loads Bingham: Would we cart 5000tph of rock for 10tph of copper (0.2% grade) without oil? Or run 66 000 donkey loads an hour….. Not without its logistical problems There comes a point when something has to give. Escondida: 1/3 of total energy consumed is in haulage of ore from pit floor to plant 39
  • 40. Energy Return on Energy Invested (EROEI Ratio) 40 Current industrial based society requires and EROEI of 10:1 New conventional oil (12-18:1)
  • 41. EROEI (The song and dance needed to get the energy) • Conventional Oil 12-18:1 • Tar Sands Oil 3:1 • Shale Oil 5:1 • Coal 50-80:1 • Conventional LNG gas 10:1 • Shale Gas 6.5:1 • Hydro Power 20-40:1 • Solar Power 2-8:1 • Wind Power 18:1 • Conventional Nuclear 5:1 including the energy cost of mining U (10:1 as quoted) Some Perspective European medieval society EROEI was Approx 1.5:1 • Biogas 1.3:1 • Bio-ethanol 1.3:1 41
  • 42. Quantity of Energy at Application • Current oil demand is 87.4 Mb/day or 31.9Gb a year • This translates to a little under 62 GW of energy • The average coal power station outputs 650MW • The average gas power station outputs 550 MW • The average Nuclear power station outputs 850MW • The gigantic Three Gorges Dam hydro project in China outputs 18.2 GW • The new solar power stations being commissioned output 350MW • An offshore wind turbine on average outputs 3.6MW 42
  • 43. So one year current demand for oil, could be replaced with: • 191 coal fired power stations each year for 50 years • 248 gas power stations each year for 50 years • 354 industrial scale solar power stations each year for 50 years • 146 nuclear power plants each year for 50 years • 7 Three Gorges Dams projects each year for 50 years • 34 400 off shore wind turbines each year for 50 years 43
  • 44. World supply of fossil fuels and uranium Zittel, W. et al, Fossil and Nuclear Fuels – the supply outlook Energy Watch Group March 2013 Peak energy approx. 2017 Industrialisation in a global context will soon tip into contracting economies - the end of growth based economics 44
  • 45. 45 Corporate culture genuinely does not know where to start to instigate a major shake-up of technology and approach; instead across the board, focus has been on short term risk aversion
  • 46. 1900 • Cu Grades of approx. 20% • Energy EROEI of approx. 100:1 2014 • Cu Grades of approx. 0.3% (considering 0.1%) • Energy EROEI of approx. 12-18:1 46
  • 47. Economies of Scale Has Carried the Industry Cheap abundant energy Available credit for industrial procurement 47
  • 48. 48
  • 49. Global Potable Water Consumption Over Time 0 500 1000 1500 2000 2500 3000 3500 4000 4500 1930 1940 1950 1960 1970 1980 1990 1995 2000 Waterdraw(km3/year) Worldwater use by economic sector (km3 /year) (Shiklomanov 2000) Agriculture use Municipal use Industrial use Reservoirs Total (rounded) 49 Global water use is divided as follow: •70% Agriculture •22% Industry •8% Domestic
  • 50. Global physical and economic water scarcity 50 Source: World Water Development Report 4. World Water Assessment Programme (WWAP), March 2012. Development of industrial sites with high potable water volume requirements will increasingly conflict with the needs of the growing population
  • 51. The amount of fresh water supply provided by the hydrological cycle does not increase. Water everywhere on the planet is an integral part of the hydrologic cycle. Many major rivers; Colorado, Ganges, Indus, Rio Grande and Yellow are so over-tapped that they now run dry for part of the year. Freshwater wetland has shrunk by about half worldwide. 51
  • 52. Access to Potable Water In the West, we take water for granted. Most people don’t actually think about the supply of water. Water is easy to ignore provided you can still turn on a tap and water comes out! We still have the same amount of water in our ecosystem but the supply of freshwater faces a three-pronged attack from population growth, climate change and industrialisation. As it currently stands, there’s not enough water to go around. The same mentality is within our industrial culture 52
  • 53. 71.5 62.3 61.6 55.0 57.0 59.0 61.0 63.0 65.0 67.0 69.0 71.0 73.0 75.0 1980's 1990's 2000's AverageA*b ComminutionImpact Breakage A*b Ore has been progressively getting harder Softer Harder ~3000 Drop Weight Tests What does this mean? More power draw is required to break the rock 53
  • 54. Target Grind Size is Decreasing 54 1 mm Target ore P80 = 150mm 10 mm Target ore P80 = 4mm
  • 55. General form of the Energy-Size relationship An exponential increase in required power draw A decrease in plant final grind size P80 =A decrease in metal grain size = Energy,kWh/t Hukki 1962 55
  • 56. Dynamic Interaction and Exacerbation • Power & water shortages • Decreasing grade requires more tonnes of rock extracted for the same resulting amount of target metal. – More energy is needed (diesel and electrical power draw) per unit of extracted metal – More potable water is needed per unit of extracted metal • Increasing ore hardness requires more power draw to crush and grind the ore 56
  • 57. Dynamic Interaction and Exacerbation • Decreasing grind size due to finer mineral grains requires more power draw to crush and grind the ore – More water is needed per unit of extracted metal – Water recycling is more difficult – More disseminated finer grained rocks are usually harder to crush and grind • To remain economically viable operation scale has to double/triple in size • Metal demand is growing fast Once our society understands what is happening and why, everything will need to be re-engineered. Which will require vast amounts of metal! - QUICKLY This is where you will be needed 57
  • 58. Energy,kWh/t Hukki 1962 Fine grained minerals are almost always associated with low grade The exponential increase in required energy as mineral grain size gets smaller is happening at a time when available quantity of energy is vastly reduced Dynamic Interaction and Exacerbation 58 M. Lardelli
  • 59. Driven by increasing demand Production is Increasing 59
  • 60. Economic goal posts are shifting for future deposits • Huge low grade deposits • Penalty minerals more prominently present in deposit that prevent efficient processing • Ever decreasing grind sizes (close size 10-20mm) • Operating on an economy of scale never been seen before (4MT blasted rock a day, 40% of which is ore!) • To stay economically viable, economics of scale have to be applied. Operations will double and triple in size. All of this based on the assumption that there is no energy or water shortage 60
  • 61. Future underground block caves are going to be the size of existing open pits. Open pits of unprecedented size. 61
  • 62. With a continuing grade of 0.5% this will require 20000Mt of Rock With a decrease of grade to 0.2% this then requires 50000Mt of Rock Copper Demand Outlook Is this sustainable? World Cu grade 0.5% 17Mt 3400Mt of RockWorld Cu grade 1.6% Eventually the cost of dealing with the wastes will exceed the value of the metal… With current estimations the demand for copper will increase to ~100Mt by 2100 62
  • 63. Copper is a finite resource like any other Forecast Historical Global Cu production by principal geological deposit types 63
  • 64. Conventional mining problem solving is if the numbers don’t stack up, its not viable and the project doesn’t start There is no ‘Plan B’ if higher grade easier to work deposits are unavailable 64
  • 65. This is not a tickling competition • Raw materials supplied by mining are required for our industrial society to run. That supply must continue in some form • Engineering problem solving according to new target parameters • Knowledge of deposit ore variability needs to be matched with sophisticated flexible engineering design • Put less ore in the mill for the same metal output – Sorting technology – Unconventional exploitation of geological characteristics • Dry process • More sophisticated system based modelling of existing technology • Bacterial leach • Remove all time pressure – NPV is no longer important – Take the time to process each ore parcel at maximum efficiency 65
  • 66. 1 - One process stream, flexible operation • Engineered ability to more easily adapt to variable feed • And to a series of dynamic conditions, that are not a steady state • More sophisticated process control capabilities to manage dynamic non steady state conditions Operation can liberate and separate most efficiently each ore parcel in a responsive manner, resulting in higher operational revenue 66
  • 67. 2 - Multiple process streams in the same operation, each with its own stockpile Each stream with its own closing size and cutoff grade returning the same recovery with lower CAPEX/OPEX Geomet Block Model Blast Sorting Dump Leach Pad Tank Leach Flash Flotation Flotation Flotation 67
  • 68. 3 - Flexible operation to process different size fractions in different streams • SAG mill critical particle size - 75+40mm • SAG needs coarse fragments and fines to run • HPGR needs over size to be crushed to protect it ball Mill 2 x Cone crush RoM 20 mm 5mm 2mm Pump Sump deagglomerate HPGR SAG 50 mm pebbles Variable splitter 2000 tph 1000 tph 600 tph 300 tph 1000 tph fresh 300 tph Recycle surplus pebbles Cyclone 1600 tph Each comminution unit operates at peak efficiency resulting in higher throughput Prof. Malcolm Powell 68
  • 69. 4 - Flexible operation that uses sorting to remove waste rock throughout the whole mining system Geomet Block Model Blast Sorting Dump Leach Pad Flotation Flotation Sorting Sorting Future Ore Working Ore Waste dump Problem ore with ‘show stoppers’ Only a fraction of the ore volume goes to ball mil for same recovery resulting in lower CAPEX/OPEX 69
  • 70. 5 - Flexible Operation to meet challenging external conditions Engineered ability to more easily adapt to changes to external circumstances • Power shortages, outages, power spikes • Potable water shortages • Fluctuating price of steel consumables • Fluctuating price of saleable metal Operation can still operate and produce revenue 70
  • 71. Change the fundamental process flow path • All solutions presented so far are step changes to the existing conventional mining process • What is required is a fundamental rethink and restructure of the mining process from the fundamental science foundation all the way to engineering design • A radical change in business model is also required – We no longer have the time or capacity to meet desired production targets 71 So completely change the approach
  • 72. 72
  • 73. The engineering to do this at an industrial scale is already here 73 Solar power stations now have a capacity of the order of 350MW
  • 74. Solar smelting of ore • Mine then crush ore to optimum size • Process through solar smelter unit in batches • Exploit difference in melting temperatures • To either extract target element directly or, • Upgrade a low grade disseminated texture into something more feasible – As molten rock cools, could it be mixed in a way to bond like with like so metal grains are larger and closer together – Easier to process texture – Rock more brittle and weakened in strength 74 Remove NPV time pressure and requirement for high throughput tonnages
  • 75. Approximate Temperature (°C) Minerals which are molten 1200°C All molten 1000°C Olivine, pyroxene, Ca-rich plagioclase 800°C Amphibole, Ca/Na- plagioclase 600°C Quartz, K-feldspar, Na- plagioclase, micas. Metal Approximate Melting Temperature (°C) Density (g/cm3 ) Aluminum 659°C 2.70 g/cm3 Iron 1538 °C 7.86 g/cm3 Copper 1083°C 8.96 g/cm3 Gold 1063°C 19.3 g/cm3 Lead 163°C 11.34 g/cm3 Magnesium 651°C 1.738 g/cm3 Nickel 1452°C 8.908 g/cm3 Silver 951°C 10.49 g/cm3 Tungsten 3399°C 19.25 g/cm3 Zinc 419°C 7.14 g/cm3 Density 1.8-3.5g/cm3 Exploit the difference in melting temperature and density 75 ROCK ELEMENT METAL All mineral processing exploits a physical or chemical difference between the target element and its host rock
  • 76. Mine Crush 0.6 MW2-5 MW Grind Flotation Smelt 50 MW Potable water 5 MW Potable water 20 MW 76 A job for the JKMRC ~ 1 MW? Dry process Solar Smelting
  • 77. Decreasing Grade Sovereign Debt Default Decreasing Grind size+ Increasing Depth+ Peak Fossil Fuel + Peak Mining Credit Freeze + Structural Inflation +FIAT Currency Devaluation + Peak Finance Peak Manufacturing Peak Industrialisation = = The End of the Industrial Revolution Expansion of production needed to stay viable Expansion of money needed to service debt The Industrial Big Picture 160 years after it started 77
  • 78. The writing on the wall • Everything we need/want to operate is drawn from non- renewable natural resources in a finite system • Most of those natural resources are depleting or will soon • Demand for everything we need/want is expanding fast • When these trends meet, there will come a point where how we do things will fundamentally change • None of these issues can be seen in isolation. 78
  • 79. ‘Must’ expand exponentially Can’t expand Deteriorating Chris Martenson http://www.peakprosperity.com/crashcourse The Pickle and the Rub… This is the only thing that can change 79
  • 80. Forced Transformation Understand true implications Deterioration and Fragmentation Decay/Collapse Write- off/Reset Mounting Stress Weare here Conquest of another system Fundamental Reform Mounting Stress Existential large scale crisis Existential large scale crisis business as usual Early small scale crisis All 5 Stages of Human Grief at all scales Deterioration and Fragmentation Temporary solution loop Where we are Where we should be Inelastic oil supply 2005 Peak Total Energy 2017 With 20/20 hindsight business as usual Early small scale crisis This diagnoses a certain outcome 80
  • 81. Systemic environmental disruption Natural raw materials unavailable for industrialisation Energy supply disrupted then unavailable • Reset all FIAT currencies – asset based • Restructure all debt • Need to grow into new system • Cannot sustain growth • Cannot grow economy system • Change to alternative energy system • Rebuild all infrastructure to meet requirements of new energy system • Cannot supply raw materials for construction or manufacture at needed rate or volume, if at all • Need to reassess what is really needed • Mine our rubbish dumps • Cannot run any existing system for very long Financial Systemic Meltdown GrowingPopulation • Puts pressure on all other sectors except finance
  • 82. Paradigm changing information is right in front of us if we choose to see it… Everyone should try thinking for themselves at least once Now would be a good time 82
  • 83. Thank you for your time Simon Michaux Bach App Sc. PhD simonpetermichaux@gmail.com 83
  • 84. 84
  • 85. Case Study 2: Mogalakwena • Mogalakwena platinum mine in South Africa hit several sustainability limits • The mining corporation in question was not doing anything unusual in mining operational parameters (no unusual site restrictions) • Operation expanded several times • Villages were sometimes moved to accommodate this • Operation was in direct competition with local population for water and power supply • Local population depended on mine operations economically • Multiple power shortages & water shortages • Mine site would occasionally crash local power grid • In this case, the conventional mining process was in direct conflict with the sustainability of local population This site put the spot light on the sustainability issue in all its forms 85
  • 86. Peak Oil The NET peakoil curve (or "Net Hubbert Curve") is what really counts ... and given that two-thirds of all global crude oil supplies is now HEAVY SOUR (and thus much more energy intensive to refine), and only 1/3 is LIGHT SWEET crude i.e., given that most of the low- hanging fruit has already been extracted. EROEI Ratio for Oil extraction Net Hubbert Curve 86
  • 87. Energy Density of Oil 1 litre of Petrol = 132 hours of hard labour • Put 1 litre of petrol in your car • Drive it till it runs out • Push car back to start point At $15/hour 1 litre of petrol = $1981.20 87
  • 88. Oil producing countries past their peak Source: Ludwig-Bolkow Systemtechnik GmbH 2007 HIS 2006; PEMEX, petrobas ; NPD, DTI, ENS(Dk), NEB, RRC, US-EIA, January 2007 Forecast: LBST estimate, 25 January 2007 88
  • 89. Production stable Number of rigs going up Has Saudi Arabia Peaked? 89