SlideShare a Scribd company logo
1 of 569
Download to read offline
1- Introduction to Radiation Physics
‫اإلشعاعية‬ ‫الفيزياء‬
Dr. Mohamed Adnan
GULF HOUSE INSTITUTE
‫للتواصل‬
https://twitter.com/ghinstitutesa
http://roadinstitute.edu.sa/pages/Default.aspx
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Chapter 1. TABLE OF CONTENTS
1.1. Introduction ‫مقدمة‬
1.2. Classification of radiation
‫اإلشعاع‬ ‫تصنيف‬
1.3. Atomic and nuclear structure
‫للمادة‬ ‫والنووي‬ ‫الذري‬ ‫التركيب‬
1.4. X rays ‫األشعة‬
‫السينية‬
Fundamental physical constants
Avogadro’s number NA = 6.022 × 1023
atom/mol
Speed of light in vacuum C = 3x108 m/c
Electron charge e =1.6 x 1019 As
Electron rest mass Me = 0.511 MeV/C2
Proton rest mass Mp = 938.2 MeV/C2
Neutron rest mass Mn = 939.3 MeV/C2
Atomic mass unit U = 931.5 MeV/C2
Physical quantities and units
Physical quantities are characterized by their
numerical value (magnitude) and associated unit.
Symbols for physical quantities are set in italic
type, while symbols for units are set in roman type.
For example:
 m = 21 kg E = 15 MeV
Physical quantities and units
Numerical value and the unit of a physical
quantity must be separated by space.
 For example:
 21 kg and 15 MeV
 The currently used metric system of units is
known as the International system of units or
the SI system.
Physical quantities and units
 The SI International system of units is founded on base units for
seven physical quantities:
 Quantity SI unit
 length meter (m)
 mass m kilogram (kg)
 time t second (s)
 electric current (I) ampere (A)
 temperature (T) Kelvin (K)
 amount of substance mole (mol)
 luminous intensity candela (cd)
1.1 INTRODUCTION
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
is fundamental to the understanding of the physics of medical imaging and
radiation protection. This, the first chapter of the Handbook, summarises those
aspects of these areas which, being part of the foundation of modern physics,
underpin the remainder of the book
• structure of the atom ‫الذري‬ ‫التركيب‬
• elementary nuclear physics ‫النووية‬ ‫الفيزياء‬
• the nature of electromagnetic radiation
•
‫الكهرومغناطيسية‬ ‫الموجات‬ ‫طبيعة‬
• production of X-rays ‫السينية‬ ‫األشعة‬
Knowledge of the
Basic definitions for atomic structure
 The constituent particles forming an atom are
protons, neutrons and electrons. Protons and neutrons
are known as nucleons and form the nucleus of the atom.
Basic definitions for atomic structure
Protons: are particles with a positive charge
and mass of 1 unit of atomic mass.
Neutron: Within the nucleus without charge
and mass of 1 unit of atomic mass.
Electrons: are negatively charged particles
and mass equal to 1/1840 of atomic mass
unit.

Atomic mass unit: It is defined as one twelfth of
the mass of an atom of carbon-12 .
Basic definitions for atomic structure
Atomic number Z : Number of protons and
number of electrons in an atom.
Atomic mass number A :
 Number of nucleons (Z + N) in an atom,
where
• Z is the number of protons (atomic
number) in an atom.
• N is the number of neutrons in an atom.
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions ‫األساسية‬ ‫التعريفات‬
Most of the mass of the atom is concentrated in the atomic
nucleus which consists of:‫النواة‬ ‫في‬ ‫تتركز‬ ‫الذرة‬ ‫كنلة‬
• Z protons and
• (A – Z) = N neutrons
Z: Atomic number ‫الذري‬ ‫العدد‬
(
‫البروتونات‬ ‫عدد‬
)
A: Atomic mass number ‫الكتلي‬ ‫العدد‬
(
‫الربوتونات‬
+
‫النيترون‬
)
Unified atomic mass unit μ: a unit used for specifying the
masses of atoms ‫هي‬ ‫الذرية‬ ‫الكتلة‬ ‫وحدة‬
1/12
‫الكربون‬ ‫كتلة‬ ‫من‬
-
12
1 μ = 1/12 of the mass of the 12C atom or 931.5 MeV/c2
An atom is composed of a central nucleus surrounded by a cloud of
negatively charged electrons
‫الشحنة‬ ‫سالبة‬ ‫باإللكترونات‬ ‫محاطة‬ ‫نواة‬ ‫من‬ ‫الذرة‬ ‫تتكون‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Particle Charge (C) Rest energy
(MeV)
Electron (e) - 1.602×10-19 0.511
Proton (p) +1.602×10-19 938.28
Neutron (n) 0 939.57
Radius of an atom ≈ 0.1 nm
Radius of the nucleus ≈ 10-5 nm
In a non-ionised atom:
‫االلكترونات‬ ‫عدد‬ ‫يساوي‬ ‫البروتونات‬ ‫عدد‬ ‫يكون‬ ‫مؤينة‬ ‫الغير‬ ‫الذرة‬
number of electrons = number of protons
Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 13
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Protons and neutrons are referred to as nucleons
They are bound in the nucleus with the strong force
‫النو‬ ‫الروابط‬ ‫تسمي‬ ‫جدا‬ ‫قوية‬ ‫بروابط‬ ‫النواة‬ ‫في‬ ‫والنيترونات‬ ‫البروتونات‬ ‫يرتبط‬
‫وية‬
The strong force between two nucleons is a very
short-range force, active only at distances of the
order of a few femtometer (fm). 1 fm = 10-15 m
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Cs
137
55
3
/
2
A
0155
.
0
98
.
1
A
+
=
Z
Empirical relation between A and Z
Ra
226
88
Co
60
27
nucleus of Cobalt-60
with 27 protons and
33 neutrons
nucleus of Cesium-137
with 55 protons and
82 neutrons
nucleus of Radium-226
with 88 protons and
138 neutrons
X
A
Z
Chemical
symbol for
the element
Atomic mass
number =
Z+N
Atomic
number
X-A
or
(Co-60)
(Cs-137)
(Ra-226)
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Isotopes of a given element have in the nucleus :
‫النيترون‬ ‫عدد‬ ‫في‬ ‫وتختلف‬ ‫البروتونات‬ ‫عدد‬ ‫نفس‬ ‫لها‬ ‫العنصر‬ ‫لنفس‬ ‫النظائر‬
‫ات‬
• same number of protons, but
• different numbers of neutrons
Isotopes of chemical element hydrogen (Z = 1)
Isotopes of chemical element carbon (Z = 6)
ordinary hydrogen
deuterium
tritium
C
C
C
14
6
13
6
12
6
H
H
H
3
1
2
1
1
1
unit
mass
atomic
unified
element
an
of
atoms
the
of
mass
average
=
r
A
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Atomic weight Ar is a dimensionless physical quantity
The average is a weighted mean over all the isotopes of the
particular element taking account of their relative abundance
‫الذري‬ ‫الوزن‬
Ar
‫لها‬ ‫أبعاد‬ ‫ال‬ ‫مادية‬ ‫كمية‬ ‫هو‬
‫النس‬ ‫الوفرة‬ ‫مراعاة‬ ‫مع‬ ‫المحدد‬ ‫العنصر‬ ‫نظائر‬ ‫جميع‬ ‫على‬ ‫مرجح‬ ‫متوسط‬ ‫هو‬ ‫المتوسط‬
‫بية‬
Atomic mass M is expressed in unified atomic mass unit
The atomic mass M for a particular isotope is smaller than the
sum of the individual masses of constituent particles because of
the intrinsic energy associated with binding the particles
(nucleons) within the nucleus
‫الذرية‬ ‫الكتلة‬ ‫تكون‬
M
‫المكو‬ ‫للجسيمات‬ ‫الفردية‬ ‫الكتل‬ ‫مجموع‬ ‫من‬ ‫أصغر‬ ‫معين‬ ‫لنظير‬
‫نة‬
‫الجسيمات‬ ‫بربط‬ ‫المرتبطة‬ ‫الجوهرية‬ ‫الطاقة‬ ‫بسبب‬
(
‫النوى‬
)
‫النواة‬ ‫داخل‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Atomic g-atom (gram-atom) is the number of grams of an
atomic substance that contains a number of atoms exactly
equal to one Avogadro’s constant
(NA = 6.022 × 1023 atoms/g-atom)
‫الذرية‬ ‫المادة‬ ‫جرمات‬ ‫عدد‬ ‫في‬ ‫الموجودة‬ ‫الذرات‬ ‫عدد‬ ‫هو‬ ‫أفوجادرو‬ ‫عدد‬
Atomic weight definition means that Ar grams of each
element contain exactly NA atoms. For a single isotope M
grams contain NA atoms
‫أفوجادرو‬ ‫عدد‬ ‫علي‬ ‫يحتوي‬ ‫الذي‬ ‫عنصر‬ ‫كل‬ ‫من‬ ‫الجرامات‬ ‫عدد‬ ‫أن‬ ‫يعني‬ ‫الذري‬ ‫الوزن‬
.
Example:
• 1 gram-atom of Cobalt- 60 is 59.93 g of Co-60
• 1 gram-atom of Radium-226 is 226.03 g of Ra-226
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Molecular g-mole (gram-mole) is defined as the number of grams of a
molecular compound that contains exactly one Avogadro’s constant of
molecules
(NA = 6.022 × 1023 molecule/g-mole)
‫الجزيئات‬ ‫من‬ ‫أفوجادرو‬ ‫عدد‬ ‫يحتوي‬ ‫الذي‬ ‫الجزيئي‬ ‫المركب‬ ‫جرامات‬ ‫عدد‬ ‫هو‬ ‫الجزيئ‬ ‫المول‬
The mass of a molecule is the sum of the masses of the atoms that
make up the molecule
‫الجزيء‬ ‫منها‬ ‫يتكون‬ ‫التي‬ ‫الذرات‬ ‫كتل‬ ‫مجموع‬ ‫هي‬ ‫الجزيء‬ ‫كتلة‬
Example:
• 1 gram-mole of water is ≈18 g of water
• 1 gram-mole of carbon dioxide is ≈ 44 g of carbon dioxide
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Note that (Z/ Ar) ≈ 0.5 for all elements, except for hydrogen, for
which (Z/ Ar) = 1. Actually, (Z/Ar) slowly decreases from 0.5 for
low Z elements to 0.4 for high Z elements
NA: Avogadro constant, Z : atomic number
Ar : atomic weight, r : density
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Number of atoms per
unit mass of an element:
r
A
am
A
N
N =
Number of electrons per unit
volume of an element:
r
A
am
aV
A
N
Z
ZN
ZN r
r =
=
Number of electrons
per unit mass of an element: A
r
am N
A
Z
ZN =
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Modern quantum mechanical model of the atom is built on the work
of many physicists
The idea of a dense central nucleus surrounded by orbiting electrons
was first proposed by
Ernest Rutherford in 1911
‫تت‬ ‫الذرة‬ ‫كتلة‬ ‫ان‬ ‫قال‬ ‫من‬ ‫أول‬ ‫رزرفود‬ ‫وكان‬ ‫الذرة‬ ‫وصف‬ ‫في‬ ‫بداءت‬ ‫الحديثة‬ ‫الكم‬ ‫ميكانيكا‬
‫في‬ ‫ركز‬
‫اإللكترونات‬ ‫حولها‬ ‫ويدور‬ ‫النواة‬
Rutherford’s atomic model is based on results of the
Geiger- Marsden experiment of 1909 with particles
emitted from Radium C, scattered on thin gold foils with
a thickness of 0.00004 cm
‫شري‬ ‫خالل‬ ‫ألفا‬ ‫جسيمات‬ ‫بإمرار‬ ‫ماردسن‬ ‫تجربة‬ ‫علي‬ ‫إعتمد‬ ‫رزرفورد‬ ‫نموذج‬
‫حة‬
‫الذهب‬ ‫من‬ ‫رقيقة‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Geiger and Marsden found that:
• more than 99% of the a particles incident on the gold foil were
scattered at scattering angles less than 3o
• roughly 1 in 104 alpha particles was scattered with a scattering
angle exceeding 90o
This finding (1 in 104) was in drastic disagreement with the
theoretical prediction of one in 103500 resulting from Thomson’s
atomic model
positive charge
negative electrons
Thomson atomic model Rutherford atomic model
positive charge
negative electrons
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Rutherford proposed that:
• mass and positive charge of the
atom are concentrated in the nucleus
of the size of the order of 10-15 m
‫ال‬ ‫فيها‬ ‫تتركز‬ ‫موجبة‬ ‫شحنة‬ ‫ذات‬ ‫النواة‬ ‫ان‬ ‫رزرفورد‬ ‫إفترض‬
‫كتلة‬
• negatively charged electrons
revolve about the nucleus with a
radius of the order of 10-10 m
‫في‬ ‫وتدور‬ ‫سالبة‬ ‫شحنة‬ ‫ذات‬ ‫اإللكترونات‬ ‫وأن‬
‫النواة‬ ‫حول‬ ‫مدارات‬
positive charge
negative electrons
Rutherford atomic model
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
The Rutherford atomic model, however, had a
number of unsatisfactory features
For example, it could not explain the observed
emission spectra of the elements
‫ال‬ ‫بعض‬ ‫أطياف‬ ‫تفسر‬ ‫لم‬ ‫ألنها‬ ‫مرضية‬ ‫تكن‬ ‫لم‬ ‫رزرفورد‬ ‫إفترضيات‬
‫عناصر‬
Visible lines of emission spectrum for Hydrogen
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
In 1913, Niels Bohr elaborated the model of hydrogen atom,
based on four postulates:
• the electron revolves in circular allowed orbit about the proton under the
influence of the Coulomb force of attraction being balanced by the
centripetal force arising from the orbital motion
‫دورانة‬ ‫أثناء‬ ‫طاقة‬ ‫أي‬ ‫يفقد‬ ‫وال‬ ‫الكولومية‬ ‫القوي‬ ‫تأثير‬ ‫تحت‬ ‫محددة‬ ‫دائرية‬ ‫مدارات‬ ‫في‬ ‫اإللكترونات‬ ‫تدور‬
‫اعلي‬ ‫لمدار‬ ‫مداره‬ ‫يترك‬ ‫الطاقة‬ ‫من‬ ‫كاف‬ ‫مقدار‬ ‫الالكترون‬ ‫يكتسب‬ ‫عندما‬
• while in orbit, the electron does not lose any energy in spite of being constantly
accelerated
• the angular momentum of the electron in an allowed orbit is quantized and
only takes values of nћ, where n is an integer and ћ = h/2p, where h is
Planck’s constant
• an atom emits radiation when an electron
makes a transition from an initial orbit with
quantum number ni to a final orbit with
quantum number nf for ni > nf.
ni
nf
Ei
Ef
E = Ei - Ef
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Diagram representing Bohr’s model of
the hydrogen atom, in which the
orbiting electron is allowed to be only
in specific orbits of discrete radii
‫لإلكترونات‬ ‫الطاقة‬ ‫مستويات‬ ‫يوضح‬ ‫الرسم‬
proton
M, + e
r
electron
m, - e
F
v
ground state
excited state
Quantization of energy, with n = 1, 2, 3...
2
6
.
13
)
eV
(
n
En −
=
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Through the work of Heisenberg, Schrödinger, Dirac, Pauli
and others the theory of quantum mechanics was developed.
In this theory, the electrons occupy individual energy states
defined by four quantum numbers as follows:
‫كم‬ ‫ارقام‬ ‫اربعة‬ ‫تشغل‬ ‫اإللكترونات‬ ‫فإن‬ ‫الكم‬ ‫ميكانيكا‬ ‫لقوانين‬ ‫طبقا‬
• the principal quantum number, n, which can take integer values
and specifies the main energy shell ‫الرئيسي‬ ‫الكم‬ ‫عدد‬
• the azimuthal quantum number, l, which can take integer
values between 0 and n − 1 ‫الفرعي‬ ‫الكم‬ ‫عدد‬
• the magnetic quantum number, m, which can take integer
values between – l and +l ‫المغناطيسي‬ ‫الكم‬ ‫عدد‬
• the spin quantum number, s, which takes values -1/2 or +1/2 and
specifies a component of the spin angular momentum of the
electron ‫المغزلي‬ ‫عددالكم‬
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
According to the Pauli Exclusion Principle, no two
electrons can occupy the same state and it follows that
the number of electron states that can share the same
principal quantum number n is equal to 2n2
‫وفقا‬
‫لمبداء‬
‫اإلستبعاد‬
‫لباولي‬
‫اليمكن‬
‫إللكترونين‬
‫ان‬
‫يشغال‬
‫نفس‬
‫الحالة‬
The energy levels associated with n = 1, 2, 3 etc.
are known as the K, L, M etc. bands
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Zero Valence e-
N
M
K
-13.6
-3.4
-1.51
Hydrogen Z = 1
K series
L series
Energy (eV)
L
Energy (eV)
N
M
L
K
L series
K series
Tungsten Z = 74
Valence e-
Zero
- 11,500
- 69,500
- 2,300
Energy levels for hydrogen and tungsten. Possible
transitions between the various energy levels are shown
with arrows
‫والتنجستين‬ ‫الهيدروجين‬ ‫لذرتي‬ ‫الطاقة‬ ‫مستويات‬
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Chose the correct answer
 Known as the atomic number of any atom (element – isotope)?
 1- The number of photons in the atom
 2- The number of neutrons in the atom
 3- The number of protons in the atom
 4- Total number of protons and neutrons In the nucleus
Atom
 1-Positively charged particles in the nucleus of the atom.
 2- Particles circulate around the nucleus in the atom.
 3- The basic construction unit in the article.
 4- particles with no electrical charge and in the nucleus of the
atom.
 5- Atomic substances have the same number of protons
Protons
 1-Positively charged particles in the nucleus of the atom.
 2- Particles circulate around the nucleus in the atom.
 3- The basic construction unit in the article.
 4- particles with no electrical charge and in the nucleus of the atom.
 5- Atomic substances have the same number of protons
neutrons
 1-Positively charged particles in the nucleus of the atom.
 2- Particles circulate around the nucleus in the atom.
 3- The basic construction unit in the article.
 4- particles with no electrical charge and in the nucleus of the atom.
 5- Atomic substances have the same number of protons
 Atomic number
 1 - atoms of a certain element have the same number of
protons but different numbers of neutrons.
 2- The total number of protons and neutrons
inside the nucleus of the atom.
 3 - A general expression that symbolizes any
counterparty to any element.
 4- The number of protons in an atom.
 Known mass number of the atom?
 1- The number of photons in the atom
 2- The number of neutrons in the atom
 3- The number of protons in the atom
 4- Total number of protons and neutrons In the nucleus
 electron
 1-Positively charged particles in the nucleus of the atom.
 2- Particles circulate around the nucleus in the atom.
 3- The basic construction unit in the article.
 4- particles with no electrical charge and in the nucleus of
the atom.
 5- Atomic substances have the same number of protons
 element
 1-Positively charged particles in the nucleus of the atom.
 2- Particles circulate around the nucleus in the atom.
 3- The basic construction unit in the article.
 4- particles with no electrical charge and in the nucleus of
the atom.
 5- Atomic substances have the same number of protons
 According to the Bohr model of the atom
nucleus of an atom, which consists?
 1- The nucleus is made up of protons and
neutrons and orbits around electrons in orbits.
 2- Nucleus by protons, neutrons and electrons.
 3- The nucleus is made up of protons and
electrons and is orbited by neutrons
 According to the Bohr model of atoms,
electrons can move freely within the atom( ).
 According to the Bohr model of the atom when
the electrons are able to change its orbit?
Isotopes, radioisotopes and radionuclide's
Isotopes are atoms of an element
1- It has the same number of protons
2- It has a different number of neutrons.
3 - have the same chemical properties .. Why?
4 - The atomic mass has different ........ Why?
5. They may have different radiological properties.
Thanks
Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 35
1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE
‫الذري‬ ‫التركيب‬
 For all elements the ratio Z/A  0.4-0.5 with 1 notable
exception:
Hydrogen, for which Z/A = 1
 The ratio Z/A gradually decreases with increasing Z:
From ~0.5 for low Z elements
To ~0.4 for high Z elements
 For example:
Z/A = 0.50 for
Z/A = 0.45 for
Z/A = 0.39 for
1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE
‫الذري‬ ‫التركيب‬
 Most of the atomic mass is concentrated in the atomic nucleus

‫النواة‬ ‫في‬ ‫الذرة‬ ‫كتلة‬ ‫تتركز‬
 Nucleus consists
Z protons
A - Z neutrons,
where Z = atomic number and A = atomic mass
 Protons and neutrons ‫جدا‬ ‫قوية‬ ‫ربط‬ ‫قوة‬ ‫تحت‬ ‫ويكونو‬ ‫النويدة‬ ‫تسمي‬ ‫والنيترونات‬ ‫البروتونات‬
Commonly called nucleons
Bound to the nucleus with the strong force
1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE
‫الذري‬ ‫التركيب‬
 Nuclear physics conventions
Designate a nucleus X as
 For example:
Cobalt-60 nucleus
Z = 27 & A = 60 (i.e. 33 neutrons)
identified as:
 Radium-226
Z = 88 & A = 226 (i.e.138 neutrons)
identified as:
X
A
Z
Co
60
27
Ra
226
88
 Classifications
Isotopes of an element ‫النيترونات‬ ‫عدد‬ ‫في‬ ‫يختلفوا‬ ‫لكن‬ ‫العنصر‬ ‫نفس‬ ‫هي‬ ‫اإليزوتوب‬
Atoms with same Z, but different number of neutrons (and A) e.g.
‘Nuclide’ refers to an atomic species, defined by its makeup of protons, neutrons, and
energy state
‘Isotope’ refers to various atomic forms of a given chemical element
Isobars ‫الكتلي‬ ‫العدد‬ ‫في‬ ‫تتشابهة‬ ‫مختلفة‬ ‫عناصر‬ ‫هي‬ ‫األيزوبار‬
Common atomic mass number A , e.g. 60Co and 60Ni
Isotones ‫النيترونات‬ ‫عدد‬ ‫في‬ ‫تتشابهة‬ ‫مختلفة‬ ‫عناصر‬ ‫هي‬ ‫األيزوتون‬
Common number of neutrons
e.g. 3H (tritium) and 4He
 Isomeric (metastable) state ‫اإلستقرار‬ ‫حالة‬ ‫في‬ ‫يختلفوا‬ ‫لكن‬ ‫العنصر‬ ‫نفس‬ ‫هو‬ ‫األيزومير‬
Excited nuclear state that exists for some time e.g 99mTc is an isomeric
state of 99Tc
1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE
‫الذري‬ ‫التركيب‬
Co
59
27 Co
60
27
radionuclide's
 1- The total number of protons and neutrons inside the
nucleus of the atom.
 2- The number of protons in an atom.
 3 - nuclide launches radiation
 4- A Isotopes that releases radiation.
Isotopes
 1 - atoms of a certain element have the same
number of protons but different numbers of
neutrons.
 2- The total number of protons and neutrons inside
the nucleus of the atom.
 3- The number of protons in an atom.
 4 - nuclide launches radiation.
 5. A Isotopes that releases radiation.
Hydrogen
isotopes
 Hydrogen is the only
chemical element whose
isotopes are different, since
the isotopes of other
elements are differentiated
by the corresponding mass.
The analog is called
hydrogen-2 deuterium,
while the hydrogen-3
analog is called tritium. The
common analog of
hydrogen, hydrogen-1,
which does not contain
neutrons, is called proteium.
Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 42
Chemical bonds between
atoms
Most atoms do not exist individually
but are associated with other atoms
in so-called chemical bonds:
Covalent bonds
Ionic bonds
Chemical bonds between atoms

A covalent bond, also called a molecular bond, is a
chemical bond that involves the sharing of electron pairs between
atoms.
 These electron pairs are known as shared pairs or bonding pairs,
and the stable balance of attractive and repulsive forces between
atoms, when they share electrons, is known as covalent bonding
Ionic bonding is the complete transfer of valence
electron(s) between atoms.
It is a type of chemical bond that generates two
oppositely charged ions.

In ionic bonds, the metal loses electrons to become a
positively charged cation, whereas the nonmetal
accepts those electrons to become a negatively
charged anion.
Test Chose the correct answer
 Covalent bond
1-The type of chemical bonds where the
atoms involved in electrons.
2-A group of atoms linked to a
chemical.
3-Element needs to gain electrons to
become chemically stable.
4-The type of chemical bond that is
formed by the attraction between
positive and negative ions
 Ionic bond
 1-The type of chemical bonds where the atoms
involved in electrons.
 2-A group of atoms linked to a chemical.
 3-Element needs to gain electrons to become
chemically stable.
 4-The type of chemical bond that is formed by the
attraction between positive and negative ions
 Positive ion
 1-An element that needs to lose electrons to become chemically
stable.
 2 - atom with a positive charge.
 3-A group of atoms linked to a chemical.
 4-element needs to gain electrons to become chemically stable.
 5-Atoms with negative charge.
 Metals
 1. An element that needs to lose electrons to become chemically
stable.
 2 - atom with a positive charge.
 3-A group of atoms linked to a chemical.
 4-element needs to gain electrons to become chemically stable.
 The molecule
 1. An element that needs to lose electrons to become chemically
stable.
 2 - atom with a positive charge.
 3. The type of chemical bonds where the atoms involved in
electrons.
 4. A group of atoms linked to a chemical.
 Non-metals
 1. An element that needs to lose electrons to
become chemically stable.
 2 - atom with a positive charge.
 3-A group of atoms linked to a chemical.
 4-element needs to gain electrons to become
chemically stable.
 Salt
 1-element needs to gain electrons to become
chemically stable.
 2-The type of chemical bond that is formed by the
attraction between positive and negative ions.
 3-atoms with a negative charge.
 4-The combination of metals and Non- metals.
 Negative ion
 1-An element that needs to lose electrons to become
chemically stable.
 2 - atom with a positive charge.
 3-A group of atoms linked to a chemical.
 4-element needs to gain electrons to become
chemically stable.
 5-Atoms with negative charge.
Chose the correct answer
Radioisotopes
 1- The total number of protons and neutrons inside the nucleus of
the atom.
 2- The number of protons in an atom.
 3 - Nuweida launches radiation.
 4. A Isotopes that releases radiation.
Periodic Table
Periodic Table
As we mentioned above, the number of protons and
therefore the number of electrons in the atom determines
their chemical properties.
 As the electrons are bound by certain orbits and
encapsulates, the elements with similar numbers of
electrons in their outer shells also exhibit similar
chemical properties.
As we see, the periodic table is divided into eight vertical
columns, and all the elements in the same column have
the same number of electrons in their outer shells and
thus have similar chemical properties.
The periodic table gives the name and symbol of each
element and its number and atomic weight
Periodic Table
For example Ca ,Barium (Ba), Sr and Radium (Ra) are all in
the same column of the periodic table and have similar
chemical properties.
Elements with an atomic number above 92 are artificially
obtained and are radically non-existent in nature, and are
radically important in relation to nuclear facilities.
Because calcium is one of the essential components of human
bone formation, other similar elements are believed to be
human bone-searching, where they will be treated by the body
in the same way as calcium.
This is of radioactive importance where it determines where
the radiation will affect the person exposed to radionuclides
such as radium.
1.1 INTRODUCTION
1.1.4. Classification of ionizing radiation
❑ Ionizing radiation carries enough energy per quantum to remove an
electron from an atom or molecule
❑
‫جزيء‬ ‫أو‬ ‫ذرة‬ ‫من‬ ‫إلكترون‬ ‫إلزالة‬ ‫كم‬ ‫لكل‬ ‫كافية‬ ‫طاقة‬ ‫يحمل‬ ‫المؤين‬ ‫اإلشعاع‬
• Introduces reactive and potentially damaging ion into the environment of the
irradiated medium
•
‫المشعع‬ ‫الوسط‬ ‫بيئة‬ ‫في‬ ‫ًا‬‫ر‬‫ضا‬ ‫يكون‬ ‫أن‬ ‫المحتمل‬ ‫ومن‬ ‫تفاعلي‬ ‫أيون‬ ‫يدخل‬
• Can be categorized into two types: ‫نوعين‬ ‫إلى‬ ‫تصنيفها‬ ‫يمكن‬
:
• Directly ionizing radiation ‫مباشرة‬ ‫مؤين‬ ‫إشعاع‬
• Indirectly ionizing radiation ‫مباشر‬ ‫غير‬ ‫بشكل‬ ‫مؤين‬ ‫إشعاع‬
• Both can traverse human tissue ‫البشرية‬ ‫األنسجة‬ ‫يخترق‬ ‫أن‬ ‫يمكن‬ ‫كالهما‬
• Can be used in medicine for imaging & therapy.
•
‫والعالج‬ ‫للتصوير‬ ‫الطب‬ ‫في‬ ‫استخدامه‬ ‫يمكن‬
Classification of radiation
 Radiation is classified into two main categories:
Non-ionizing radiation .
Ionizing radiation (can ionize matter) -
:
1- Directly ionizing radiation (charged particles)
electron, proton, alpha particle, heavy ion
2- Indirectly ionizing radiation (neutral particles)
photon (x ray, gamma ray), neutron
1.3 Classification of radiation
Classification of ionizing photon radiation
Ionizing photon radiation is classified into four
categories:
Characteristic x ray: Results from electronic
transitions between atomic shells.
Bremsstrahlung : Results mainly from electron-
nucleus Coulomb interactions.
Gamma ray: Results from nuclear transitions.
Annihilation quantum: (annihilation radiation)
 Results from positron-electron annihilation.
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION ‫اإلشعاع‬ ‫تصنيف‬
Radiation may be classified as:‫الي‬ ‫تصنيفه‬ ‫يمكن‬
Electromagnetic radiation
‫الكهرومغناطيسية‬ ‫الموجات‬
Particulate radiation
‫المشعة‬ ‫الجسيمات‬
• radiofrequency ‫الراديو‬ ‫موجات‬
• infrared ‫الحمراء‬ ‫تحت‬ ‫الموجات‬
• visible light ‫المرئي‬ ‫الضوء‬
ultraviolet ‫بنفسيجية‬ ‫الفوق‬
• X rays ‫السينية‬ ‫االشعة‬
• gamma rays ‫جاما‬ ‫اشعة‬
• electrons ‫اإللكترونات‬
• positrons ‫البوزيترونات‬
• protons ‫البروتونات‬
• neutrons ‫النيترونات‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION
1.2.1. Electromagnetic radiation‫الكهرومغناطيسية‬ ‫الموجات‬
c
x
y
z
Eo
Bo

c
x
y
z
Eo
Bo

Electromagnetic waves consist of
oscillating electric and magnetic
fields, which are at right angles to
each other and also to the direction
of wave propagation
‫مجالين‬ ‫الكهرومغناطيسيةمن‬ ‫الموجات‬ ‫تتكون‬
‫متعامدين‬ ‫ومغناطيسية‬ ‫كهربي‬
They are characterized by their:
• amplitudes ‫السعة‬ Eo and Bo
• wavelength ‫الموجي‬ ‫الطول‬ ( λ )
• frequency ‫التردد‬ (ν ) and
• speed ‫الموجة‬ ‫سرعة‬ c = λ ν
In vacuum, c = 3×108m/s
For X rays:
‫بالهرتز‬ ‫والتردد‬ ‫بالنانومتر‬ ‫يقاس‬ ‫الموجي‬ ‫الطول‬
• wavelength is usually
expressed in nanometre (nm)
(1 nm = 10-9m) and
• frequency is expressed in hertz (Hz)
(1 Hz = 1 cycle/sec = 1 sec-1)
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION
1.2.1. Electromagnetic radiation
Electromagnetic spectrum as a function of:
‫والتردد‬ ‫الموجي‬ ‫الطول‬ ‫في‬ ‫دالة‬ ‫الكهرومغناطيسية‬ ‫الموجات‬
• wavelength (nm)
• frequency (Hz)
WAVELENGTH (nm)
FREQUENCY (Hz)
1015 1012 109 106 10-6
103 1 10-3
3x102 3x105 3x108 3x1011 3x1014 3x1017 3x1020 3x1023
Radio
Television
Radar
MRI
Infrared
Ultra
violet Gamma rays
X Rays
diagnostic therapeutic
‫التشخيصي‬ ‫العالجي‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION
1.2.1. Electromagnetic radiation
Electromagnetic spectrum as a function of:
• photon energy (eV)
•
‫والطاقة‬ ‫الكهرومغناطيسية‬ ‫الموجات‬ ‫عالقة‬
ENERGY (eV)
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2 CLASSIFICATION OF RADIATION
1.2.1. Electromagnetic radiation
When interactions with matter are considered, electromagnetic radiation is
generally treated as series of individual particles, known as photons. The
energy E of each photon is given by:
‫الطاقة‬ ‫عطى‬ُ‫ت‬‫و‬ ،‫فوتونات‬ ‫أنه‬ ‫على‬ ‫المادة‬ ‫مع‬ ‫الكهرومغناطيسي‬ ‫اإلشعاع‬ ‫يتفاعل‬
E
‫بالعالقة‬ ‫فوتون‬ ‫لكل‬
:

/
hc
hv
E =
=
h (Planck’s constant) ‫بالنك‬ ‫=ثابت‬ 6.63×10-34 J∙s = 4.14×10-15 eV∙s
1 eV = 1.6×10-19 J, is the energy given to an electron by
accelerating it through 1 volt of electric potential difference
‫مقداره‬ ‫الكهربائي‬ ‫الجهد‬ ‫فرق‬ ‫خالل‬ ‫مروره‬ ‫عند‬ ‫لإللكترون‬ ‫الممنوحة‬ ‫الطاقة‬ ‫هي‬ ‫فولت‬ ‫اإللكترون‬
1
‫فولت‬
ν (Hz = s-1) is the frequency of electromagnetic wave ‫التردد‬
λ (m) is the wavelength of electromagnetic wave ‫الموجي‬ ‫الطول‬
In diagnostic radiology the photon energy is usually expressed in
units of keV. 1 keV = 1000 Ev
‫بوحدات‬ ‫التشخيصية‬ ‫األشعة‬ ‫في‬ ‫الفوتون‬ ‫طاقة‬ ‫عن‬ ‫التعبير‬ ‫يتم‬ ‫ما‬ ‫عادة‬
keV
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION
1.2.2. Particulate radiation
‫المشعة‬ ‫الجسيمات‬
In diagnostic radiology, the only particulate
radiation that needs to be considered is the
electron
‫في‬
‫األشعة‬
‫التشخيصية‬
‫والعالجية‬
‫بنهتم‬
‫باإللكترون‬
Rest Mass of Electron = 9.109 ×10-31 kg
Rest Energy of Electron = 511 keV = 0.511 MeV
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.2. CLASSIFICATION OF RADIATION
1.2.3. Ionizing and non-ionizing radiation
‫مؤين‬ ‫والغير‬ ‫المؤين‬ ‫اإلشعاع‬
Non-ionizing radiation - cannot ionize matter:
(electromagnetic radiation with energy below the far-
ultraviolet region, e.g. visible light, infrared and
radiofrequency)
‫تفقد‬ ‫المادة‬ ‫الطاقةلجعل‬ ‫من‬ ‫الكاف‬ ‫المقدار‬ ‫عندها‬ ‫ليس‬ ‫مؤين‬ ‫الغير‬ ‫اإلشعاع‬
‫احد‬
‫المرئ‬ ‫والضوء‬ ‫حمراء‬ ‫التحت‬ ‫االشعة‬ ‫مثل‬ ‫الكتروناتها‬
Ionizing radiation - can ionize matter: (fast charged
particles, X rays, gamma rays and neutrons)
‫اشعة‬ ‫مثل‬ ‫المادة‬ ‫تأيين‬ ‫علي‬ ‫المقدره‬ ‫عنده‬ ‫الذي‬ ‫هو‬ ‫المؤين‬ ‫اإلشعاع‬
‫والنيترونات‬ ‫والسينية‬ ‫جاما‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Ionizing radiation - can ionize matter either:
Directly : ‫المباشر‬
fast charged particles that
deposit their energy in matter
directly, through many small
Coulomb (electrostatic)
interactions with orbital
electrons along the particle
track
‫المادة‬ ‫في‬ ‫طاقتها‬ ‫تودع‬ ‫مشحونة‬ ‫جسيمات‬
‫كول‬ ‫تفاعالت‬ ‫من‬ ‫العديد‬ ‫خالل‬ ‫من‬ ، ‫مباشرة‬
‫وم‬
‫الصغيرة‬
(
‫اإللكتروستاتيكية‬
)
‫اإلل‬ ‫مع‬
‫كترونات‬
‫الجسيمات‬ ‫مسار‬ ‫طول‬ ‫على‬ ‫المدارية‬
Indirectly: ‫مباشر‬ ‫الغير‬
X- or gamma- ray photons or neutrons
that first transfer their energy to fast
charged particles released in one or a
few interactions in the matter through
which they pass. The resulting fast
charged particles then deposit their
energy directly in the matter
‫تنق‬ ‫شحنة‬ ‫لها‬ ‫ليس‬ ‫التي‬ ‫الجسيمات‬ ‫أو‬ ‫فوتونات‬
‫ل‬
‫تنطلق‬ ‫الشحن‬ ‫سريعة‬ ‫جسيمات‬ ‫إلى‬ ً‫ال‬‫أو‬ ‫طاقتها‬
‫في‬
‫خاللها‬ ‫من‬ ‫تمر‬ ‫التي‬ ‫المادة‬
.
‫الجسيمات‬ ‫تقوم‬ ‫ثم‬
‫مباشرة‬ ‫طاقتها‬ ‫بإيداع‬ ‫الناتجة‬ ‫بسرعة‬ ‫المشحونة‬
‫في‬
‫المادة‬
1.2. CLASSIFICATION OF RADIATION
1.2.3. Ionizing and non-ionizing radiation
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Ionization potential is the minimum energy required to ionize
an atom. For elements its magnitude ranges from a few eV for
alkali metals to 24.5 eV for helium. For water it is 12.6 eV
‫الذرة‬ ‫لتأين‬ ‫المطلوبة‬ ‫الطاقة‬ ‫من‬ ‫األدنى‬ ‫الحد‬ ‫هو‬ ‫التأين‬ ‫جهد‬
1.2. CLASSIFICATION OF RADIATION
1.2.3. Ionizing and non-ionizing radiation
Element Ionization potential (eV)
H 13.6
C 11.3
O 13.6
Mo 7.1
W 7.9
INTRODUCTION
1.1.5. Classification of indirectly ionizing photon radiation
‫مباشر‬ ‫غير‬ ‫بشكل‬ ‫المؤين‬ ‫الفوتون‬ ‫إشعاع‬ ‫تصنيف‬
❑ Consists of three main categories: ‫رئيسية‬ ‫فئات‬ ‫ثالث‬ ‫من‬ ‫تتكون‬
:
• Ultraviolet: limited use in medicine ‫البنفسجية‬ ‫فوق‬ ‫األشعة‬
:
‫الطب‬ ‫في‬ ‫محدود‬ ‫استخدام‬
• X ray: used in disease imaging and/or treatment Emitted by orbital or accelerated electrons
•
‫السينية‬ ‫األشعة‬
:
‫االلكترونات‬ ‫تعجيل‬ ‫او‬ ‫المدارات‬ ‫من‬ ‫تنتج‬ ‫العالجي‬ ‫أو‬ ‫الطبي‬ ‫التصوير‬ ‫في‬ ‫تستخدم‬
•  ray: used in disease imaging and/or treatment
• Emitted by the nucleus or particle decays
•
‫جاما‬ ‫أشعة‬
:
‫الجسيمات‬ ‫تحلل‬ ‫أو‬ ‫النواة‬ ‫من‬ ‫تنبعث‬ ‫العالجي‬ ‫أو‬ ‫الطبي‬ ‫التصوير‬ ‫في‬ ‫تستخدم‬
• Difference between X and  rays is based on the radiation’s origin
•
‫اإلشعاع‬ ‫منشأ‬ ‫على‬ ‫جاما‬ ‫واشعة‬ ‫السينية‬ ‫األشعة‬ ‫بين‬ ‫الفرق‬ ‫يعتمد‬
❑ The origin of these photons fall into 4 categories:
• Characteristic (fluorescence) X rays ‫المميزة‬ ‫السينية‬ ‫االشعة‬
(
‫الوميضية‬
)
• Bremsstrahlung X rays ‫االنكباحية‬ ‫السينية‬ ‫االشعة‬
• From nuclear transitions ‫النووي‬ ‫اإلضمحالل‬ ‫من‬ ‫الناتجة‬ ‫جاما‬ ‫أشعة‬
• Annihilation quanta ‫اإللكترونات‬ ‫إبادة‬ ‫من‬ ‫الناتجة‬ ‫جاما‬ ‫أشعة‬
1.1 INTRODUCTION
1.1.6. Characteristic X rays ‫المميزة‬ ‫السينية‬ ‫األشعة‬
❑ Orbital electrons inhabit atom’s minimal energy state
❑
‫الطاقة‬ ‫في‬ ‫أقل‬ ‫مدار‬ ‫إل‬ ‫اإللكترون‬ ‫إنتقال‬
❑ An ionization or excitation process leads to an open vacancy
❑
‫المدار‬ ‫في‬ ‫فراغ‬ ‫وجود‬ ‫الي‬ ‫تؤدي‬ ‫اإلثارة‬ ‫أو‬ ‫التأين‬ ‫عملية‬ ‫ان‬ ‫حيث‬
❑ An outer shell electron transitions to fill vacancy (~nsec)
❑
‫خارجي‬ ‫مدار‬ ‫من‬ ‫بإلكترون‬ ‫الفراغ‬ ‫هذا‬ ‫يعوض‬ ‫وبالتالي‬
❑ Liberated energy may be in the form of: ‫صورة‬ ‫في‬ ‫الطاقة‬ ‫من‬ ‫مقدار‬ ‫اإللكترون‬ ‫هذا‬ ‫يفقد‬ ‫بالتالي‬
‫فوتون‬
• Characteristic photon (fluorescence) ‫المميزة‬ ‫األشعة‬
(
‫الوميضية‬
)
• Energy = initial state binding energy - final state binding energy
•
‫الناتج‬ ‫الفوتون‬ ‫طاقة‬
=
‫األساسي‬ ‫بالمدار‬ ‫الربط‬ ‫طاقة‬
–
‫النهائي‬ ‫بالمدار‬ ‫الربط‬ ‫طاقة‬
• Photon energy is characteristic of the atom ‫الذرة‬ ‫تميز‬ ‫هذه‬ ‫الفتون‬ ‫وطاقة‬
• Transferred to orbital electron that
• Emitted with kinetic energy = transition energy - binding energy
• Called an Auger electron
•
‫حركة‬ ‫بطاقة‬ ‫أوجيور‬ ‫إلكترون‬ ‫يسمي‬ ‫مداري‬ ‫إلكترون‬ ‫الي‬ ‫الطاقة‬ ‫تنقل‬
=
‫اإلنتقالية‬ ‫الطاقة‬
–
‫الربط‬ ‫طاقة‬
1.1 INTRODUCTION
1.1.7. Bremsstrahlung ‫اإلنكباحية‬ ‫األشعة‬
❑ Translated from German as 'breaking radiation'
❑ Light charged particles (b- & b+) slowed down by interactions with other charged
particles in matter (e.g. atomic nuclei)
❑
‫ا‬ ‫من‬ ‫بالقرب‬ ‫مرورها‬ ‫عند‬ ‫السالبة‬ ‫او‬ ‫الموجبة‬ ‫بيتا‬ ‫جسيمات‬ ‫تباطؤ‬ ‫نتيجة‬ ‫اإلنكباحية‬ ‫األشعة‬ ‫تنتج‬
‫الذرية‬ ‫لنويات‬
❑ Kinetic energy loss converted to electromagnetic radiation
❑
‫ا‬ ‫الصفر‬ ‫من‬ ‫يبداء‬ ‫مستمر‬ ‫طيف‬ ‫ذو‬ ‫ويكون‬ ‫كهرومغناطيسي‬ ‫إشعاع‬ ‫إلي‬ ‫الحركة‬ ‫طاقة‬ ‫تتحول‬ ‫حيث‬
‫طاقة‬ ‫لي‬
‫األولي‬ ‫المشحون‬ ‫الجسيم‬
❑ Bremsstrahlung energy spectrum
• Non-discrete (i.e. continuous)
• Ranges: zero - kinetic energy of initial charged particle
❑ Central to modern imaging and therapeutic technology
• Can be used to produce X rays from an electrical energy source
•
‫كهربائية‬ ‫طاقة‬ ‫مصدر‬ ‫من‬ ‫السينية‬ ‫األشعة‬ ‫إلنتاج‬ ‫استخدامه‬ ‫يمكن‬
1.1 INTRODUCTION
1.1.8. Gamma rays ‫جاما‬ ‫أشعة‬
 Nuclear reaction or spontaneous nuclear decay may leave product (daughter)
nucleus in excited state

‫جا‬ ‫أشعة‬ ‫النواة‬ ‫تفقد‬ ‫حيث‬ ‫النووي‬ ‫اإلضمحالل‬ ‫او‬ ‫النووية‬ ‫للتفاعالت‬ ‫نتيجة‬ ‫جاما‬ ‫أشعة‬ ‫تنتج‬
‫اكثر‬ ‫لتصبح‬ ‫ما‬
‫استقرارا‬
,
‫اكبر‬ ‫تكون‬ ‫وطاقتها‬ ‫للعنصر‬ ‫مميز‬ ‫جاما‬ ‫إضمحالل‬
100
‫فولت‬ ‫إلكترون‬ ‫كيلو‬
 The nucleus can transition to a more stable state by emitting a  ray
 Emitted photon energy is characteristic of nuclear energy transition
  ray energy typically > 100 keV & wavelengths < 0.1 Å
1.1 INTRODUCTION
1.1.9. Annihilation quanta ‫البوزيترون‬ ‫تالشي‬ ‫طريق‬ ‫عن‬ ‫جاما‬ ‫أشعة‬ ‫إنتاج‬
 Positron results from:
• b+ nuclear decay
• high energy photon interacts with nucleus or orbital electron electric field
•
‫األزواج‬ ‫إنتاج‬ ‫من‬ ‫أو‬ ‫النووي‬ ‫اإلضمحالل‬ ‫من‬ ‫ينتج‬ ‫البوزيترون‬
 Positron kinetic energy (EK) loss in absorber medium by Coulomb interactions:
 Collisional loss when interaction is with orbital electron
 Radiation loss (bremsstrahlung) when interaction is with the nucleus
 Final collision (after all EK lost) with orbital electron (due to Coulomb attraction)
called positron annihilation

‫كوليمية‬ ‫بتفاعالت‬ ‫اإللكترون‬ ‫من‬ ‫لتفاعله‬ ‫نتيجة‬ ‫حركتة‬ ‫طاقة‬ ‫البوزيترون‬ ‫يفقد‬
:
-

1
-
‫مداري‬ ‫الكترون‬ ‫مع‬ ‫التصادم‬ ‫عند‬

2
-
‫النواة‬ ‫مع‬ ‫التصادم‬ ‫عند‬ ‫إنكباحية‬ ‫أشعة‬ ‫صورة‬ ‫في‬ ‫يفقد‬

3
-
‫جاما‬ ‫أشعة‬ ‫وينتج‬ ‫للبوزيترون‬ ‫تالشي‬ ‫يحدث‬ ‫المداري‬ ‫الكترون‬ ‫مع‬ ‫النهائية‬ ‫التصادمات‬
1.1 INTRODUCTION
1.1.9. Annihilation quanta ‫البوزيترون‬ ‫تالشي‬ ‫طريق‬ ‫عن‬ ‫جاما‬ ‫أشعة‬ ‫إنتاج‬
 During annihilation ‫التالشي‬ ‫عملية‬ ‫أثناء‬
 Positron & electron disappear
 Replaced by 2 oppositely directed annihilation quanta (photons)
 Each has energy = 0.511 MeV
 Conservation laws obeyed:
 Electric charge, linear momentum, angular momentum, total energy

‫طاقة‬ ‫منهم‬ ‫ولكل‬ ‫واإللكترون‬ ‫البوزيترون‬ ‫يختفي‬
0.511
‫الفوتون‬ ‫وينتج‬ ‫فولت‬ ‫الكترون‬ ‫ميجا‬
 In-flight annihilation
 Annihilation can occur while positron still has kinetic energy
 2 quanta emitted
 Not of identical energies
 Do not necessarily move at 180º
Thanks
Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 77
2- Introduction to Radiation Physics
X rays and Auger electrons
‫إجيور‬ ‫وإلكترون‬ ‫السينية‬ ‫األشعة‬
Dr. Mohamed Adnan
GULF HOUSE INSTITUTE
‫للتواصل‬
https://twitter.com/ghinstitutesa
http://roadinstitute.edu.sa/pages/Default.aspx
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
‫إلكترون‬ ‫وأجوير‬ ‫السينية‬ ‫األشعة‬ ‫إنتاج‬
When charged particles pass through matter they interact with the
atomic electrons and lose energy through the processes of ionization
and excitation
‫التأين‬ ‫عملية‬ ‫لتنتج‬ ‫طاقتها‬ ‫بعض‬ ‫تفقد‬ ‫المادة‬ ‫خالل‬ ‫المشحونة‬ ‫الجسيمات‬ ‫مرور‬ ‫عند‬
ionization
Atom of Na
K
L
M
ground state
K
L
M
K
L
M
ionization
K
L
M
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
If the transferred energy exceeds the
binding energy of the electron,
ionization occurs, resulting in the
electron ejected from the atom. An ion
pair consisting of the ejected electron
and the ionized, positively charged atom
is then formed
، ‫اإللكترون‬ ‫ربط‬ ‫طاقة‬ ‫المنقولة‬ ‫الطاقة‬ ‫تجاوزت‬ ‫إذا‬
‫من‬ ‫اإللكترون‬ ‫إخراج‬ ‫إلى‬ ‫يؤدي‬ ‫مما‬ ، ‫التأين‬ ‫يحدث‬
‫الذرة‬
.
‫اإللك‬ ‫من‬ ‫يتكون‬ ‫أيوني‬ ‫زوج‬ ‫تشكيل‬ ‫يتم‬ ‫ثم‬
‫ترون‬
‫الشحنة‬ ‫والموجبة‬ ‫المتأينة‬ ‫والذرة‬ ‫المقذوف‬
The average energy required to produce
an ion pair in air or soft tissue for
electrons is equal to 33.97 Ev
‫الهواء‬ ‫في‬ ‫أيوني‬ ‫زوج‬ ‫إلنتاج‬ ‫الالزمة‬ ‫الطاقة‬ ‫متوسط‬
‫أو‬
‫يساوي‬ ‫لإللكترونات‬ ‫الرخوة‬ ‫األنسجة‬
33.97
‫فولت‬
K
L
M
K
L
M
ejected electron
positive ion
ion pair
ion pair
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
When charged particles pass through matter they interact with the atomic
electrons and lose energy through the processes of ionization and excitation
‫من‬ ‫الطاقة‬ ‫وتفقد‬ ‫الذرية‬ ‫اإللكترونات‬ ‫مع‬ ‫تتفاعل‬ ‫فإنها‬ ، ‫المادة‬ ‫عبر‬ ‫المشحونة‬ ‫الجسيمات‬ ‫تمر‬ ‫عندما‬
‫خالل‬
‫واإلثارة‬ ‫التأين‬ ‫عمليات‬
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
K
L
M
Atom of Na
ground state
excited state
excitation
K
L
M
de-excitation
E = hn = Ei - Ef
K
L
M
E = hn
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
Whenever a vacancy is created in an inner electronic
shell, it is filled by an electron from a more distant (outer)
shell
‫خارجي‬ ‫بإلكترون‬ ‫داخلي‬ ‫إلكترون‬ ‫خروج‬ ‫نتيجة‬ ‫الفراغات‬ ‫ملء‬ ‫يتم‬
This results in a vacancy in this second outer shell which
is then filled by an electron (if available) from an even
more distant outer shell and the whole process repeats
producing a cascade of transitions
‫ذلك‬ ‫بعد‬ ‫ملؤه‬ ‫يتم‬ ‫الذي‬ ‫الثاني‬ ‫الخارجي‬ ‫الغالف‬ ‫في‬ ‫شاغر‬ ‫هذا‬ ‫عن‬ ‫وينتج‬
‫بواسطة‬
‫إلكترون‬
(
‫وجد‬ ‫إن‬
)
‫مم‬ ‫بأكملها‬ ‫العملية‬ ‫وتكرر‬ ‫ًا‬‫د‬‫بع‬ ‫أكثر‬ ‫خارجي‬ ‫غالف‬ ‫من‬
‫ينتج‬ ‫ا‬
‫التحوالت‬ ‫من‬ ‫سلسلة‬
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
The energy released in each transition is carried away by: the
emission of electromagnetic radiation
•
‫تحمل‬ ‫انتقالية‬ ‫مرحلة‬ ‫كل‬ ‫في‬ ‫المنبعثة‬ ‫الطاقة‬
:
‫الكهرومغناطيسي‬ ‫اإلشعاع‬ ‫انبعاث‬
depending on the atomic number of the material, and the electronic shells
involved, this radiation may be in the visible, ultraviolet, and X ray
portions of the spectrum
‫األ‬ ‫في‬ ‫اإلشعاع‬ ‫هذا‬ ‫يكون‬ ‫قد‬ ، ‫المعنية‬ ‫اإللكترونية‬ ‫والمدارات‬ ، ‫للمادة‬ ‫الذري‬ ‫العدد‬ ‫على‬ ‫ًا‬‫د‬‫اعتما‬
‫جزاء‬
‫الطيف‬ ‫من‬ ‫السينية‬ ‫واألشعة‬ ‫البنفسجية‬ ‫فوق‬ ‫واألشعة‬ ‫المرئية‬
in case of X rays, they are known as
characteristic or fluorescent X rays
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
• an electron ejected from another outer shell,
known as Auger electron
‫أجوير‬ ‫إلكترون‬ ‫يسمي‬ ‫الذرة‬ ‫يترك‬ ‫الذي‬ ‫اإللكترون‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.4. X RAYS
1.4.1. The production of characteristic X
rays
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L Kb
K
M
L Kb
K
M
L Kb
K
M
L
K
M
L
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
8 10
o de onda (10-11
m)
5 kV
Ka
alvo de W
alvo de Mo
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L Kb
K
M
L Kb
K
M
L Kb
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L
Ka
K
M
L Kb
K
M
L Kb
K
M
L Kb
K
M
L
K
M
L
• Kα X ray is emitted for
a
transition between
L and K shells
• Kβ X ray is emitted for
a
transition between
M or N and K shells
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
For tungsten (W):
the energies of the Kα and Kβ characteristic X
rays
are given by:
E (Kα1) = ELIII - EK = - 10.2 - (- 69.5) = 59.3 keV
E (Kα2) = ELI - EK = - 11.5- (- 69.5) = 58.0 keV
E (Kβ1) = EMIII - EK = - 2.3 - (- 69.5) = 67.2 keV
E (Kβ2) = ENIII- EK = - 0.4 - (- 69.5) = 69.1 keV
1.4. X RAYS
1.4.1. The production of characteristic X rays
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
For molybdenum (Mo):
Energies of K, L and M shell
are:
EK = - 20.0 keV
EL = - 2.6 keV
EM = - 0.4 keV
the energies of the Kα and Kβ
characteristic X rays are
given by:
E (Kα) = EL - EK = - 2.6 - (- 20.0) = 17.4 keV
E (Kβ) = EM - EK = - 0.4 - (- 20.0) = 19.6
keV
1.4. X RAYS
1.4.1. The production of characteristic X rays
cascading
electron
K L M
-20 keV
-2.6 keV
-0.4 keV -
-
- -
-
19.6 keV Kb
Characteristic
X ray
vacant
-
Molybdenum
atom
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
1.4. X RAYS
1.4.1. The production of Auger electrons
If the initial transition is from an M to a K
shell, and the Auger electron is also emitted
from the M shell, there will be two resultant
vacancies in the M shell
‫إذا‬
‫كان‬
‫االنتقال‬
‫األولي‬
‫من‬
‫قشرة‬
M
‫إلى‬
‫قشرة‬
K
،
‫وانبعاث‬
‫إلكترون‬
Auger
‫ًا‬‫ض‬‫أي‬
‫من‬
‫قشرة‬
M
،
‫فسيكون‬
‫هناك‬
‫شاغران‬
‫ناتجان‬
‫في‬
‫قشرة‬
M
The kinetic energy of the Auger electron is
thus determined by the difference between the
binding energy of the shell with the initial
vacancy and the sum of the binding energies
associated with the two vacancies which are
created. In case of molybdenum atom, the
energy of the Auger electron is given by:
‫وهكذا‬
‫يتم‬
‫تحديد‬
‫الطاقة‬
‫الحركية‬
‫إللكترون‬
‫أوجير‬
‫من‬
‫خالل‬
‫الفرق‬
‫بين‬
‫طاقة‬
‫ربط‬
‫القشرة‬
‫مع‬
‫الشغور‬
‫األولي‬
‫ومجموع‬
‫طا‬
‫قات‬
‫الربط‬
‫المرتبطة‬
‫بالشواغرين‬
‫اللذين‬
‫يتم‬
‫إنشاؤهما‬
.
‫في‬
‫حا‬
‫لة‬
‫ذرة‬
‫الموليبدينوم‬
،
‫يتم‬
‫إعطاء‬
‫طاقة‬
‫إلكترون‬
‫أوجير‬
‫من‬
‫خالل‬
:
E (Auger) = EM + EM - EK = - 0.4 - 0.4 - (- 20.0) = 19.2 keV
cascading
electron
K L M
-20 keV
-2.6 keV
-0.4 keV -
-
- - -
-
19.2 keV
Auger
electron
vacant
Molybdenum
atom
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
Auger electron emission is more important for materials of low atomic
number and for transitions amongst outer shells
‫يعد‬
‫انبعاث‬
‫إلكترون‬
‫أوجير‬
‫أكثر‬
‫أهمية‬
‫للمواد‬
‫ذات‬
‫العدد‬
‫الذري‬
‫المنخفض‬
‫وللتحوالت‬
‫بين‬
‫المدارات‬
‫الخارجية‬
The K-fluorescence yield is close to zero for low atomic number materials,
but increases with atomic number and is 0.007, 0.17, 0.60 and 0.93 for
oxygen, calcium, selenium and gadolinium respectively
‫إنتاجية‬
‫الفلورة‬
K
‫قريبة‬
‫من‬
‫الصفر‬
‫للمواد‬
‫ذات‬
‫العدد‬
‫الذري‬
‫المنخفض‬
،
‫لكنها‬
‫تزداد‬
‫مع‬
‫العدد‬
‫الذري‬
‫و‬
‫هي‬
0.007
‫و‬
0.17
‫و‬
0.60
‫و‬
0.93
‫لألكسجين‬
‫والكالسيوم‬
‫والسيلينيوم‬
‫والجادولينيوم‬
‫على‬
‫التوالي‬
When considering energy deposition in matter it is important to know
whether a fluorescent X ray or an Auger electron is emitted
‫إ‬ ‫أو‬ ‫الفلورية‬ ‫السينية‬ ‫األشعة‬ ‫كانت‬ ‫إذا‬ ‫ما‬ ‫معرفة‬ ‫المهم‬ ‫من‬ ، ‫المادة‬ ‫في‬ ‫الطاقة‬ ‫ترسب‬ ‫في‬ ‫النظر‬ ‫عند‬
‫لكترون‬
‫تنبعث‬ ‫أوجيه‬
The probability of emission of a fluorescent X ray is known as the
fluorescent yield, denoted ω and the probability of emitting an Auger
electron is 1- ω
،‫إليه‬ ‫المشار‬ ، ‫الفلوري‬ ‫بالعائد‬ ‫الفلورية‬ ‫السينية‬ ‫األشعة‬ ‫انبعاث‬ ‫احتمال‬ ‫ُعرف‬‫ي‬
‫انب‬ ‫واحتمال‬
‫أوجيه‬ ‫إلكترون‬ ‫عاث‬
‫هو‬
1.4. X RAYS
1.4.1. The production of characteristic X rays and Auger electrons
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
1.4. X RAYS
1.4.2. Radiation from an accelerated charge, Bremsstrahlung
In inelastic interactions of the fast electrons with atomic nuclei as they
pass through matter, the electron path is deflected and energy is
transferred to a photon, which is emitted
‫الم‬ ‫عبر‬ ‫مرورها‬ ‫أثناء‬ ‫الذرية‬ ‫النوى‬ ‫مع‬ ‫السريعة‬ ‫لإللكترونات‬ ‫المرنة‬ ‫غير‬ ‫التفاعالت‬ ‫في‬
‫ينحرف‬ ، ‫ادة‬
‫منه‬ ‫ينبعث‬ ‫الذي‬ ‫الفوتون‬ ‫إلى‬ ‫الطاقة‬ ‫نقل‬ ‫ويتم‬ ‫اإللكترون‬ ‫مسار‬
The emitted photon is known as
Bremsstrahlung, which means
“brake radiation”, in German
‫اإلنكباحية‬ ‫السينية‬ ‫األشعة‬ ‫تنبعث‬
The energy of the emitted photon can
take any value from zero up to the
energy of the initial electron,
producing a continuous spectrum
‫من‬ ‫قيمة‬ ‫أي‬ ‫المنبعث‬ ‫الفوتون‬ ‫طاقة‬ ‫تأخذ‬ ‫أن‬ ‫يمكن‬
‫طي‬ ‫ينتج‬ ‫مما‬ ، ‫األولي‬ ‫اإللكترون‬ ‫طاقة‬ ‫إلى‬ ‫الصفر‬
‫ا‬ً‫ف‬
‫ا‬ً‫مستمر‬
Bremsstrahlung photons are the major
component of the X ray spectrum emitted by
X ray tubes
‫في‬ ‫الرئيسي‬ ‫العنصر‬ ‫هي‬ ‫اإلنكباحية‬ ‫السينية‬ ‫األشعة‬
‫طيف‬
‫السينية‬ ‫األشعة‬ ‫أنابيب‬ ‫من‬ ‫المنبعثة‬ ‫السينية‬ ‫األشعة‬
elétron
energético
elétron menos energético
raio X de
freamento
elétron
energético
elétron menos energético
raio X de
freamento
Dr. Mohamed Adnan RSO Training Course Gulf House Institute
2020
The angle of emission of the Bremsstrahlung photons depends upon
the electron energy:
‫تعتمد‬
‫زاوية‬
‫انبعاث‬
‫فوتونات‬
‫األشعة‬
‫اإلنكباحية‬
‫على‬
‫طاقة‬
‫اإللكترون‬
• for electron energies much greater than the rest energy of the
electron, the angular distribution is peaked in the forward direction
•
‫بالنسبة‬
‫لإلكترون‬
‫ذو‬
‫الطاقاة‬
‫العالية‬
‫اكبر‬
‫من‬
‫طاقة‬
‫ربط‬
‫اإللكترون‬
،
‫يتم‬
‫توزيع‬
‫التو‬
‫زيع‬
‫الزاوي‬
‫في‬
‫االتجاه‬
‫األمامي‬
• when the electron energy is low, the radiation is mainly emitted
between 60 and 90 degrees to the forward direction.
•
‫عندما‬
‫تكون‬
‫طاقة‬
‫اإللكترون‬
‫منخفضة‬
،
‫ينبعث‬
‫اإلشعاع‬
‫بشكل‬
‫رئيسي‬
‫بين‬
‫زاويتي‬
60
‫و‬
90
‫درجة‬
‫إلى‬
‫االتجاه‬
‫األمامي‬
The probability of Bremsstrahlung emission is proportional to Z2. But
even for tungsten (Z = 74) the efficiency of Bremsstrahlung
production is less than 1% for 100 keV electrons
‫مع‬ ‫يتناسب‬ ‫اإلنكباحية‬ ‫األشعة‬ ‫انبعاث‬ ‫احتمال‬
Z2.
‫للتنغستن‬ ‫بالنسبة‬ ‫حتى‬ ‫ولكن‬
(
Z = 74
‫فإن‬
‫اإلنكباحية‬ ‫األشعة‬ ‫إنتاج‬ ‫كفاءة‬
‫من‬ ‫أقل‬
1
‫لإللكترونات‬ ٪
100
‫فولت‬ ‫كيلو‬
1.4.2. Radiation from an accelerated charge, Bremsstrahlung
‫الشحنات‬ ‫تعجيل‬ ‫نتيجة‬ ‫اإلنكباحية‬ ‫األشعة‬
1.1 INTRODUCTION
1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬
❑ Exposure: X ‫التعرض‬
• Ability of photons to ionize air ‫الهواء‬ ‫تأيين‬ ‫علي‬ ‫الفوتون‬ ‫قدرة‬
❑ Kerma: K (acronym for Kinetic Energy Released in MAtter)
❑
‫الكيرما‬
:
‫المادة‬ ‫من‬ ‫الكتلة‬ ‫وحدة‬ ‫في‬ ‫المنقولة‬ ‫الطاقة‬ ‫وهي‬ ‫المادة‬ ‫في‬ ‫المودعة‬ ‫الحركة‬ ‫الطاقة‬ ‫هي‬
‫مباشرة‬ ‫الغير‬ ‫المؤينة‬ ‫االشعة‬ ‫من‬ ‫الممتصة‬
• Energy transferred to charged particles per unit mass of the absorber
• Defined for indirectly ionizing radiation
❑ Dose (also referred to as absorbed dose):
• Energy absorbed per unit mass of medium

‫الجرعة‬
(
‫الممتصة‬ ‫بالجرعة‬ ‫ا‬ً‫ض‬‫أي‬ ‫إليها‬ ‫يشار‬
:)
‫الوس‬ ‫من‬ ‫كتلة‬ ‫وحدة‬ ‫لكل‬ ‫الممتصة‬ ‫الطاقة‬ ‫وهي‬
‫ط‬
1.1 INTRODUCTION
1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬
❑ Equivalent dose: 𝐻T
• Dose multiplied by radiation weighting factor wR
• When different types of radiation are present, 𝐻T is the sum of all of the individual weighted
contributions
•
‫اإلشعاع‬ ‫معامل‬ ‫في‬ ‫الجرعة‬ ‫مضروب‬ ‫وهي‬ ‫المكافئة‬ ‫الجرعة‬
(
20
‫ألفا‬ ‫لجسيمات‬
–
1
‫وااللكترونات‬ ‫وجاما‬ ‫اكس‬ ‫ألشعة‬
)
❑ Effective dose: E
• 𝐻𝑇 multiplied by a tissue weighting factor wT
•
‫للنسيج‬ ‫الوزي‬ ‫المعامل‬ ‫في‬ ‫المكافئة‬ ‫الجرعة‬ ‫مضروب‬ ‫وهي‬ ‫الفعالة‬ ‫الجرعه‬
❑ Activity: A ‫االشعاعية‬ ‫الشدة‬
:
‫الكيوري‬ ‫او‬ ‫بالبيكرل‬ ‫وتقاس‬ ‫الزمن‬ ‫وحدة‬ ‫في‬ ‫النووية‬ ‫االضمحالالت‬ ‫عدد‬ ‫وهي‬
• Number of nuclear decays per unit time
• Its SI unit, becquerel (Bq), corresponds to one decay per second.
1.1 INTRODUCTION
1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬
Thanks
Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 94
1- Introduction to Radiation Physics
‫اإلشعاعية‬ ‫الفيزياء‬
Dr. Mohamed Adnan
GULF HOUSE INSTITUTE
‫للتواصل‬
https://twitter.com/ghinstitutesa
http://roadinstitute.edu.sa/pages/Default.aspx
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Chapter 1. TABLE OF CONTENTS
1.1. Introduction ‫مقدمة‬
1.2. Classification of radiation ‫اإلشعاع‬ ‫تصنيف‬
1.3. Atomic and nuclear structure ‫للمادة‬ ‫والنووي‬ ‫الذري‬ ‫التركيب‬
1.4. X rays ‫السينية‬ ‫األشعة‬
Physical quantities and units
• The SI International system of units is founded on base units for seven
physical quantities:
• Quantity SI unit
• length meter (m)
• mass m kilogram (kg)
• time t second (s)
• electric current (I) ampere (A)
• temperature (T) Kelvin (K)
• amount of substance mole (mol)
• luminous intensity candela (cd)
Basic definitions for atomic structure
• The constituent particles forming an atom are
protons, neutrons and electrons. Protons and neutrons
are known as nucleons and form the nucleus of the atom.
Basic definitions for atomic structure
• Protons: are particles with a positive charge
and mass of 1 unit of atomic mass.
• Neutron: Within the nucleus without charge
and mass of 1 unit of atomic mass.
• Electrons: are negatively charged particles and
mass equal to 1/1840 of atomic mass unit.
•
Atomic mass unit: It is defined as one twelfth
of the mass of an atom of carbon-12 .
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions ‫األساسية‬ ‫التعريفات‬
Most of the mass of the atom is concentrated in the atomic
nucleus which consists of:‫النواة‬ ‫في‬ ‫تتركز‬ ‫الذرة‬ ‫كنلة‬
• Z protons and
• (A – Z) = N neutrons
Z: Atomic number ‫الذري‬ ‫العدد‬
(
‫البروتونات‬ ‫عدد‬
)
A: Atomic mass number ‫الكتلي‬ ‫العدد‬
(
‫الربوتونات‬
+
‫النيترون‬
)
Unified atomic mass unit μ: a unit used for specifying the
masses of atoms ‫هي‬ ‫الذرية‬ ‫الكتلة‬ ‫وحدة‬
1/12
‫الكربون‬ ‫كتلة‬ ‫من‬
-
12
1 μ = 1/12 of the mass of the 12C atom or 931.5 MeV/c2
An atom is composed of a central nucleus surrounded by a cloud of
negatively charged electrons
‫الشحنة‬ ‫سالبة‬ ‫باإللكترونات‬ ‫محاطة‬ ‫نواة‬ ‫من‬ ‫الذرة‬ ‫تتكون‬
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.1. Basic definitions
Cs
137
55
3
/
2
A
0155
.
0
98
.
1
A
+
=
Z
Empirical relation between A and Z
Ra
226
88
Co
60
27
nucleus of Cobalt-60
with 27 protons and
33 neutrons
nucleus of Cesium-137
with 55 protons and
82 neutrons
nucleus of Radium-226
with 88 protons and
138 neutrons
X
A
Z
Chemical
symbol for
the element
Atomic mass
number =
Z+N
Atomic
number
X-A
or
(Co-60)
(Cs-137)
(Ra-226)
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Geiger and Marsden found that:
•
positive charge
negative electrons
Thomson atomic model Rutherford atomic model
positive charge
negative electrons
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Visible lines of emission spectrum for Hydrogen
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Diagram representing Bohr’s model of
the hydrogen atom, in which the
orbiting electron is allowed to be only
in specific orbits of discrete radii
‫لإلكترونات‬ ‫الطاقة‬ ‫مستويات‬ ‫يوضح‬ ‫الرسم‬
proton
M, + e
r
electron
m, - e
F
v
ground state
excited state
Quantization of energy, with n = 1, 2, 3...
2
6
.
13
)
eV
(
n
En −
=
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020
Zero Valence e-
N
M
K
-13.6
-3.4
-1.51
Hydrogen Z = 1
K series
L series
Energy (eV)
L
Energy (eV)
N
M
L
K
L series
K series
Tungsten Z = 74
Valence e-
Zero
- 11,500
- 69,500
- 2,300
Energy levels for hydrogen and tungsten. Possible
transitions between the various energy levels are shown
with arrows
‫والتنجستين‬ ‫الهيدروجين‬ ‫لذرتي‬ ‫الطاقة‬ ‫مستويات‬
1.3. ATOMIC AND NUCLEAR STRUCTURE
1.3.2. Atomic structure
Chose the correct answer
• Known as the atomic number of any atom (element – isotope)?
• 1-The number of photons in the atom
• 2-The number of neutrons in the atom
• 3-The number of protons in the atom
• 4-Total number of protons and neutrons In the nucleus
• Atom
• 1-Positively charged particles in the nucleus of the atom.
• 2- Particles circulate around the nucleus in the atom.
• 3-The basic construction unit in the article.
• 4- particles with no electrical charge and in the nucleus of the atom.
• 5- Atomic substances have the same number of protons
•Protons
• 1-Positively charged particles in the nucleus of the atom.
• 2- Particles circulate around the nucleus in the atom.
• 3-The basic construction unit in the article.
• 4- particles with no electrical charge and in the nucleus of the atom.
• 5- Atomic substances have the same number of protons
•neutrons
• 1-Positively charged particles in the nucleus of the atom.
• 2- Particles circulate around the nucleus in the atom.
• 3-The basic construction unit in the article.
• 4- particles with no electrical charge and in the nucleus of the atom.
• 5- Atomic substances have the same number of protons
• Atomic number
• 1 - atoms of a certain element have the same number of protons but different numbers of
neutrons.
• 2-The total number of protons and neutrons inside the nucleus of the atom.
• 3 - A general expression that symbolizes any counterparty to any element.
• 4-The number of protons in an atom.
• Known mass number of the atom?
• 1-The number of photons in the atom
• 2-The number of neutrons in the atom
• 3-The number of protons in the atom
• 4-Total number of protons and neutrons In the nucleus
• electron
• 1-Positively charged particles in the nucleus of the atom.
• 2- Particles circulate around the nucleus in the atom.
• 3-The basic construction unit in the article.
• 4- particles with no electrical charge and in the nucleus of
the atom.
• 5- Atomic substances have the same number of protons
• element
• 1-Positively charged particles in the nucleus of the atom.
• 2- Particles circulate around the nucleus in the atom.
• 3-The basic construction unit in the article.
• 4- particles with no electrical charge and in the nucleus of
the atom.
• 5- Atomic substances have the same number of protons
• According to the Bohr model of the atom nucleus of an
atom, which consists?
• 1-The nucleus is made up of protons and neutrons and
orbits around electrons in orbits.
• 2- Nucleus by protons, neutrons and electrons.
• 3-The nucleus is made up of protons and electrons and is
orbited by neutrons
• According to the Bohr model of atoms, electrons can
move freely within the atom( ).
• According to the Bohr model of the atom when the
electrons are able to change its orbit?
Isotopes, radioisotopes and radionuclide's
•Isotopes are atoms of an element
•1- It has the same number of protons
•2- It has a different number of neutrons.
•3 - have the same chemical properties .. Why?
•4 - The atomic mass has different ........ Why?
•5. They may have different radiological properties.
Thanks
4 RADIOACTIVITY
•DR. MOHAMED ADNAN
GULF HOUSE INSTITUTE
•HTTPS://TWITTER.COM/GHINSTITUTESA
HTTP://ROADINSTITUTE.EDU.SA/PAGES/DEFAULT.ASPX
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
• Radioactivity is a process by which an unstable nucleus (parent)
decays into a new nuclear configuration (daughter) that may be
stable or unstable.
• Radioactive decay involves a transition from the quantum state
of the parent P to a quantum state of the daughter D.
• The energy difference between the two quantum states is called
the decay energy Q
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
• All radioactive processes are governed by the same formalism
based on:
• Specific activity a is the parent’s activity per unit mass:
NA Avogadro’s number
A atomic mass number
A(t) = N(t)
a =
A (t)
M
=
N(t)
M
=
NA
A
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
• Activity represents the total number of disintegrations (decays) of
parent nuclei per unit time.
• The SI unit of activity is the becquerel (1 Bq = 1 s-1).
Both becquerel and hertz correspond to s-1 yet hertz expresses
frequency of periodic motion, while becquerel expresses activity.
• The older unit of activity is the curie , originally
defined as the activity of 1 g of radium-226.
Currently, the activity of 1 g of radium-226 is 0.988 Ci.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 5
(1 Ci = 3.7 1010
s−1
)
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
• Decay of radioactive parent P into stable daughter D:
• The number of radioactive parent nuclei as a function of time t is:
• The activity of the radioactive parent as a function of time t is:
where is the initial activity at time t = 0.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 7
NP
(t) = NP
(0)e
−Pt
AP
(t) = P
NP
(t) = P
NP
(0)e
−Pt
= AP
(0)e
−Pt
NP
(t)
AP
(t)
0
P( )
A
P
P
⎯ →
⎯ D
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
Parent activity
plotted against time t
illustrating:
• Exponential decay
of the activity
• Concept of half
life
• Concept of mean
life
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 8
AP
(t)
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
• Half life of radioactive parent P is the time during which
the number of radioactive parent nuclei decays from the initial
value at time t = 0 to half the initial value:
• The decay constant and the half life are related as
follows:
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 9
(t1/2
)P
NP
(0)
NP
(t = t1/2
) = (1/ 2)NP
(0) = NP
(0)e
−P (t1/2 )P
P
(t1/2
)P
P
=
ln2
(t1/2
)P
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.7 RADIOACTIVITY
Parent and daughter activities against time for
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 12
P
P
⎯ →
⎯ D
D
⎯ →
⎯ G
At
the parent and daughter
activities are equal and
the daughter activity reaches
its maximum.
and
t = tmax
0
max
D
d
d t t
t =
=
A
tmax
=
ln
D
P
D
− P
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.8 ACTIVATION OF NUCLIDES
• Radioactivation of nuclides occurs when a parent nuclide P is
bombarded with thermal neutrons in a nuclear reactor and transforms
into a radioactive daughter nuclide D that decays into a
granddaughter nuclide G.
• The probability for radioactivation to occur is governed by the cross
section for the nuclear reaction and the neutron fluence rate .
• The unit of is barn per atom where
• The unit of is
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.8 SLIDE 1
D
P D G


→ →


1 barn = 1 b = 10−24
cm2
.

 cm−2
s−1
.
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.8 ACTIVATION OF NUCLIDES
• An important example of nuclear activation is the production of
the cobalt-60 radionuclide through bombarding stable cobalt-
59 with thermal neutrons
• For cobalt-59 the cross section
• Typical reactor fluence rates are of the order of 1014 .
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.8 SLIDE 4
59 60
27 27
Co + n Co + 
→ 59 60
27 27
Co(n, ) Co

or
 is 37 b/atom
cm−2
s−1

1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Radioactive decay is a process by which unstable nuclei reach a more
stable configuration.
• There are four main modes of radioactive decay:
• Alpha decay
• Beta decay
• Beta plus decay
• Beta minus decay
• Electron capture
• Gamma decay
• Pure gamma decay
• Internal conversion
• Spontaneous fission
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 1
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Nuclear transformations are usually accompanied by emission of
energetic particles (charged particles, neutral particles, photons,
neutrinos)
• Radioactive decay Emitted particles
• Alpha decay particle
• Beta plus decay particle (positron), neutrino
• Beta minus decay particle (electron), antineutrino
• Electron capture neutrino
• Pure gamma decay photon
• Internal conversion orbital electron
• Spontaneous fission fission products
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 2

+
−
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• In each nuclear transformation a number of physical quantities
must be conserved.
• The most important conserved physical quantities are:
• Total energy
• Momentum
• Charge
• Atomic number
• Atomic mass number (number of nucleons)
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 3
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Total energy of particles released by the transformation process is
equal to the net decrease in the rest energy of the neutral atom,
from parent P to daughter D.
• The decay energy (Q value) is given as:
M(P), M(D), and m are the nuclear rest masses of the parent,
daughter and emitted particles.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 4
 
  2
(P) (D)
Q M M m c
= − +
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Alpha decay is a nuclear transformation in which:
• An energetic alpha particle (helium-4 ion) is emitted.
• The atomic number Z of the parent decreases by 2.
• The atomic mass number A of the parent decreases by 4.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 5
Z
A
P → Z−2
A−4
D + 2
4
He
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Henri Becquerel discovered alpha decay in 1896; George
Gamow explained its exact nature in 1928 using the quantum
mechanical effect of tunneling.
• Hans Geiger and Ernest Marsden used 5.5 MeV alpha particles
emitted by radon-222 in their experiment of alpha particle
scattering on a gold foil.
• Kinetic energy of alpha particles released by naturally
occurring radionuclides is between 4 and 9 MeV.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 6
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Best known example of alpha decay is the transformation of
radium-226 into radon-222 with a half life of 1600 y.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 7
88
226
Ra → 86
222
Rn+
Z
A
P → Z−2
A−4
D + 2
4
He
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Beta plus decay is a nuclear transformation in which:
• A proton-rich radioactive parent nucleus transforms a proton into a
neutron.
• A positron and neutrino, sharing the available energy, are ejected from
the parent nucleus.
• The atomic number Z of the parent decreases by one; the atomic mass
number A remains the same.
• The number of nucleons and total charge are conserved in the beta
decay process and the daughter D can be referred to as an isobar of the
parent P.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 8
Z
A
P → Z-1
A
D + e+
+e
p → n+ e+
+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• An example of a beta plus decay is the transformation of
nitrogen-13 into carbon-13 with a half life of 10 min.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 9
Z
A
P → Z-1
A
D + e+
+e
p → n+ e+
+e
7
13
N→ 6
13
C + e+
+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Beta minus decay is a nuclear transformation in which:
• A neutron-rich radioactive parent nucleus transforms a neutron into a
proton.
• An electron and anti-neutrino, sharing the available energy, are ejected
from the parent nucleus.
• The atomic number Z of the parent increases by one; the atomic mass
number A remains the same.
• The number of nucleons and total charge are conserved in the beta
decay process and the daughter D can be referred to as an isobar of the
parent P.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 10
n→ p + e−
+e Z
A
P → Z+1
A
D + e−
+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• An example of beta minus decay is the transformation of
cobalt-60 into nickel-60 with a half life of 5.26 y.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 11
n→ p + e−
+e
Z
A
P → Z+1
A
D + e−
+e
27
60
Co → 28
60
Ni+ e−
+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Electron capture decay is a nuclear transformation in which:
• A nucleus captures an atomic orbital electron (usually K shell).
• A proton transforms into a neutron.
• A neutrino is ejected.
• The atomic number Z of the parent decreases by one; the atomic mass
number A remains the same.
• The number of nucleons and total charge are conserved in the beta decay
process and the daughter D can be referred to as an isobar of the parent P.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 12
p + e−
= n+e

−
+ = +
A A
Z Z-1 e
P e D
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• An example of nuclear decay by electron capture is the
transformation of berillium-7 into lithium-7
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 13
p + e−
= n+e
Z
A
P + e−
= Z+1
A
D +e
4
7
Be + e−
= 3
7
Li+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Gamma decay is a nuclear transformation in which an excited
parent nucleus P, generally produced through alpha decay,
beta minus decay or beta plus decay, attains its ground state
through emission of one or several gamma photons.
• The atomic number Z and atomic mass number A do not change
in gamma decay.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 14
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
❑ In most alpha and beta decays the daughter de-excitation
occurs instantaneously, so that we refer to the emitted gamma
rays as if they were produced by the parent nucleus.
❑ If the daughter nucleus de-excites with a time delay, the excited
state of the daughter is referred to as a metastable state and
process of de-excitation is called an isomeric transition.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 15
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Examples of gamma decay are the transformation of cobalt-60
into nickel-60 by beta minus decay, and trans-formation of
radium-226 into radon-222 by alpha decay.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 16
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Internal conversion is a nuclear transformation in which:
• The nuclear de-excitation energy is transferred to an orbital electron
(usually K shell) .
• The electron is emitted form the atom with a kinetic energy equal to the
de-excitation energy less the electron binding energy.
• The resulting shell vacancy is filled with a higher-level orbital electron
and the transition energy is emitted in the form of characteristic photons
or Auger electrons.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 17
Z
A
X*
→ Z
A
X+
+ e−
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• An example for both the emission of gamma photons and
emission of conversion electrons is the beta minus decay of
cesium-137 into barium-137 with a half life of 30 y.
55
137
Cs → 56
137
Ba + e−
+ e
n→ p + e−
+e
Z
A
P → Z+1
A
D + e−
+e
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• Spontaneous fission is a nuclear transformation by which a high
atomic mass nucleus spontaneously splits into two nearly equal
fission fragments.
• Two to four neutrons are emitted during the spontaneous fission
process.
• Spontaneous fission follows the same process as nuclear fission
except that it is not self-sustaining, since it does not generate the
neutron fluence rate required to sustain a “chain reaction”.
1.2 ATOMIC AND NUCLEAR STRUCTURE
1.2.9 MODES OF RADIOACTIVE DECAY
• In practice, spontaneous fission is only energetically feasible for
nuclides with atomic masses above 230 u or with .
• The spontaneous fission is a competing process to alpha decay;
the higher is A above uranium-238, the more prominent is the
spontaneous fission in comparison with the alpha decay and the
shorter is the half-life for spontaneous fission.
REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 20
Z2
/A  235
•Thanks
2 RADIATION
INTERACTIONS
WITH MATTER
•DR. MOHAMED ADNAN
GULF HOUSE INSTITUTE
•HTTPS://TWITTER.COM/GHINSTITUTESA
HTTP://ROADINSTITUTE.EDU.SA/PAGES/DEFAULT.ASPX
CHAPTER 1. TABLE OF CONTENTS
1.1. INTRODUCTION
1.2. ATOMIC AND NUCLEAR STRUCTURE
1.3. ELECTRON INTERACTIONS
1.4. PHOTON INTERACTIONS
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.
1.3 ELECTRON INTERACTIONS
• AS AN ENERGETIC ELECTRON TRAVERSES MATTER, IT UNDERGOES
COULOMB INTERACTIONS WITH ABSORBER ATOMS, I.E., WITH:
• ATOMIC ORBITAL ELECTRONS
• ATOMIC NUCLEI
• THROUGH THESE COLLISIONS THE ELECTRONS MAY:
• LOSE THEIR KINETIC ENERGY (COLLISION AND RADIATION LOSS)
• CHANGE DIRECTION OF MOTION (SCATTERING)
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 1
1.3ELECTRON INTERACTIONS
• ENERGY LOSSES ARE DESCRIBED BY STOPPING POWER.
• SCATTERING IS DESCRIBED BY ANGULAR SCATTERING POWER.
• COLLISION BETWEEN THE INCIDENT ELECTRON AND AN ABSORBER ATOM
MAY BE:
• ELASTIC
• INELASTIC
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide2
1.3ELECTRON INTERACTIONS
• IN AN ELASTIC COLLISION THE INCIDENT ELECTRON IS
DEFLECTED FROM ITS ORIGINAL PATH BUT NO ENERGY LOSS
OCCURS.
• IN AN INELASTIC COLLISION WITH ORBITAL ELECTRON THE
INCIDENT ELECTRON IS DEFLECTED FROM ITS ORIGINAL PATH
AND LOSES PART OF ITS KINETIC ENERGY.
• IN AN INELASTIC COLLISION WITH NUCLEUS THE INCIDENT
ELECTRON IS DEFLECTED FROM ITS ORIGINAL PATH AND LOSES
PART OF ITS KINETIC ENERGY IN THE FORM OF
BREMSSTRAHLUNG.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 3
1.3ELECTRON INTERACTIONS
THE TYPE OF INELASTIC INTERACTION THAT AN ELECTRON UNDERGOES WITH A
PARTICULAR ATOM OF RADIUS A DEPENDS ON THE IMPACT PARAMETER B OF
THE INTERACTION.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 4
1.3ELECTRON INTERACTIONS
• FOR , THE INCIDENT ELECTRON WILL UNDERGO A SOFT COLLISION
WITH THE WHOLE ATOM AND ONLY A SMALL AMOUNT OF ITS KINETIC
ENERGY (FEW %) WILL BE TRANSFERRED FROM THE INCIDENT ELECTRON
TO ORBITAL ELECTRON.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 5
b  a
1.3ELECTRON INTERACTIONS
• FOR , THE ELECTRON WILL UNDERGO A HARD COLLISION WITH
AN ORBITAL ELECTRON AND A SIGNIFICANT FRACTION OF ITS KINETIC
ENERGY (UP TO 50%) WILL BE TRANSFERRED TO THE ORBITAL
ELECTRON.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 6
b  a
1.3ELECTRON INTERACTIONS
• FOR , THE INCIDENT ELECTRON WILL UNDERGO A RADIATION
COLLISION WITH THE ATOMIC NUCLEUS AND EMIT A
BREMSSTRAHLUNG PHOTON WITH ENERGY BETWEEN 0 AND THE
INCIDENT ELECTRON KINETIC ENERGY.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 7
b  a
1.3ELECTRON INTERACTIONS
1.3.1 ELECTRON-ORBITAL ELECTRON INTERACTIONS
• INELASTIC COLLISIONS BETWEEN THE INCIDENT ELECTRON AND AN
ORBITAL ELECTRON ARE COULOMB INTERACTIONS THAT RESULT IN:
• ATOMIC IONIZATION:
EJECTION OF THE ORBITAL ELECTRON FROM THE ABSORBER ATOM.
• ATOMIC EXCITATION:
TRANSFER OF AN ATOMIC ORBITAL ELECTRON FROM ONE ALLOWED
ORBIT (SHELL) TO A HIGHER LEVEL ALLOWED ORBIT.
• ATOMIC IONIZATIONS AND EXCITATIONS RESULT IN COLLISION ENERGY
LOSSES EXPERIENCED BY THE INCIDENT ELECTRON AND ARE
CHARACTERIZED BY COLLISION (IONIZATION) STOPPING POWER.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.1 Slide 1
1.3ELECTRON INTERACTIONS
1.3.2 ELECTRON-NUCLEUS INTERACTION
• COULOMB INTERACTION BETWEEN THE INCIDENT ELECTRON AND AN
ABSORBER NUCLEUS RESULTS IN:
• ELECTRON SCATTERING AND NO ENERGY LOSS (ELASTIC COLLISION):
CHARACTERIZED BY ANGULAR SCATTERING POWER
• ELECTRON SCATTERING AND SOME LOSS OF KINETIC ENERGY IN THE FORM
OF BREMSSTRAHLUNG (RADIATION LOSS):
CHARACTERIZED BY RADIATION STOPPING POWER
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 2
1.3ELECTRON INTERACTIONS
1.3.2 ELECTRON-NUCLEUS INTERACTION
• BREMSSTRAHLUNG PRODUCTION IS GOVERNED BY THE LARMOR
RELATIONSHIP:
.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 3
P =
q2
a2
6o
c3
1.3ELECTRON INTERACTIONS
1.3.2 ELECTRON-NUCLEUS INTERACTIONS
• THE ANGULAR DISTRIBUTION OF THE EMITTED BREMSSTRAHLUNG
PHOTONS IS IN GENERAL PROPORTIONAL TO:
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 4
sin2

(1−  cos)5
• ELECTRONS TRAVERSING AN ABSORBER LOSE THEIR KINETIC ENERGY
THROUGH IONIZATION COLLISIONS AND RADIATION COLLISIONS.
• THE RATE OF ENERGY LOSS PER GRAM AND PER CM2 IS CALLED THE MASS
STOPPING POWER AND IT IS A SUM OF TWO COMPONENTS:
• MASS COLLISION STOPPING POWER
• MASS RADIATION STOPPING POWER
• THE RATE OF ENERGY LOSS FOR A THERAPY ELECTRON BEAM IN WATER
AND WATER-LIKE TISSUES, AVERAGED OVER THE ELECTRON’S RANGE, IS
ABOUT 2 MEV/CM.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 5
1.3 ELECTRON INTERACTIONS
1.3.3 Stopping power
1.3ELECTRON INTERACTIONS
1.3.3 STOPPING POWER
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 6
❑ The rate of energy loss for collision interactions depends on:
• Kinetic energy of the electron.
• Electron density of the absorber.
1.3 ELECTRON INTERACTIONS
1.3.3 STOPPING POWER
BREMSSTRAHLUNG PRODUCTION
THROUGH RADIATIVE LOSSES IS
MORE EFFICIENT FOR HIGHER
ENERGY ELECTRONS AND HIGHER
ATOMIC NUMBER ABSORBERS
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 7
❑ The rate of energy loss for radiation interactions (brems-
strahlung) is approximately proportional to:
• Kinetic energy of the electron.
• Square of the atomic number of the absorber.
Solid lines: mass radiation
stopping power
Dotted lines: mass collision
stopping power
1.3 ELECTRON INTERACTIONS
1.3.3 STOPPING POWER
• TOTAL MASS STOPPING POWER FOR ELECTRONS IN WATER, ALUMINUM
AND LEAD AGAINST THE ELECTRON KINETIC ENERGY (SOLID CURVES).
SOLID LINES:
TOTAL MASS STOPPING POWER
DASHED LINES:
MASS COLLISION STOPPING POWER
DOTTED LINES:
MASS RADIATION STOPPING POWER
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 9
(S/)tot
1.3ELECTRON INTERACTIONS
1.3.4 MASS ANGULAR SCATTERING POWER
• THE ANGULAR AND SPATIAL SPREAD OF A PENCIL ELECTRON BEAM
TRAVERSING AN ABSORBING MEDIUM CAN BE APPROXIMATED WITH A
GAUSSIAN DISTRIBUTION.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.4 Slide 1
1.4 PHOTON INTERACTIONS
1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS
IONIZING PHOTON RADIATION IS CLASSIFIED INTO FOUR CATEGORIES:
• CHARACTERISTIC X RAY
RESULTS FROM ELECTRONIC TRANSITIONS BETWEEN ATOMIC SHELLS
• BREMSSTRAHLUNG
RESULTS MAINLY FROM ELECTRON-NUCLEUS COULOMB INTERACTIONS
• GAMMA RAY
RESULTS FROM NUCLEAR TRANSITIONS
• ANNIHILATION QUANTUM (ANNIHILATION RADIATION)
RESULTS FROM POSITRON-ELECTRON ANNIHILATION
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 1
1.4 PHOTON INTERACTIONS
1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS
• IN PENETRATING AN ABSORBING MEDIUM, PHOTONS MAY EXPERIENCE
VARIOUS INTERACTIONS WITH THE ATOMS OF THE MEDIUM, INVOLVING:
• ABSORBING ATOM AS A WHOLE
• NUCLEI OF THE ABSORBING MEDIUM
• ORBITAL ELECTRONS OF THE ABSORBING MEDIUM.
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 2
1.4 PHOTON INTERACTIONS
1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS
• INTERACTIONS OF PHOTONS WITH NUCLEI MAY BE:
• DIRECT PHOTON-NUCLEUS INTERACTIONS (PHOTODISINTEGRATION)
OR
• INTERACTIONS BETWEEN THE PHOTON AND THE ELECTROSTATIC FIELD OF THE
NUCLEUS (PAIR PRODUCTION).
• PHOTON-ORBITAL ELECTRON INTERACTIONS ARE CHARACTERIZED AS
INTERACTIONS BETWEEN THE PHOTON AND EITHER
• A LOOSELY BOUND ELECTRON (COMPTON EFFECT, TRIPLET
PRODUCTION)
OR
• A TIGHTLY BOUND ELECTRON (PHOTOELECTRIC EFFECT).
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 3
1.4 PHOTON INTERACTIONS
1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS
• AS FAR AS THE PHOTON FATE AFTER THE INTERACTION WITH AN ATOM IS
CONCERNED THERE ARE TWO POSSIBLE OUTCOMES:
• PHOTON DISAPPEARS (I.E., IS ABSORBED COMPLETELY) AND A PORTION OF ITS
ENERGY IS TRANSFERRED TO LIGHT CHARGED PARTICLES (ELECTRONS AND
POSITRONS IN THE ABSORBING MEDIUM).
• PHOTON IS SCATTERED AND TWO OUTCOMES ARE POSSIBLE:
• THE RESULTING PHOTON HAS THE SAME ENERGY AS THE INCIDENT PHOTON AND
NO LIGHT CHARGED PARTICLES ARE RELEASED IN THE INTERACTION.
• THE RESULTING SCATTERED PHOTON HAS A LOWER ENERGY THAN THE INCIDENT
PHOTON AND THE ENERGY EXCESS IS TRANSFERRED TO A LIGHT CHARGED PARTICLE
(ELECTRON).
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 6
1.4 PHOTON INTERACTIONS
1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS
• THE LIGHT CHARGED PARTICLES PRODUCED IN THE ABSORBING MEDIUM
THROUGH PHOTON INTERACTIONS WILL:
• EITHER DEPOSIT THEIR ENERGY TO THE MEDIUM THROUGH COULOMB
INTERACTIONS WITH ORBITAL ELECTRONS OF THE ABSORBING MEDIUM
(COLLISION LOSS ALSO REFERRED TO AS IONIZATION LOSS).
• OR RADIATE THEIR KINETIC ENERGY AWAY THROUGH COULOMB INTERACTIONS
WITH THE NUCLEI OF THE ABSORBING MEDIUM (RADIATION LOSS).
Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 7
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals
Introduction to Radiation Physics Fundamentals

More Related Content

What's hot

Computed Tomography Dose Index
Computed Tomography Dose IndexComputed Tomography Dose Index
Computed Tomography Dose IndexAnjan Dangal
 
Radioactivity and nuclear transformation
Radioactivity and nuclear transformationRadioactivity and nuclear transformation
Radioactivity and nuclear transformationShahid Younas
 
Charged particle interaction with matter
Charged particle interaction with matterCharged particle interaction with matter
Charged particle interaction with matterSabari Kumar
 
Radiation protection course for radiologists L2
Radiation protection course for radiologists L2Radiation protection course for radiologists L2
Radiation protection course for radiologists L2Amin Amin
 
Intro of co 60 unit
Intro of co 60 unitIntro of co 60 unit
Intro of co 60 unitNileshK8
 
RADIATION PROTECTION
RADIATION PROTECTIONRADIATION PROTECTION
RADIATION PROTECTIONSubrata Roy
 
Dosimeter advancements
Dosimeter advancementsDosimeter advancements
Dosimeter advancementsDeepaknegi09
 
Tpe Radioactivite
Tpe RadioactiviteTpe Radioactivite
Tpe Radioactiviteamdnihafez
 
Radiation protection (3)
Radiation protection (3)Radiation protection (3)
Radiation protection (3)bigboss716
 
Radiation protection course for radiologists L5
Radiation protection course for radiologists L5Radiation protection course for radiologists L5
Radiation protection course for radiologists L5Amin Amin
 
QC Gamma Camera
QC Gamma CameraQC Gamma Camera
QC Gamma CameraHelbert
 
Handling the emergencies in radiology and first aid in the x ray department
Handling the emergencies in radiology and first aid in the x ray departmentHandling the emergencies in radiology and first aid in the x ray department
Handling the emergencies in radiology and first aid in the x ray departmentAnupam Niraula
 
Interaction of radiation with matter
Interaction of radiation with matterInteraction of radiation with matter
Interaction of radiation with matterAbhishek Soni
 
Basic concept of radiation, radioactivity, radiation dose
Basic concept of radiation,  radioactivity, radiation doseBasic concept of radiation,  radioactivity, radiation dose
Basic concept of radiation, radioactivity, radiation dosemahbubul hassan
 
Thermoluminescent dosimeter
Thermoluminescent dosimeterThermoluminescent dosimeter
Thermoluminescent dosimeterDr Vijay Raturi
 

What's hot (20)

Computed Tomography Dose Index
Computed Tomography Dose IndexComputed Tomography Dose Index
Computed Tomography Dose Index
 
Dosimetry concepts and dosimeters
Dosimetry concepts and dosimetersDosimetry concepts and dosimeters
Dosimetry concepts and dosimeters
 
Radioactivity and nuclear transformation
Radioactivity and nuclear transformationRadioactivity and nuclear transformation
Radioactivity and nuclear transformation
 
Charged particle interaction with matter
Charged particle interaction with matterCharged particle interaction with matter
Charged particle interaction with matter
 
Radiation protection course for radiologists L2
Radiation protection course for radiologists L2Radiation protection course for radiologists L2
Radiation protection course for radiologists L2
 
Intro of co 60 unit
Intro of co 60 unitIntro of co 60 unit
Intro of co 60 unit
 
Radiation Protection
Radiation ProtectionRadiation Protection
Radiation Protection
 
RADIATION PROTECTION
RADIATION PROTECTIONRADIATION PROTECTION
RADIATION PROTECTION
 
Dosimeter advancements
Dosimeter advancementsDosimeter advancements
Dosimeter advancements
 
Tpe Radioactivite
Tpe RadioactiviteTpe Radioactivite
Tpe Radioactivite
 
Radiation protection (3)
Radiation protection (3)Radiation protection (3)
Radiation protection (3)
 
Radiation protection course for radiologists L5
Radiation protection course for radiologists L5Radiation protection course for radiologists L5
Radiation protection course for radiologists L5
 
TLD
TLDTLD
TLD
 
QC Gamma Camera
QC Gamma CameraQC Gamma Camera
QC Gamma Camera
 
Handling the emergencies in radiology and first aid in the x ray department
Handling the emergencies in radiology and first aid in the x ray departmentHandling the emergencies in radiology and first aid in the x ray department
Handling the emergencies in radiology and first aid in the x ray department
 
radiation safety.pptx
radiation safety.pptxradiation safety.pptx
radiation safety.pptx
 
Interaction of radiation with matter
Interaction of radiation with matterInteraction of radiation with matter
Interaction of radiation with matter
 
Basic concept of radiation, radioactivity, radiation dose
Basic concept of radiation,  radioactivity, radiation doseBasic concept of radiation,  radioactivity, radiation dose
Basic concept of radiation, radioactivity, radiation dose
 
Thermoluminescent dosimeter
Thermoluminescent dosimeterThermoluminescent dosimeter
Thermoluminescent dosimeter
 
Radiation protection
Radiation protectionRadiation protection
Radiation protection
 

Similar to Introduction to Radiation Physics Fundamentals

csonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycsonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycheeshengonn
 
NP Nuclear physics and properties of nuclear
NP Nuclear physics and  properties of nuclearNP Nuclear physics and  properties of nuclear
NP Nuclear physics and properties of nuclearRakeshPatil2528
 
Lecture 1 basic nuclear physics 1 - basic atomic structure
Lecture 1   basic nuclear physics 1 - basic atomic structureLecture 1   basic nuclear physics 1 - basic atomic structure
Lecture 1 basic nuclear physics 1 - basic atomic structureDelovita ginting
 
Phys234h __Lecture13.ppt
Phys234h __Lecture13.pptPhys234h __Lecture13.ppt
Phys234h __Lecture13.pptyma00
 
Advance Medical Physics.pptx
Advance Medical Physics.pptxAdvance Medical Physics.pptx
Advance Medical Physics.pptxMunir Ahmad
 
Nuclear chemistry and radioactivity
Nuclear chemistry and radioactivityNuclear chemistry and radioactivity
Nuclear chemistry and radioactivityFreya Cardozo
 
Nuclear chemistry and radioactivity
Nuclear chemistry and radioactivityNuclear chemistry and radioactivity
Nuclear chemistry and radioactivityFreya Cardozo
 
Getting inside the atom part 2
Getting inside the atom part 2Getting inside the atom part 2
Getting inside the atom part 2jmocherman
 
PPT Fisika pada radioterapi dari berbagai sumber
PPT Fisika pada radioterapi dari berbagai sumberPPT Fisika pada radioterapi dari berbagai sumber
PPT Fisika pada radioterapi dari berbagai sumber2Din3D
 
revision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfrevision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfssuserfa137e1
 
UNIT7.pdf
UNIT7.pdfUNIT7.pdf
UNIT7.pdfshamie8
 
Nuclear Physics Lecture
Nuclear Physics LectureNuclear Physics Lecture
Nuclear Physics Lecturesirwaltz73
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,kamal2200
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handoutnomio0703
 

Similar to Introduction to Radiation Physics Fundamentals (20)

csonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometrycsonn t1 atoms, molecules and stoichiometry
csonn t1 atoms, molecules and stoichiometry
 
NP Nuclear physics and properties of nuclear
NP Nuclear physics and  properties of nuclearNP Nuclear physics and  properties of nuclear
NP Nuclear physics and properties of nuclear
 
Chapter 7 nuclear physics
Chapter 7 nuclear physicsChapter 7 nuclear physics
Chapter 7 nuclear physics
 
Chapter 7 nuclear physics
Chapter 7 nuclear physicsChapter 7 nuclear physics
Chapter 7 nuclear physics
 
Lecture 1 basic nuclear physics 1 - basic atomic structure
Lecture 1   basic nuclear physics 1 - basic atomic structureLecture 1   basic nuclear physics 1 - basic atomic structure
Lecture 1 basic nuclear physics 1 - basic atomic structure
 
Phys234h __Lecture13.ppt
Phys234h __Lecture13.pptPhys234h __Lecture13.ppt
Phys234h __Lecture13.ppt
 
Advance Medical Physics.pptx
Advance Medical Physics.pptxAdvance Medical Physics.pptx
Advance Medical Physics.pptx
 
Nuclear chemistry and radioactivity
Nuclear chemistry and radioactivityNuclear chemistry and radioactivity
Nuclear chemistry and radioactivity
 
Nuclear chemistry and radioactivity
Nuclear chemistry and radioactivityNuclear chemistry and radioactivity
Nuclear chemistry and radioactivity
 
Getting inside the atom part 2
Getting inside the atom part 2Getting inside the atom part 2
Getting inside the atom part 2
 
Class 12 physics chapter 13 NCERT solutions pdf
Class 12 physics chapter 13 NCERT solutions pdfClass 12 physics chapter 13 NCERT solutions pdf
Class 12 physics chapter 13 NCERT solutions pdf
 
PPT Fisika pada radioterapi dari berbagai sumber
PPT Fisika pada radioterapi dari berbagai sumberPPT Fisika pada radioterapi dari berbagai sumber
PPT Fisika pada radioterapi dari berbagai sumber
 
revision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfrevision xi - chapters1-5.pdf
revision xi - chapters1-5.pdf
 
UNIT7.pdf
UNIT7.pdfUNIT7.pdf
UNIT7.pdf
 
Nuclear Physics.ppt
Nuclear Physics.pptNuclear Physics.ppt
Nuclear Physics.ppt
 
Nuclear Physics Lecture
Nuclear Physics LectureNuclear Physics Lecture
Nuclear Physics Lecture
 
Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,Radioactivity + isotopes lect.1,2,
Radioactivity + isotopes lect.1,2,
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 
Lect27 handout
Lect27 handoutLect27 handout
Lect27 handout
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 

Introduction to Radiation Physics Fundamentals

  • 1. 1- Introduction to Radiation Physics ‫اإلشعاعية‬ ‫الفيزياء‬ Dr. Mohamed Adnan GULF HOUSE INSTITUTE ‫للتواصل‬ https://twitter.com/ghinstitutesa http://roadinstitute.edu.sa/pages/Default.aspx
  • 2. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Chapter 1. TABLE OF CONTENTS 1.1. Introduction ‫مقدمة‬ 1.2. Classification of radiation ‫اإلشعاع‬ ‫تصنيف‬ 1.3. Atomic and nuclear structure ‫للمادة‬ ‫والنووي‬ ‫الذري‬ ‫التركيب‬ 1.4. X rays ‫األشعة‬ ‫السينية‬
  • 3. Fundamental physical constants Avogadro’s number NA = 6.022 × 1023 atom/mol Speed of light in vacuum C = 3x108 m/c Electron charge e =1.6 x 1019 As Electron rest mass Me = 0.511 MeV/C2 Proton rest mass Mp = 938.2 MeV/C2 Neutron rest mass Mn = 939.3 MeV/C2 Atomic mass unit U = 931.5 MeV/C2
  • 4. Physical quantities and units Physical quantities are characterized by their numerical value (magnitude) and associated unit. Symbols for physical quantities are set in italic type, while symbols for units are set in roman type. For example:  m = 21 kg E = 15 MeV
  • 5. Physical quantities and units Numerical value and the unit of a physical quantity must be separated by space.  For example:  21 kg and 15 MeV  The currently used metric system of units is known as the International system of units or the SI system.
  • 6. Physical quantities and units  The SI International system of units is founded on base units for seven physical quantities:  Quantity SI unit  length meter (m)  mass m kilogram (kg)  time t second (s)  electric current (I) ampere (A)  temperature (T) Kelvin (K)  amount of substance mole (mol)  luminous intensity candela (cd)
  • 7. 1.1 INTRODUCTION Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 is fundamental to the understanding of the physics of medical imaging and radiation protection. This, the first chapter of the Handbook, summarises those aspects of these areas which, being part of the foundation of modern physics, underpin the remainder of the book • structure of the atom ‫الذري‬ ‫التركيب‬ • elementary nuclear physics ‫النووية‬ ‫الفيزياء‬ • the nature of electromagnetic radiation • ‫الكهرومغناطيسية‬ ‫الموجات‬ ‫طبيعة‬ • production of X-rays ‫السينية‬ ‫األشعة‬ Knowledge of the
  • 8. Basic definitions for atomic structure  The constituent particles forming an atom are protons, neutrons and electrons. Protons and neutrons are known as nucleons and form the nucleus of the atom.
  • 9. Basic definitions for atomic structure Protons: are particles with a positive charge and mass of 1 unit of atomic mass. Neutron: Within the nucleus without charge and mass of 1 unit of atomic mass. Electrons: are negatively charged particles and mass equal to 1/1840 of atomic mass unit.  Atomic mass unit: It is defined as one twelfth of the mass of an atom of carbon-12 .
  • 10. Basic definitions for atomic structure Atomic number Z : Number of protons and number of electrons in an atom. Atomic mass number A :  Number of nucleons (Z + N) in an atom, where • Z is the number of protons (atomic number) in an atom. • N is the number of neutrons in an atom.
  • 11. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions ‫األساسية‬ ‫التعريفات‬ Most of the mass of the atom is concentrated in the atomic nucleus which consists of:‫النواة‬ ‫في‬ ‫تتركز‬ ‫الذرة‬ ‫كنلة‬ • Z protons and • (A – Z) = N neutrons Z: Atomic number ‫الذري‬ ‫العدد‬ ( ‫البروتونات‬ ‫عدد‬ ) A: Atomic mass number ‫الكتلي‬ ‫العدد‬ ( ‫الربوتونات‬ + ‫النيترون‬ ) Unified atomic mass unit μ: a unit used for specifying the masses of atoms ‫هي‬ ‫الذرية‬ ‫الكتلة‬ ‫وحدة‬ 1/12 ‫الكربون‬ ‫كتلة‬ ‫من‬ - 12 1 μ = 1/12 of the mass of the 12C atom or 931.5 MeV/c2 An atom is composed of a central nucleus surrounded by a cloud of negatively charged electrons ‫الشحنة‬ ‫سالبة‬ ‫باإللكترونات‬ ‫محاطة‬ ‫نواة‬ ‫من‬ ‫الذرة‬ ‫تتكون‬
  • 12. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Particle Charge (C) Rest energy (MeV) Electron (e) - 1.602×10-19 0.511 Proton (p) +1.602×10-19 938.28 Neutron (n) 0 939.57 Radius of an atom ≈ 0.1 nm Radius of the nucleus ≈ 10-5 nm In a non-ionised atom: ‫االلكترونات‬ ‫عدد‬ ‫يساوي‬ ‫البروتونات‬ ‫عدد‬ ‫يكون‬ ‫مؤينة‬ ‫الغير‬ ‫الذرة‬ number of electrons = number of protons
  • 13. Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 13 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Protons and neutrons are referred to as nucleons They are bound in the nucleus with the strong force ‫النو‬ ‫الروابط‬ ‫تسمي‬ ‫جدا‬ ‫قوية‬ ‫بروابط‬ ‫النواة‬ ‫في‬ ‫والنيترونات‬ ‫البروتونات‬ ‫يرتبط‬ ‫وية‬ The strong force between two nucleons is a very short-range force, active only at distances of the order of a few femtometer (fm). 1 fm = 10-15 m
  • 14. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Cs 137 55 3 / 2 A 0155 . 0 98 . 1 A + = Z Empirical relation between A and Z Ra 226 88 Co 60 27 nucleus of Cobalt-60 with 27 protons and 33 neutrons nucleus of Cesium-137 with 55 protons and 82 neutrons nucleus of Radium-226 with 88 protons and 138 neutrons X A Z Chemical symbol for the element Atomic mass number = Z+N Atomic number X-A or (Co-60) (Cs-137) (Ra-226)
  • 15. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Isotopes of a given element have in the nucleus : ‫النيترون‬ ‫عدد‬ ‫في‬ ‫وتختلف‬ ‫البروتونات‬ ‫عدد‬ ‫نفس‬ ‫لها‬ ‫العنصر‬ ‫لنفس‬ ‫النظائر‬ ‫ات‬ • same number of protons, but • different numbers of neutrons Isotopes of chemical element hydrogen (Z = 1) Isotopes of chemical element carbon (Z = 6) ordinary hydrogen deuterium tritium C C C 14 6 13 6 12 6 H H H 3 1 2 1 1 1
  • 16. unit mass atomic unified element an of atoms the of mass average = r A Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Atomic weight Ar is a dimensionless physical quantity The average is a weighted mean over all the isotopes of the particular element taking account of their relative abundance ‫الذري‬ ‫الوزن‬ Ar ‫لها‬ ‫أبعاد‬ ‫ال‬ ‫مادية‬ ‫كمية‬ ‫هو‬ ‫النس‬ ‫الوفرة‬ ‫مراعاة‬ ‫مع‬ ‫المحدد‬ ‫العنصر‬ ‫نظائر‬ ‫جميع‬ ‫على‬ ‫مرجح‬ ‫متوسط‬ ‫هو‬ ‫المتوسط‬ ‫بية‬ Atomic mass M is expressed in unified atomic mass unit The atomic mass M for a particular isotope is smaller than the sum of the individual masses of constituent particles because of the intrinsic energy associated with binding the particles (nucleons) within the nucleus ‫الذرية‬ ‫الكتلة‬ ‫تكون‬ M ‫المكو‬ ‫للجسيمات‬ ‫الفردية‬ ‫الكتل‬ ‫مجموع‬ ‫من‬ ‫أصغر‬ ‫معين‬ ‫لنظير‬ ‫نة‬ ‫الجسيمات‬ ‫بربط‬ ‫المرتبطة‬ ‫الجوهرية‬ ‫الطاقة‬ ‫بسبب‬ ( ‫النوى‬ ) ‫النواة‬ ‫داخل‬
  • 17. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Atomic g-atom (gram-atom) is the number of grams of an atomic substance that contains a number of atoms exactly equal to one Avogadro’s constant (NA = 6.022 × 1023 atoms/g-atom) ‫الذرية‬ ‫المادة‬ ‫جرمات‬ ‫عدد‬ ‫في‬ ‫الموجودة‬ ‫الذرات‬ ‫عدد‬ ‫هو‬ ‫أفوجادرو‬ ‫عدد‬ Atomic weight definition means that Ar grams of each element contain exactly NA atoms. For a single isotope M grams contain NA atoms ‫أفوجادرو‬ ‫عدد‬ ‫علي‬ ‫يحتوي‬ ‫الذي‬ ‫عنصر‬ ‫كل‬ ‫من‬ ‫الجرامات‬ ‫عدد‬ ‫أن‬ ‫يعني‬ ‫الذري‬ ‫الوزن‬ . Example: • 1 gram-atom of Cobalt- 60 is 59.93 g of Co-60 • 1 gram-atom of Radium-226 is 226.03 g of Ra-226
  • 18. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Molecular g-mole (gram-mole) is defined as the number of grams of a molecular compound that contains exactly one Avogadro’s constant of molecules (NA = 6.022 × 1023 molecule/g-mole) ‫الجزيئات‬ ‫من‬ ‫أفوجادرو‬ ‫عدد‬ ‫يحتوي‬ ‫الذي‬ ‫الجزيئي‬ ‫المركب‬ ‫جرامات‬ ‫عدد‬ ‫هو‬ ‫الجزيئ‬ ‫المول‬ The mass of a molecule is the sum of the masses of the atoms that make up the molecule ‫الجزيء‬ ‫منها‬ ‫يتكون‬ ‫التي‬ ‫الذرات‬ ‫كتل‬ ‫مجموع‬ ‫هي‬ ‫الجزيء‬ ‫كتلة‬ Example: • 1 gram-mole of water is ≈18 g of water • 1 gram-mole of carbon dioxide is ≈ 44 g of carbon dioxide 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions
  • 19. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Note that (Z/ Ar) ≈ 0.5 for all elements, except for hydrogen, for which (Z/ Ar) = 1. Actually, (Z/Ar) slowly decreases from 0.5 for low Z elements to 0.4 for high Z elements NA: Avogadro constant, Z : atomic number Ar : atomic weight, r : density 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Number of atoms per unit mass of an element: r A am A N N = Number of electrons per unit volume of an element: r A am aV A N Z ZN ZN r r = = Number of electrons per unit mass of an element: A r am N A Z ZN =
  • 20. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure Modern quantum mechanical model of the atom is built on the work of many physicists The idea of a dense central nucleus surrounded by orbiting electrons was first proposed by Ernest Rutherford in 1911 ‫تت‬ ‫الذرة‬ ‫كتلة‬ ‫ان‬ ‫قال‬ ‫من‬ ‫أول‬ ‫رزرفود‬ ‫وكان‬ ‫الذرة‬ ‫وصف‬ ‫في‬ ‫بداءت‬ ‫الحديثة‬ ‫الكم‬ ‫ميكانيكا‬ ‫في‬ ‫ركز‬ ‫اإللكترونات‬ ‫حولها‬ ‫ويدور‬ ‫النواة‬ Rutherford’s atomic model is based on results of the Geiger- Marsden experiment of 1909 with particles emitted from Radium C, scattered on thin gold foils with a thickness of 0.00004 cm ‫شري‬ ‫خالل‬ ‫ألفا‬ ‫جسيمات‬ ‫بإمرار‬ ‫ماردسن‬ ‫تجربة‬ ‫علي‬ ‫إعتمد‬ ‫رزرفورد‬ ‫نموذج‬ ‫حة‬ ‫الذهب‬ ‫من‬ ‫رقيقة‬
  • 21. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Geiger and Marsden found that: • more than 99% of the a particles incident on the gold foil were scattered at scattering angles less than 3o • roughly 1 in 104 alpha particles was scattered with a scattering angle exceeding 90o This finding (1 in 104) was in drastic disagreement with the theoretical prediction of one in 103500 resulting from Thomson’s atomic model positive charge negative electrons Thomson atomic model Rutherford atomic model positive charge negative electrons 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 22. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Rutherford proposed that: • mass and positive charge of the atom are concentrated in the nucleus of the size of the order of 10-15 m ‫ال‬ ‫فيها‬ ‫تتركز‬ ‫موجبة‬ ‫شحنة‬ ‫ذات‬ ‫النواة‬ ‫ان‬ ‫رزرفورد‬ ‫إفترض‬ ‫كتلة‬ • negatively charged electrons revolve about the nucleus with a radius of the order of 10-10 m ‫في‬ ‫وتدور‬ ‫سالبة‬ ‫شحنة‬ ‫ذات‬ ‫اإللكترونات‬ ‫وأن‬ ‫النواة‬ ‫حول‬ ‫مدارات‬ positive charge negative electrons Rutherford atomic model 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 23. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 The Rutherford atomic model, however, had a number of unsatisfactory features For example, it could not explain the observed emission spectra of the elements ‫ال‬ ‫بعض‬ ‫أطياف‬ ‫تفسر‬ ‫لم‬ ‫ألنها‬ ‫مرضية‬ ‫تكن‬ ‫لم‬ ‫رزرفورد‬ ‫إفترضيات‬ ‫عناصر‬ Visible lines of emission spectrum for Hydrogen 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 24. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 In 1913, Niels Bohr elaborated the model of hydrogen atom, based on four postulates: • the electron revolves in circular allowed orbit about the proton under the influence of the Coulomb force of attraction being balanced by the centripetal force arising from the orbital motion ‫دورانة‬ ‫أثناء‬ ‫طاقة‬ ‫أي‬ ‫يفقد‬ ‫وال‬ ‫الكولومية‬ ‫القوي‬ ‫تأثير‬ ‫تحت‬ ‫محددة‬ ‫دائرية‬ ‫مدارات‬ ‫في‬ ‫اإللكترونات‬ ‫تدور‬ ‫اعلي‬ ‫لمدار‬ ‫مداره‬ ‫يترك‬ ‫الطاقة‬ ‫من‬ ‫كاف‬ ‫مقدار‬ ‫الالكترون‬ ‫يكتسب‬ ‫عندما‬ • while in orbit, the electron does not lose any energy in spite of being constantly accelerated • the angular momentum of the electron in an allowed orbit is quantized and only takes values of nћ, where n is an integer and ћ = h/2p, where h is Planck’s constant • an atom emits radiation when an electron makes a transition from an initial orbit with quantum number ni to a final orbit with quantum number nf for ni > nf. ni nf Ei Ef E = Ei - Ef 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 25. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Diagram representing Bohr’s model of the hydrogen atom, in which the orbiting electron is allowed to be only in specific orbits of discrete radii ‫لإلكترونات‬ ‫الطاقة‬ ‫مستويات‬ ‫يوضح‬ ‫الرسم‬ proton M, + e r electron m, - e F v ground state excited state Quantization of energy, with n = 1, 2, 3... 2 6 . 13 ) eV ( n En − = 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 26. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Through the work of Heisenberg, Schrödinger, Dirac, Pauli and others the theory of quantum mechanics was developed. In this theory, the electrons occupy individual energy states defined by four quantum numbers as follows: ‫كم‬ ‫ارقام‬ ‫اربعة‬ ‫تشغل‬ ‫اإللكترونات‬ ‫فإن‬ ‫الكم‬ ‫ميكانيكا‬ ‫لقوانين‬ ‫طبقا‬ • the principal quantum number, n, which can take integer values and specifies the main energy shell ‫الرئيسي‬ ‫الكم‬ ‫عدد‬ • the azimuthal quantum number, l, which can take integer values between 0 and n − 1 ‫الفرعي‬ ‫الكم‬ ‫عدد‬ • the magnetic quantum number, m, which can take integer values between – l and +l ‫المغناطيسي‬ ‫الكم‬ ‫عدد‬ • the spin quantum number, s, which takes values -1/2 or +1/2 and specifies a component of the spin angular momentum of the electron ‫المغزلي‬ ‫عددالكم‬ 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 27. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 According to the Pauli Exclusion Principle, no two electrons can occupy the same state and it follows that the number of electron states that can share the same principal quantum number n is equal to 2n2 ‫وفقا‬ ‫لمبداء‬ ‫اإلستبعاد‬ ‫لباولي‬ ‫اليمكن‬ ‫إللكترونين‬ ‫ان‬ ‫يشغال‬ ‫نفس‬ ‫الحالة‬ The energy levels associated with n = 1, 2, 3 etc. are known as the K, L, M etc. bands 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 28. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Zero Valence e- N M K -13.6 -3.4 -1.51 Hydrogen Z = 1 K series L series Energy (eV) L Energy (eV) N M L K L series K series Tungsten Z = 74 Valence e- Zero - 11,500 - 69,500 - 2,300 Energy levels for hydrogen and tungsten. Possible transitions between the various energy levels are shown with arrows ‫والتنجستين‬ ‫الهيدروجين‬ ‫لذرتي‬ ‫الطاقة‬ ‫مستويات‬ 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 29. Chose the correct answer  Known as the atomic number of any atom (element – isotope)?  1- The number of photons in the atom  2- The number of neutrons in the atom  3- The number of protons in the atom  4- Total number of protons and neutrons In the nucleus Atom  1-Positively charged particles in the nucleus of the atom.  2- Particles circulate around the nucleus in the atom.  3- The basic construction unit in the article.  4- particles with no electrical charge and in the nucleus of the atom.  5- Atomic substances have the same number of protons
  • 30. Protons  1-Positively charged particles in the nucleus of the atom.  2- Particles circulate around the nucleus in the atom.  3- The basic construction unit in the article.  4- particles with no electrical charge and in the nucleus of the atom.  5- Atomic substances have the same number of protons neutrons  1-Positively charged particles in the nucleus of the atom.  2- Particles circulate around the nucleus in the atom.  3- The basic construction unit in the article.  4- particles with no electrical charge and in the nucleus of the atom.  5- Atomic substances have the same number of protons
  • 31.  Atomic number  1 - atoms of a certain element have the same number of protons but different numbers of neutrons.  2- The total number of protons and neutrons inside the nucleus of the atom.  3 - A general expression that symbolizes any counterparty to any element.  4- The number of protons in an atom.  Known mass number of the atom?  1- The number of photons in the atom  2- The number of neutrons in the atom  3- The number of protons in the atom  4- Total number of protons and neutrons In the nucleus
  • 32.  electron  1-Positively charged particles in the nucleus of the atom.  2- Particles circulate around the nucleus in the atom.  3- The basic construction unit in the article.  4- particles with no electrical charge and in the nucleus of the atom.  5- Atomic substances have the same number of protons  element  1-Positively charged particles in the nucleus of the atom.  2- Particles circulate around the nucleus in the atom.  3- The basic construction unit in the article.  4- particles with no electrical charge and in the nucleus of the atom.  5- Atomic substances have the same number of protons
  • 33.  According to the Bohr model of the atom nucleus of an atom, which consists?  1- The nucleus is made up of protons and neutrons and orbits around electrons in orbits.  2- Nucleus by protons, neutrons and electrons.  3- The nucleus is made up of protons and electrons and is orbited by neutrons  According to the Bohr model of atoms, electrons can move freely within the atom( ).  According to the Bohr model of the atom when the electrons are able to change its orbit?
  • 34. Isotopes, radioisotopes and radionuclide's Isotopes are atoms of an element 1- It has the same number of protons 2- It has a different number of neutrons. 3 - have the same chemical properties .. Why? 4 - The atomic mass has different ........ Why? 5. They may have different radiological properties.
  • 35. Thanks Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 35
  • 36. 1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE ‫الذري‬ ‫التركيب‬  For all elements the ratio Z/A  0.4-0.5 with 1 notable exception: Hydrogen, for which Z/A = 1  The ratio Z/A gradually decreases with increasing Z: From ~0.5 for low Z elements To ~0.4 for high Z elements  For example: Z/A = 0.50 for Z/A = 0.45 for Z/A = 0.39 for
  • 37. 1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE ‫الذري‬ ‫التركيب‬  Most of the atomic mass is concentrated in the atomic nucleus  ‫النواة‬ ‫في‬ ‫الذرة‬ ‫كتلة‬ ‫تتركز‬  Nucleus consists Z protons A - Z neutrons, where Z = atomic number and A = atomic mass  Protons and neutrons ‫جدا‬ ‫قوية‬ ‫ربط‬ ‫قوة‬ ‫تحت‬ ‫ويكونو‬ ‫النويدة‬ ‫تسمي‬ ‫والنيترونات‬ ‫البروتونات‬ Commonly called nucleons Bound to the nucleus with the strong force
  • 38. 1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE ‫الذري‬ ‫التركيب‬  Nuclear physics conventions Designate a nucleus X as  For example: Cobalt-60 nucleus Z = 27 & A = 60 (i.e. 33 neutrons) identified as:  Radium-226 Z = 88 & A = 226 (i.e.138 neutrons) identified as: X A Z Co 60 27 Ra 226 88
  • 39.  Classifications Isotopes of an element ‫النيترونات‬ ‫عدد‬ ‫في‬ ‫يختلفوا‬ ‫لكن‬ ‫العنصر‬ ‫نفس‬ ‫هي‬ ‫اإليزوتوب‬ Atoms with same Z, but different number of neutrons (and A) e.g. ‘Nuclide’ refers to an atomic species, defined by its makeup of protons, neutrons, and energy state ‘Isotope’ refers to various atomic forms of a given chemical element Isobars ‫الكتلي‬ ‫العدد‬ ‫في‬ ‫تتشابهة‬ ‫مختلفة‬ ‫عناصر‬ ‫هي‬ ‫األيزوبار‬ Common atomic mass number A , e.g. 60Co and 60Ni Isotones ‫النيترونات‬ ‫عدد‬ ‫في‬ ‫تتشابهة‬ ‫مختلفة‬ ‫عناصر‬ ‫هي‬ ‫األيزوتون‬ Common number of neutrons e.g. 3H (tritium) and 4He  Isomeric (metastable) state ‫اإلستقرار‬ ‫حالة‬ ‫في‬ ‫يختلفوا‬ ‫لكن‬ ‫العنصر‬ ‫نفس‬ ‫هو‬ ‫األيزومير‬ Excited nuclear state that exists for some time e.g 99mTc is an isomeric state of 99Tc 1.2 BASIC DEFINITIONS FOR ATOMIC STRUCTURE ‫الذري‬ ‫التركيب‬ Co 59 27 Co 60 27
  • 40. radionuclide's  1- The total number of protons and neutrons inside the nucleus of the atom.  2- The number of protons in an atom.  3 - nuclide launches radiation  4- A Isotopes that releases radiation.
  • 41. Isotopes  1 - atoms of a certain element have the same number of protons but different numbers of neutrons.  2- The total number of protons and neutrons inside the nucleus of the atom.  3- The number of protons in an atom.  4 - nuclide launches radiation.  5. A Isotopes that releases radiation.
  • 42. Hydrogen isotopes  Hydrogen is the only chemical element whose isotopes are different, since the isotopes of other elements are differentiated by the corresponding mass. The analog is called hydrogen-2 deuterium, while the hydrogen-3 analog is called tritium. The common analog of hydrogen, hydrogen-1, which does not contain neutrons, is called proteium. Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 42
  • 43. Chemical bonds between atoms Most atoms do not exist individually but are associated with other atoms in so-called chemical bonds: Covalent bonds Ionic bonds
  • 44. Chemical bonds between atoms  A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms.  These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding
  • 45. Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions.  In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
  • 46. Test Chose the correct answer  Covalent bond 1-The type of chemical bonds where the atoms involved in electrons. 2-A group of atoms linked to a chemical. 3-Element needs to gain electrons to become chemically stable. 4-The type of chemical bond that is formed by the attraction between positive and negative ions
  • 47.  Ionic bond  1-The type of chemical bonds where the atoms involved in electrons.  2-A group of atoms linked to a chemical.  3-Element needs to gain electrons to become chemically stable.  4-The type of chemical bond that is formed by the attraction between positive and negative ions
  • 48.  Positive ion  1-An element that needs to lose electrons to become chemically stable.  2 - atom with a positive charge.  3-A group of atoms linked to a chemical.  4-element needs to gain electrons to become chemically stable.  5-Atoms with negative charge.
  • 49.  Metals  1. An element that needs to lose electrons to become chemically stable.  2 - atom with a positive charge.  3-A group of atoms linked to a chemical.  4-element needs to gain electrons to become chemically stable.
  • 50.  The molecule  1. An element that needs to lose electrons to become chemically stable.  2 - atom with a positive charge.  3. The type of chemical bonds where the atoms involved in electrons.  4. A group of atoms linked to a chemical.
  • 51.  Non-metals  1. An element that needs to lose electrons to become chemically stable.  2 - atom with a positive charge.  3-A group of atoms linked to a chemical.  4-element needs to gain electrons to become chemically stable.
  • 52.  Salt  1-element needs to gain electrons to become chemically stable.  2-The type of chemical bond that is formed by the attraction between positive and negative ions.  3-atoms with a negative charge.  4-The combination of metals and Non- metals.
  • 53.  Negative ion  1-An element that needs to lose electrons to become chemically stable.  2 - atom with a positive charge.  3-A group of atoms linked to a chemical.  4-element needs to gain electrons to become chemically stable.  5-Atoms with negative charge.
  • 54. Chose the correct answer Radioisotopes  1- The total number of protons and neutrons inside the nucleus of the atom.  2- The number of protons in an atom.  3 - Nuweida launches radiation.  4. A Isotopes that releases radiation.
  • 56. Periodic Table As we mentioned above, the number of protons and therefore the number of electrons in the atom determines their chemical properties.  As the electrons are bound by certain orbits and encapsulates, the elements with similar numbers of electrons in their outer shells also exhibit similar chemical properties. As we see, the periodic table is divided into eight vertical columns, and all the elements in the same column have the same number of electrons in their outer shells and thus have similar chemical properties. The periodic table gives the name and symbol of each element and its number and atomic weight
  • 57. Periodic Table For example Ca ,Barium (Ba), Sr and Radium (Ra) are all in the same column of the periodic table and have similar chemical properties. Elements with an atomic number above 92 are artificially obtained and are radically non-existent in nature, and are radically important in relation to nuclear facilities. Because calcium is one of the essential components of human bone formation, other similar elements are believed to be human bone-searching, where they will be treated by the body in the same way as calcium. This is of radioactive importance where it determines where the radiation will affect the person exposed to radionuclides such as radium.
  • 58. 1.1 INTRODUCTION 1.1.4. Classification of ionizing radiation ❑ Ionizing radiation carries enough energy per quantum to remove an electron from an atom or molecule ❑ ‫جزيء‬ ‫أو‬ ‫ذرة‬ ‫من‬ ‫إلكترون‬ ‫إلزالة‬ ‫كم‬ ‫لكل‬ ‫كافية‬ ‫طاقة‬ ‫يحمل‬ ‫المؤين‬ ‫اإلشعاع‬ • Introduces reactive and potentially damaging ion into the environment of the irradiated medium • ‫المشعع‬ ‫الوسط‬ ‫بيئة‬ ‫في‬ ‫ًا‬‫ر‬‫ضا‬ ‫يكون‬ ‫أن‬ ‫المحتمل‬ ‫ومن‬ ‫تفاعلي‬ ‫أيون‬ ‫يدخل‬ • Can be categorized into two types: ‫نوعين‬ ‫إلى‬ ‫تصنيفها‬ ‫يمكن‬ : • Directly ionizing radiation ‫مباشرة‬ ‫مؤين‬ ‫إشعاع‬ • Indirectly ionizing radiation ‫مباشر‬ ‫غير‬ ‫بشكل‬ ‫مؤين‬ ‫إشعاع‬ • Both can traverse human tissue ‫البشرية‬ ‫األنسجة‬ ‫يخترق‬ ‫أن‬ ‫يمكن‬ ‫كالهما‬ • Can be used in medicine for imaging & therapy. • ‫والعالج‬ ‫للتصوير‬ ‫الطب‬ ‫في‬ ‫استخدامه‬ ‫يمكن‬
  • 59. Classification of radiation  Radiation is classified into two main categories: Non-ionizing radiation . Ionizing radiation (can ionize matter) - : 1- Directly ionizing radiation (charged particles) electron, proton, alpha particle, heavy ion 2- Indirectly ionizing radiation (neutral particles) photon (x ray, gamma ray), neutron
  • 61. Classification of ionizing photon radiation Ionizing photon radiation is classified into four categories: Characteristic x ray: Results from electronic transitions between atomic shells. Bremsstrahlung : Results mainly from electron- nucleus Coulomb interactions. Gamma ray: Results from nuclear transitions. Annihilation quantum: (annihilation radiation)  Results from positron-electron annihilation.
  • 62. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION ‫اإلشعاع‬ ‫تصنيف‬ Radiation may be classified as:‫الي‬ ‫تصنيفه‬ ‫يمكن‬ Electromagnetic radiation ‫الكهرومغناطيسية‬ ‫الموجات‬ Particulate radiation ‫المشعة‬ ‫الجسيمات‬ • radiofrequency ‫الراديو‬ ‫موجات‬ • infrared ‫الحمراء‬ ‫تحت‬ ‫الموجات‬ • visible light ‫المرئي‬ ‫الضوء‬ ultraviolet ‫بنفسيجية‬ ‫الفوق‬ • X rays ‫السينية‬ ‫االشعة‬ • gamma rays ‫جاما‬ ‫اشعة‬ • electrons ‫اإللكترونات‬ • positrons ‫البوزيترونات‬ • protons ‫البروتونات‬ • neutrons ‫النيترونات‬
  • 63. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION 1.2.1. Electromagnetic radiation‫الكهرومغناطيسية‬ ‫الموجات‬ c x y z Eo Bo  c x y z Eo Bo  Electromagnetic waves consist of oscillating electric and magnetic fields, which are at right angles to each other and also to the direction of wave propagation ‫مجالين‬ ‫الكهرومغناطيسيةمن‬ ‫الموجات‬ ‫تتكون‬ ‫متعامدين‬ ‫ومغناطيسية‬ ‫كهربي‬ They are characterized by their: • amplitudes ‫السعة‬ Eo and Bo • wavelength ‫الموجي‬ ‫الطول‬ ( λ ) • frequency ‫التردد‬ (ν ) and • speed ‫الموجة‬ ‫سرعة‬ c = λ ν In vacuum, c = 3×108m/s For X rays: ‫بالهرتز‬ ‫والتردد‬ ‫بالنانومتر‬ ‫يقاس‬ ‫الموجي‬ ‫الطول‬ • wavelength is usually expressed in nanometre (nm) (1 nm = 10-9m) and • frequency is expressed in hertz (Hz) (1 Hz = 1 cycle/sec = 1 sec-1)
  • 64. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION 1.2.1. Electromagnetic radiation Electromagnetic spectrum as a function of: ‫والتردد‬ ‫الموجي‬ ‫الطول‬ ‫في‬ ‫دالة‬ ‫الكهرومغناطيسية‬ ‫الموجات‬ • wavelength (nm) • frequency (Hz) WAVELENGTH (nm) FREQUENCY (Hz) 1015 1012 109 106 10-6 103 1 10-3 3x102 3x105 3x108 3x1011 3x1014 3x1017 3x1020 3x1023 Radio Television Radar MRI Infrared Ultra violet Gamma rays X Rays diagnostic therapeutic ‫التشخيصي‬ ‫العالجي‬
  • 65. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION 1.2.1. Electromagnetic radiation Electromagnetic spectrum as a function of: • photon energy (eV) • ‫والطاقة‬ ‫الكهرومغناطيسية‬ ‫الموجات‬ ‫عالقة‬ ENERGY (eV)
  • 66. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2 CLASSIFICATION OF RADIATION 1.2.1. Electromagnetic radiation When interactions with matter are considered, electromagnetic radiation is generally treated as series of individual particles, known as photons. The energy E of each photon is given by: ‫الطاقة‬ ‫عطى‬ُ‫ت‬‫و‬ ،‫فوتونات‬ ‫أنه‬ ‫على‬ ‫المادة‬ ‫مع‬ ‫الكهرومغناطيسي‬ ‫اإلشعاع‬ ‫يتفاعل‬ E ‫بالعالقة‬ ‫فوتون‬ ‫لكل‬ :  / hc hv E = = h (Planck’s constant) ‫بالنك‬ ‫=ثابت‬ 6.63×10-34 J∙s = 4.14×10-15 eV∙s 1 eV = 1.6×10-19 J, is the energy given to an electron by accelerating it through 1 volt of electric potential difference ‫مقداره‬ ‫الكهربائي‬ ‫الجهد‬ ‫فرق‬ ‫خالل‬ ‫مروره‬ ‫عند‬ ‫لإللكترون‬ ‫الممنوحة‬ ‫الطاقة‬ ‫هي‬ ‫فولت‬ ‫اإللكترون‬ 1 ‫فولت‬ ν (Hz = s-1) is the frequency of electromagnetic wave ‫التردد‬ λ (m) is the wavelength of electromagnetic wave ‫الموجي‬ ‫الطول‬ In diagnostic radiology the photon energy is usually expressed in units of keV. 1 keV = 1000 Ev ‫بوحدات‬ ‫التشخيصية‬ ‫األشعة‬ ‫في‬ ‫الفوتون‬ ‫طاقة‬ ‫عن‬ ‫التعبير‬ ‫يتم‬ ‫ما‬ ‫عادة‬ keV
  • 67. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION 1.2.2. Particulate radiation ‫المشعة‬ ‫الجسيمات‬ In diagnostic radiology, the only particulate radiation that needs to be considered is the electron ‫في‬ ‫األشعة‬ ‫التشخيصية‬ ‫والعالجية‬ ‫بنهتم‬ ‫باإللكترون‬ Rest Mass of Electron = 9.109 ×10-31 kg Rest Energy of Electron = 511 keV = 0.511 MeV
  • 68. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.2. CLASSIFICATION OF RADIATION 1.2.3. Ionizing and non-ionizing radiation ‫مؤين‬ ‫والغير‬ ‫المؤين‬ ‫اإلشعاع‬ Non-ionizing radiation - cannot ionize matter: (electromagnetic radiation with energy below the far- ultraviolet region, e.g. visible light, infrared and radiofrequency) ‫تفقد‬ ‫المادة‬ ‫الطاقةلجعل‬ ‫من‬ ‫الكاف‬ ‫المقدار‬ ‫عندها‬ ‫ليس‬ ‫مؤين‬ ‫الغير‬ ‫اإلشعاع‬ ‫احد‬ ‫المرئ‬ ‫والضوء‬ ‫حمراء‬ ‫التحت‬ ‫االشعة‬ ‫مثل‬ ‫الكتروناتها‬ Ionizing radiation - can ionize matter: (fast charged particles, X rays, gamma rays and neutrons) ‫اشعة‬ ‫مثل‬ ‫المادة‬ ‫تأيين‬ ‫علي‬ ‫المقدره‬ ‫عنده‬ ‫الذي‬ ‫هو‬ ‫المؤين‬ ‫اإلشعاع‬ ‫والنيترونات‬ ‫والسينية‬ ‫جاما‬
  • 69. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Ionizing radiation - can ionize matter either: Directly : ‫المباشر‬ fast charged particles that deposit their energy in matter directly, through many small Coulomb (electrostatic) interactions with orbital electrons along the particle track ‫المادة‬ ‫في‬ ‫طاقتها‬ ‫تودع‬ ‫مشحونة‬ ‫جسيمات‬ ‫كول‬ ‫تفاعالت‬ ‫من‬ ‫العديد‬ ‫خالل‬ ‫من‬ ، ‫مباشرة‬ ‫وم‬ ‫الصغيرة‬ ( ‫اإللكتروستاتيكية‬ ) ‫اإلل‬ ‫مع‬ ‫كترونات‬ ‫الجسيمات‬ ‫مسار‬ ‫طول‬ ‫على‬ ‫المدارية‬ Indirectly: ‫مباشر‬ ‫الغير‬ X- or gamma- ray photons or neutrons that first transfer their energy to fast charged particles released in one or a few interactions in the matter through which they pass. The resulting fast charged particles then deposit their energy directly in the matter ‫تنق‬ ‫شحنة‬ ‫لها‬ ‫ليس‬ ‫التي‬ ‫الجسيمات‬ ‫أو‬ ‫فوتونات‬ ‫ل‬ ‫تنطلق‬ ‫الشحن‬ ‫سريعة‬ ‫جسيمات‬ ‫إلى‬ ً‫ال‬‫أو‬ ‫طاقتها‬ ‫في‬ ‫خاللها‬ ‫من‬ ‫تمر‬ ‫التي‬ ‫المادة‬ . ‫الجسيمات‬ ‫تقوم‬ ‫ثم‬ ‫مباشرة‬ ‫طاقتها‬ ‫بإيداع‬ ‫الناتجة‬ ‫بسرعة‬ ‫المشحونة‬ ‫في‬ ‫المادة‬ 1.2. CLASSIFICATION OF RADIATION 1.2.3. Ionizing and non-ionizing radiation
  • 70. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Ionization potential is the minimum energy required to ionize an atom. For elements its magnitude ranges from a few eV for alkali metals to 24.5 eV for helium. For water it is 12.6 eV ‫الذرة‬ ‫لتأين‬ ‫المطلوبة‬ ‫الطاقة‬ ‫من‬ ‫األدنى‬ ‫الحد‬ ‫هو‬ ‫التأين‬ ‫جهد‬ 1.2. CLASSIFICATION OF RADIATION 1.2.3. Ionizing and non-ionizing radiation Element Ionization potential (eV) H 13.6 C 11.3 O 13.6 Mo 7.1 W 7.9
  • 71. INTRODUCTION 1.1.5. Classification of indirectly ionizing photon radiation ‫مباشر‬ ‫غير‬ ‫بشكل‬ ‫المؤين‬ ‫الفوتون‬ ‫إشعاع‬ ‫تصنيف‬ ❑ Consists of three main categories: ‫رئيسية‬ ‫فئات‬ ‫ثالث‬ ‫من‬ ‫تتكون‬ : • Ultraviolet: limited use in medicine ‫البنفسجية‬ ‫فوق‬ ‫األشعة‬ : ‫الطب‬ ‫في‬ ‫محدود‬ ‫استخدام‬ • X ray: used in disease imaging and/or treatment Emitted by orbital or accelerated electrons • ‫السينية‬ ‫األشعة‬ : ‫االلكترونات‬ ‫تعجيل‬ ‫او‬ ‫المدارات‬ ‫من‬ ‫تنتج‬ ‫العالجي‬ ‫أو‬ ‫الطبي‬ ‫التصوير‬ ‫في‬ ‫تستخدم‬ •  ray: used in disease imaging and/or treatment • Emitted by the nucleus or particle decays • ‫جاما‬ ‫أشعة‬ : ‫الجسيمات‬ ‫تحلل‬ ‫أو‬ ‫النواة‬ ‫من‬ ‫تنبعث‬ ‫العالجي‬ ‫أو‬ ‫الطبي‬ ‫التصوير‬ ‫في‬ ‫تستخدم‬ • Difference between X and  rays is based on the radiation’s origin • ‫اإلشعاع‬ ‫منشأ‬ ‫على‬ ‫جاما‬ ‫واشعة‬ ‫السينية‬ ‫األشعة‬ ‫بين‬ ‫الفرق‬ ‫يعتمد‬ ❑ The origin of these photons fall into 4 categories: • Characteristic (fluorescence) X rays ‫المميزة‬ ‫السينية‬ ‫االشعة‬ ( ‫الوميضية‬ ) • Bremsstrahlung X rays ‫االنكباحية‬ ‫السينية‬ ‫االشعة‬ • From nuclear transitions ‫النووي‬ ‫اإلضمحالل‬ ‫من‬ ‫الناتجة‬ ‫جاما‬ ‫أشعة‬ • Annihilation quanta ‫اإللكترونات‬ ‫إبادة‬ ‫من‬ ‫الناتجة‬ ‫جاما‬ ‫أشعة‬
  • 72. 1.1 INTRODUCTION 1.1.6. Characteristic X rays ‫المميزة‬ ‫السينية‬ ‫األشعة‬ ❑ Orbital electrons inhabit atom’s minimal energy state ❑ ‫الطاقة‬ ‫في‬ ‫أقل‬ ‫مدار‬ ‫إل‬ ‫اإللكترون‬ ‫إنتقال‬ ❑ An ionization or excitation process leads to an open vacancy ❑ ‫المدار‬ ‫في‬ ‫فراغ‬ ‫وجود‬ ‫الي‬ ‫تؤدي‬ ‫اإلثارة‬ ‫أو‬ ‫التأين‬ ‫عملية‬ ‫ان‬ ‫حيث‬ ❑ An outer shell electron transitions to fill vacancy (~nsec) ❑ ‫خارجي‬ ‫مدار‬ ‫من‬ ‫بإلكترون‬ ‫الفراغ‬ ‫هذا‬ ‫يعوض‬ ‫وبالتالي‬ ❑ Liberated energy may be in the form of: ‫صورة‬ ‫في‬ ‫الطاقة‬ ‫من‬ ‫مقدار‬ ‫اإللكترون‬ ‫هذا‬ ‫يفقد‬ ‫بالتالي‬ ‫فوتون‬ • Characteristic photon (fluorescence) ‫المميزة‬ ‫األشعة‬ ( ‫الوميضية‬ ) • Energy = initial state binding energy - final state binding energy • ‫الناتج‬ ‫الفوتون‬ ‫طاقة‬ = ‫األساسي‬ ‫بالمدار‬ ‫الربط‬ ‫طاقة‬ – ‫النهائي‬ ‫بالمدار‬ ‫الربط‬ ‫طاقة‬ • Photon energy is characteristic of the atom ‫الذرة‬ ‫تميز‬ ‫هذه‬ ‫الفتون‬ ‫وطاقة‬ • Transferred to orbital electron that • Emitted with kinetic energy = transition energy - binding energy • Called an Auger electron • ‫حركة‬ ‫بطاقة‬ ‫أوجيور‬ ‫إلكترون‬ ‫يسمي‬ ‫مداري‬ ‫إلكترون‬ ‫الي‬ ‫الطاقة‬ ‫تنقل‬ = ‫اإلنتقالية‬ ‫الطاقة‬ – ‫الربط‬ ‫طاقة‬
  • 73. 1.1 INTRODUCTION 1.1.7. Bremsstrahlung ‫اإلنكباحية‬ ‫األشعة‬ ❑ Translated from German as 'breaking radiation' ❑ Light charged particles (b- & b+) slowed down by interactions with other charged particles in matter (e.g. atomic nuclei) ❑ ‫ا‬ ‫من‬ ‫بالقرب‬ ‫مرورها‬ ‫عند‬ ‫السالبة‬ ‫او‬ ‫الموجبة‬ ‫بيتا‬ ‫جسيمات‬ ‫تباطؤ‬ ‫نتيجة‬ ‫اإلنكباحية‬ ‫األشعة‬ ‫تنتج‬ ‫الذرية‬ ‫لنويات‬ ❑ Kinetic energy loss converted to electromagnetic radiation ❑ ‫ا‬ ‫الصفر‬ ‫من‬ ‫يبداء‬ ‫مستمر‬ ‫طيف‬ ‫ذو‬ ‫ويكون‬ ‫كهرومغناطيسي‬ ‫إشعاع‬ ‫إلي‬ ‫الحركة‬ ‫طاقة‬ ‫تتحول‬ ‫حيث‬ ‫طاقة‬ ‫لي‬ ‫األولي‬ ‫المشحون‬ ‫الجسيم‬ ❑ Bremsstrahlung energy spectrum • Non-discrete (i.e. continuous) • Ranges: zero - kinetic energy of initial charged particle ❑ Central to modern imaging and therapeutic technology • Can be used to produce X rays from an electrical energy source • ‫كهربائية‬ ‫طاقة‬ ‫مصدر‬ ‫من‬ ‫السينية‬ ‫األشعة‬ ‫إلنتاج‬ ‫استخدامه‬ ‫يمكن‬
  • 74. 1.1 INTRODUCTION 1.1.8. Gamma rays ‫جاما‬ ‫أشعة‬  Nuclear reaction or spontaneous nuclear decay may leave product (daughter) nucleus in excited state  ‫جا‬ ‫أشعة‬ ‫النواة‬ ‫تفقد‬ ‫حيث‬ ‫النووي‬ ‫اإلضمحالل‬ ‫او‬ ‫النووية‬ ‫للتفاعالت‬ ‫نتيجة‬ ‫جاما‬ ‫أشعة‬ ‫تنتج‬ ‫اكثر‬ ‫لتصبح‬ ‫ما‬ ‫استقرارا‬ , ‫اكبر‬ ‫تكون‬ ‫وطاقتها‬ ‫للعنصر‬ ‫مميز‬ ‫جاما‬ ‫إضمحالل‬ 100 ‫فولت‬ ‫إلكترون‬ ‫كيلو‬  The nucleus can transition to a more stable state by emitting a  ray  Emitted photon energy is characteristic of nuclear energy transition   ray energy typically > 100 keV & wavelengths < 0.1 Å
  • 75. 1.1 INTRODUCTION 1.1.9. Annihilation quanta ‫البوزيترون‬ ‫تالشي‬ ‫طريق‬ ‫عن‬ ‫جاما‬ ‫أشعة‬ ‫إنتاج‬  Positron results from: • b+ nuclear decay • high energy photon interacts with nucleus or orbital electron electric field • ‫األزواج‬ ‫إنتاج‬ ‫من‬ ‫أو‬ ‫النووي‬ ‫اإلضمحالل‬ ‫من‬ ‫ينتج‬ ‫البوزيترون‬  Positron kinetic energy (EK) loss in absorber medium by Coulomb interactions:  Collisional loss when interaction is with orbital electron  Radiation loss (bremsstrahlung) when interaction is with the nucleus  Final collision (after all EK lost) with orbital electron (due to Coulomb attraction) called positron annihilation  ‫كوليمية‬ ‫بتفاعالت‬ ‫اإللكترون‬ ‫من‬ ‫لتفاعله‬ ‫نتيجة‬ ‫حركتة‬ ‫طاقة‬ ‫البوزيترون‬ ‫يفقد‬ : -  1 - ‫مداري‬ ‫الكترون‬ ‫مع‬ ‫التصادم‬ ‫عند‬  2 - ‫النواة‬ ‫مع‬ ‫التصادم‬ ‫عند‬ ‫إنكباحية‬ ‫أشعة‬ ‫صورة‬ ‫في‬ ‫يفقد‬  3 - ‫جاما‬ ‫أشعة‬ ‫وينتج‬ ‫للبوزيترون‬ ‫تالشي‬ ‫يحدث‬ ‫المداري‬ ‫الكترون‬ ‫مع‬ ‫النهائية‬ ‫التصادمات‬
  • 76. 1.1 INTRODUCTION 1.1.9. Annihilation quanta ‫البوزيترون‬ ‫تالشي‬ ‫طريق‬ ‫عن‬ ‫جاما‬ ‫أشعة‬ ‫إنتاج‬  During annihilation ‫التالشي‬ ‫عملية‬ ‫أثناء‬  Positron & electron disappear  Replaced by 2 oppositely directed annihilation quanta (photons)  Each has energy = 0.511 MeV  Conservation laws obeyed:  Electric charge, linear momentum, angular momentum, total energy  ‫طاقة‬ ‫منهم‬ ‫ولكل‬ ‫واإللكترون‬ ‫البوزيترون‬ ‫يختفي‬ 0.511 ‫الفوتون‬ ‫وينتج‬ ‫فولت‬ ‫الكترون‬ ‫ميجا‬  In-flight annihilation  Annihilation can occur while positron still has kinetic energy  2 quanta emitted  Not of identical energies  Do not necessarily move at 180º
  • 77. Thanks Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 77
  • 78. 2- Introduction to Radiation Physics X rays and Auger electrons ‫إجيور‬ ‫وإلكترون‬ ‫السينية‬ ‫األشعة‬ Dr. Mohamed Adnan GULF HOUSE INSTITUTE ‫للتواصل‬ https://twitter.com/ghinstitutesa http://roadinstitute.edu.sa/pages/Default.aspx
  • 79. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons ‫إلكترون‬ ‫وأجوير‬ ‫السينية‬ ‫األشعة‬ ‫إنتاج‬ When charged particles pass through matter they interact with the atomic electrons and lose energy through the processes of ionization and excitation ‫التأين‬ ‫عملية‬ ‫لتنتج‬ ‫طاقتها‬ ‫بعض‬ ‫تفقد‬ ‫المادة‬ ‫خالل‬ ‫المشحونة‬ ‫الجسيمات‬ ‫مرور‬ ‫عند‬ ionization Atom of Na K L M ground state K L M K L M ionization K L M
  • 80. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 If the transferred energy exceeds the binding energy of the electron, ionization occurs, resulting in the electron ejected from the atom. An ion pair consisting of the ejected electron and the ionized, positively charged atom is then formed ، ‫اإللكترون‬ ‫ربط‬ ‫طاقة‬ ‫المنقولة‬ ‫الطاقة‬ ‫تجاوزت‬ ‫إذا‬ ‫من‬ ‫اإللكترون‬ ‫إخراج‬ ‫إلى‬ ‫يؤدي‬ ‫مما‬ ، ‫التأين‬ ‫يحدث‬ ‫الذرة‬ . ‫اإللك‬ ‫من‬ ‫يتكون‬ ‫أيوني‬ ‫زوج‬ ‫تشكيل‬ ‫يتم‬ ‫ثم‬ ‫ترون‬ ‫الشحنة‬ ‫والموجبة‬ ‫المتأينة‬ ‫والذرة‬ ‫المقذوف‬ The average energy required to produce an ion pair in air or soft tissue for electrons is equal to 33.97 Ev ‫الهواء‬ ‫في‬ ‫أيوني‬ ‫زوج‬ ‫إلنتاج‬ ‫الالزمة‬ ‫الطاقة‬ ‫متوسط‬ ‫أو‬ ‫يساوي‬ ‫لإللكترونات‬ ‫الرخوة‬ ‫األنسجة‬ 33.97 ‫فولت‬ K L M K L M ejected electron positive ion ion pair ion pair 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons
  • 81. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 When charged particles pass through matter they interact with the atomic electrons and lose energy through the processes of ionization and excitation ‫من‬ ‫الطاقة‬ ‫وتفقد‬ ‫الذرية‬ ‫اإللكترونات‬ ‫مع‬ ‫تتفاعل‬ ‫فإنها‬ ، ‫المادة‬ ‫عبر‬ ‫المشحونة‬ ‫الجسيمات‬ ‫تمر‬ ‫عندما‬ ‫خالل‬ ‫واإلثارة‬ ‫التأين‬ ‫عمليات‬ 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons K L M Atom of Na ground state excited state excitation K L M de-excitation E = hn = Ei - Ef K L M E = hn
  • 82. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Whenever a vacancy is created in an inner electronic shell, it is filled by an electron from a more distant (outer) shell ‫خارجي‬ ‫بإلكترون‬ ‫داخلي‬ ‫إلكترون‬ ‫خروج‬ ‫نتيجة‬ ‫الفراغات‬ ‫ملء‬ ‫يتم‬ This results in a vacancy in this second outer shell which is then filled by an electron (if available) from an even more distant outer shell and the whole process repeats producing a cascade of transitions ‫ذلك‬ ‫بعد‬ ‫ملؤه‬ ‫يتم‬ ‫الذي‬ ‫الثاني‬ ‫الخارجي‬ ‫الغالف‬ ‫في‬ ‫شاغر‬ ‫هذا‬ ‫عن‬ ‫وينتج‬ ‫بواسطة‬ ‫إلكترون‬ ( ‫وجد‬ ‫إن‬ ) ‫مم‬ ‫بأكملها‬ ‫العملية‬ ‫وتكرر‬ ‫ًا‬‫د‬‫بع‬ ‫أكثر‬ ‫خارجي‬ ‫غالف‬ ‫من‬ ‫ينتج‬ ‫ا‬ ‫التحوالت‬ ‫من‬ ‫سلسلة‬ 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons
  • 83. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 The energy released in each transition is carried away by: the emission of electromagnetic radiation • ‫تحمل‬ ‫انتقالية‬ ‫مرحلة‬ ‫كل‬ ‫في‬ ‫المنبعثة‬ ‫الطاقة‬ : ‫الكهرومغناطيسي‬ ‫اإلشعاع‬ ‫انبعاث‬ depending on the atomic number of the material, and the electronic shells involved, this radiation may be in the visible, ultraviolet, and X ray portions of the spectrum ‫األ‬ ‫في‬ ‫اإلشعاع‬ ‫هذا‬ ‫يكون‬ ‫قد‬ ، ‫المعنية‬ ‫اإللكترونية‬ ‫والمدارات‬ ، ‫للمادة‬ ‫الذري‬ ‫العدد‬ ‫على‬ ‫ًا‬‫د‬‫اعتما‬ ‫جزاء‬ ‫الطيف‬ ‫من‬ ‫السينية‬ ‫واألشعة‬ ‫البنفسجية‬ ‫فوق‬ ‫واألشعة‬ ‫المرئية‬ in case of X rays, they are known as characteristic or fluorescent X rays 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons • an electron ejected from another outer shell, known as Auger electron ‫أجوير‬ ‫إلكترون‬ ‫يسمي‬ ‫الذرة‬ ‫يترك‬ ‫الذي‬ ‫اإللكترون‬
  • 84. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.4. X RAYS 1.4.1. The production of characteristic X rays 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo K M L Ka K M L Ka K M L Ka K M L Kb K M L Kb K M L Kb K M L K M L 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo 8 10 o de onda (10-11 m) 5 kV Ka alvo de W alvo de Mo K M L Ka K M L Ka K M L Ka K M L Kb K M L Kb K M L Kb K M L Ka K M L Ka K M L Ka K M L Ka K M L Ka K M L Ka K M L Kb K M L Kb K M L Kb K M L K M L • Kα X ray is emitted for a transition between L and K shells • Kβ X ray is emitted for a transition between M or N and K shells
  • 85. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 For tungsten (W): the energies of the Kα and Kβ characteristic X rays are given by: E (Kα1) = ELIII - EK = - 10.2 - (- 69.5) = 59.3 keV E (Kα2) = ELI - EK = - 11.5- (- 69.5) = 58.0 keV E (Kβ1) = EMIII - EK = - 2.3 - (- 69.5) = 67.2 keV E (Kβ2) = ENIII- EK = - 0.4 - (- 69.5) = 69.1 keV 1.4. X RAYS 1.4.1. The production of characteristic X rays
  • 86. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 For molybdenum (Mo): Energies of K, L and M shell are: EK = - 20.0 keV EL = - 2.6 keV EM = - 0.4 keV the energies of the Kα and Kβ characteristic X rays are given by: E (Kα) = EL - EK = - 2.6 - (- 20.0) = 17.4 keV E (Kβ) = EM - EK = - 0.4 - (- 20.0) = 19.6 keV 1.4. X RAYS 1.4.1. The production of characteristic X rays cascading electron K L M -20 keV -2.6 keV -0.4 keV - - - - - 19.6 keV Kb Characteristic X ray vacant - Molybdenum atom
  • 87. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.4. X RAYS 1.4.1. The production of Auger electrons If the initial transition is from an M to a K shell, and the Auger electron is also emitted from the M shell, there will be two resultant vacancies in the M shell ‫إذا‬ ‫كان‬ ‫االنتقال‬ ‫األولي‬ ‫من‬ ‫قشرة‬ M ‫إلى‬ ‫قشرة‬ K ، ‫وانبعاث‬ ‫إلكترون‬ Auger ‫ًا‬‫ض‬‫أي‬ ‫من‬ ‫قشرة‬ M ، ‫فسيكون‬ ‫هناك‬ ‫شاغران‬ ‫ناتجان‬ ‫في‬ ‫قشرة‬ M The kinetic energy of the Auger electron is thus determined by the difference between the binding energy of the shell with the initial vacancy and the sum of the binding energies associated with the two vacancies which are created. In case of molybdenum atom, the energy of the Auger electron is given by: ‫وهكذا‬ ‫يتم‬ ‫تحديد‬ ‫الطاقة‬ ‫الحركية‬ ‫إللكترون‬ ‫أوجير‬ ‫من‬ ‫خالل‬ ‫الفرق‬ ‫بين‬ ‫طاقة‬ ‫ربط‬ ‫القشرة‬ ‫مع‬ ‫الشغور‬ ‫األولي‬ ‫ومجموع‬ ‫طا‬ ‫قات‬ ‫الربط‬ ‫المرتبطة‬ ‫بالشواغرين‬ ‫اللذين‬ ‫يتم‬ ‫إنشاؤهما‬ . ‫في‬ ‫حا‬ ‫لة‬ ‫ذرة‬ ‫الموليبدينوم‬ ، ‫يتم‬ ‫إعطاء‬ ‫طاقة‬ ‫إلكترون‬ ‫أوجير‬ ‫من‬ ‫خالل‬ : E (Auger) = EM + EM - EK = - 0.4 - 0.4 - (- 20.0) = 19.2 keV cascading electron K L M -20 keV -2.6 keV -0.4 keV - - - - - - 19.2 keV Auger electron vacant Molybdenum atom
  • 88. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Auger electron emission is more important for materials of low atomic number and for transitions amongst outer shells ‫يعد‬ ‫انبعاث‬ ‫إلكترون‬ ‫أوجير‬ ‫أكثر‬ ‫أهمية‬ ‫للمواد‬ ‫ذات‬ ‫العدد‬ ‫الذري‬ ‫المنخفض‬ ‫وللتحوالت‬ ‫بين‬ ‫المدارات‬ ‫الخارجية‬ The K-fluorescence yield is close to zero for low atomic number materials, but increases with atomic number and is 0.007, 0.17, 0.60 and 0.93 for oxygen, calcium, selenium and gadolinium respectively ‫إنتاجية‬ ‫الفلورة‬ K ‫قريبة‬ ‫من‬ ‫الصفر‬ ‫للمواد‬ ‫ذات‬ ‫العدد‬ ‫الذري‬ ‫المنخفض‬ ، ‫لكنها‬ ‫تزداد‬ ‫مع‬ ‫العدد‬ ‫الذري‬ ‫و‬ ‫هي‬ 0.007 ‫و‬ 0.17 ‫و‬ 0.60 ‫و‬ 0.93 ‫لألكسجين‬ ‫والكالسيوم‬ ‫والسيلينيوم‬ ‫والجادولينيوم‬ ‫على‬ ‫التوالي‬ When considering energy deposition in matter it is important to know whether a fluorescent X ray or an Auger electron is emitted ‫إ‬ ‫أو‬ ‫الفلورية‬ ‫السينية‬ ‫األشعة‬ ‫كانت‬ ‫إذا‬ ‫ما‬ ‫معرفة‬ ‫المهم‬ ‫من‬ ، ‫المادة‬ ‫في‬ ‫الطاقة‬ ‫ترسب‬ ‫في‬ ‫النظر‬ ‫عند‬ ‫لكترون‬ ‫تنبعث‬ ‫أوجيه‬ The probability of emission of a fluorescent X ray is known as the fluorescent yield, denoted ω and the probability of emitting an Auger electron is 1- ω ،‫إليه‬ ‫المشار‬ ، ‫الفلوري‬ ‫بالعائد‬ ‫الفلورية‬ ‫السينية‬ ‫األشعة‬ ‫انبعاث‬ ‫احتمال‬ ‫ُعرف‬‫ي‬ ‫انب‬ ‫واحتمال‬ ‫أوجيه‬ ‫إلكترون‬ ‫عاث‬ ‫هو‬ 1.4. X RAYS 1.4.1. The production of characteristic X rays and Auger electrons
  • 89. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.4. X RAYS 1.4.2. Radiation from an accelerated charge, Bremsstrahlung In inelastic interactions of the fast electrons with atomic nuclei as they pass through matter, the electron path is deflected and energy is transferred to a photon, which is emitted ‫الم‬ ‫عبر‬ ‫مرورها‬ ‫أثناء‬ ‫الذرية‬ ‫النوى‬ ‫مع‬ ‫السريعة‬ ‫لإللكترونات‬ ‫المرنة‬ ‫غير‬ ‫التفاعالت‬ ‫في‬ ‫ينحرف‬ ، ‫ادة‬ ‫منه‬ ‫ينبعث‬ ‫الذي‬ ‫الفوتون‬ ‫إلى‬ ‫الطاقة‬ ‫نقل‬ ‫ويتم‬ ‫اإللكترون‬ ‫مسار‬ The emitted photon is known as Bremsstrahlung, which means “brake radiation”, in German ‫اإلنكباحية‬ ‫السينية‬ ‫األشعة‬ ‫تنبعث‬ The energy of the emitted photon can take any value from zero up to the energy of the initial electron, producing a continuous spectrum ‫من‬ ‫قيمة‬ ‫أي‬ ‫المنبعث‬ ‫الفوتون‬ ‫طاقة‬ ‫تأخذ‬ ‫أن‬ ‫يمكن‬ ‫طي‬ ‫ينتج‬ ‫مما‬ ، ‫األولي‬ ‫اإللكترون‬ ‫طاقة‬ ‫إلى‬ ‫الصفر‬ ‫ا‬ً‫ف‬ ‫ا‬ً‫مستمر‬ Bremsstrahlung photons are the major component of the X ray spectrum emitted by X ray tubes ‫في‬ ‫الرئيسي‬ ‫العنصر‬ ‫هي‬ ‫اإلنكباحية‬ ‫السينية‬ ‫األشعة‬ ‫طيف‬ ‫السينية‬ ‫األشعة‬ ‫أنابيب‬ ‫من‬ ‫المنبعثة‬ ‫السينية‬ ‫األشعة‬ elétron energético elétron menos energético raio X de freamento elétron energético elétron menos energético raio X de freamento
  • 90. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 The angle of emission of the Bremsstrahlung photons depends upon the electron energy: ‫تعتمد‬ ‫زاوية‬ ‫انبعاث‬ ‫فوتونات‬ ‫األشعة‬ ‫اإلنكباحية‬ ‫على‬ ‫طاقة‬ ‫اإللكترون‬ • for electron energies much greater than the rest energy of the electron, the angular distribution is peaked in the forward direction • ‫بالنسبة‬ ‫لإلكترون‬ ‫ذو‬ ‫الطاقاة‬ ‫العالية‬ ‫اكبر‬ ‫من‬ ‫طاقة‬ ‫ربط‬ ‫اإللكترون‬ ، ‫يتم‬ ‫توزيع‬ ‫التو‬ ‫زيع‬ ‫الزاوي‬ ‫في‬ ‫االتجاه‬ ‫األمامي‬ • when the electron energy is low, the radiation is mainly emitted between 60 and 90 degrees to the forward direction. • ‫عندما‬ ‫تكون‬ ‫طاقة‬ ‫اإللكترون‬ ‫منخفضة‬ ، ‫ينبعث‬ ‫اإلشعاع‬ ‫بشكل‬ ‫رئيسي‬ ‫بين‬ ‫زاويتي‬ 60 ‫و‬ 90 ‫درجة‬ ‫إلى‬ ‫االتجاه‬ ‫األمامي‬ The probability of Bremsstrahlung emission is proportional to Z2. But even for tungsten (Z = 74) the efficiency of Bremsstrahlung production is less than 1% for 100 keV electrons ‫مع‬ ‫يتناسب‬ ‫اإلنكباحية‬ ‫األشعة‬ ‫انبعاث‬ ‫احتمال‬ Z2. ‫للتنغستن‬ ‫بالنسبة‬ ‫حتى‬ ‫ولكن‬ ( Z = 74 ‫فإن‬ ‫اإلنكباحية‬ ‫األشعة‬ ‫إنتاج‬ ‫كفاءة‬ ‫من‬ ‫أقل‬ 1 ‫لإللكترونات‬ ٪ 100 ‫فولت‬ ‫كيلو‬ 1.4.2. Radiation from an accelerated charge, Bremsstrahlung ‫الشحنات‬ ‫تعجيل‬ ‫نتيجة‬ ‫اإلنكباحية‬ ‫األشعة‬
  • 91. 1.1 INTRODUCTION 1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬ ❑ Exposure: X ‫التعرض‬ • Ability of photons to ionize air ‫الهواء‬ ‫تأيين‬ ‫علي‬ ‫الفوتون‬ ‫قدرة‬ ❑ Kerma: K (acronym for Kinetic Energy Released in MAtter) ❑ ‫الكيرما‬ : ‫المادة‬ ‫من‬ ‫الكتلة‬ ‫وحدة‬ ‫في‬ ‫المنقولة‬ ‫الطاقة‬ ‫وهي‬ ‫المادة‬ ‫في‬ ‫المودعة‬ ‫الحركة‬ ‫الطاقة‬ ‫هي‬ ‫مباشرة‬ ‫الغير‬ ‫المؤينة‬ ‫االشعة‬ ‫من‬ ‫الممتصة‬ • Energy transferred to charged particles per unit mass of the absorber • Defined for indirectly ionizing radiation ❑ Dose (also referred to as absorbed dose): • Energy absorbed per unit mass of medium  ‫الجرعة‬ ( ‫الممتصة‬ ‫بالجرعة‬ ‫ا‬ً‫ض‬‫أي‬ ‫إليها‬ ‫يشار‬ :) ‫الوس‬ ‫من‬ ‫كتلة‬ ‫وحدة‬ ‫لكل‬ ‫الممتصة‬ ‫الطاقة‬ ‫وهي‬ ‫ط‬
  • 92. 1.1 INTRODUCTION 1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬ ❑ Equivalent dose: 𝐻T • Dose multiplied by radiation weighting factor wR • When different types of radiation are present, 𝐻T is the sum of all of the individual weighted contributions • ‫اإلشعاع‬ ‫معامل‬ ‫في‬ ‫الجرعة‬ ‫مضروب‬ ‫وهي‬ ‫المكافئة‬ ‫الجرعة‬ ( 20 ‫ألفا‬ ‫لجسيمات‬ – 1 ‫وااللكترونات‬ ‫وجاما‬ ‫اكس‬ ‫ألشعة‬ ) ❑ Effective dose: E • 𝐻𝑇 multiplied by a tissue weighting factor wT • ‫للنسيج‬ ‫الوزي‬ ‫المعامل‬ ‫في‬ ‫المكافئة‬ ‫الجرعة‬ ‫مضروب‬ ‫وهي‬ ‫الفعالة‬ ‫الجرعه‬ ❑ Activity: A ‫االشعاعية‬ ‫الشدة‬ : ‫الكيوري‬ ‫او‬ ‫بالبيكرل‬ ‫وتقاس‬ ‫الزمن‬ ‫وحدة‬ ‫في‬ ‫النووية‬ ‫االضمحالالت‬ ‫عدد‬ ‫وهي‬ • Number of nuclear decays per unit time • Its SI unit, becquerel (Bq), corresponds to one decay per second.
  • 93. 1.1 INTRODUCTION 1.1.10. Radiation quantities and units ‫اإلشعاع‬ ‫ووحدات‬ ‫كميات‬
  • 94. Thanks Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 1, 94
  • 95. 1- Introduction to Radiation Physics ‫اإلشعاعية‬ ‫الفيزياء‬ Dr. Mohamed Adnan GULF HOUSE INSTITUTE ‫للتواصل‬ https://twitter.com/ghinstitutesa http://roadinstitute.edu.sa/pages/Default.aspx
  • 96. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Chapter 1. TABLE OF CONTENTS 1.1. Introduction ‫مقدمة‬ 1.2. Classification of radiation ‫اإلشعاع‬ ‫تصنيف‬ 1.3. Atomic and nuclear structure ‫للمادة‬ ‫والنووي‬ ‫الذري‬ ‫التركيب‬ 1.4. X rays ‫السينية‬ ‫األشعة‬
  • 97. Physical quantities and units • The SI International system of units is founded on base units for seven physical quantities: • Quantity SI unit • length meter (m) • mass m kilogram (kg) • time t second (s) • electric current (I) ampere (A) • temperature (T) Kelvin (K) • amount of substance mole (mol) • luminous intensity candela (cd)
  • 98. Basic definitions for atomic structure • The constituent particles forming an atom are protons, neutrons and electrons. Protons and neutrons are known as nucleons and form the nucleus of the atom.
  • 99. Basic definitions for atomic structure • Protons: are particles with a positive charge and mass of 1 unit of atomic mass. • Neutron: Within the nucleus without charge and mass of 1 unit of atomic mass. • Electrons: are negatively charged particles and mass equal to 1/1840 of atomic mass unit. • Atomic mass unit: It is defined as one twelfth of the mass of an atom of carbon-12 .
  • 100. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions ‫األساسية‬ ‫التعريفات‬ Most of the mass of the atom is concentrated in the atomic nucleus which consists of:‫النواة‬ ‫في‬ ‫تتركز‬ ‫الذرة‬ ‫كنلة‬ • Z protons and • (A – Z) = N neutrons Z: Atomic number ‫الذري‬ ‫العدد‬ ( ‫البروتونات‬ ‫عدد‬ ) A: Atomic mass number ‫الكتلي‬ ‫العدد‬ ( ‫الربوتونات‬ + ‫النيترون‬ ) Unified atomic mass unit μ: a unit used for specifying the masses of atoms ‫هي‬ ‫الذرية‬ ‫الكتلة‬ ‫وحدة‬ 1/12 ‫الكربون‬ ‫كتلة‬ ‫من‬ - 12 1 μ = 1/12 of the mass of the 12C atom or 931.5 MeV/c2 An atom is composed of a central nucleus surrounded by a cloud of negatively charged electrons ‫الشحنة‬ ‫سالبة‬ ‫باإللكترونات‬ ‫محاطة‬ ‫نواة‬ ‫من‬ ‫الذرة‬ ‫تتكون‬
  • 101. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.1. Basic definitions Cs 137 55 3 / 2 A 0155 . 0 98 . 1 A + = Z Empirical relation between A and Z Ra 226 88 Co 60 27 nucleus of Cobalt-60 with 27 protons and 33 neutrons nucleus of Cesium-137 with 55 protons and 82 neutrons nucleus of Radium-226 with 88 protons and 138 neutrons X A Z Chemical symbol for the element Atomic mass number = Z+N Atomic number X-A or (Co-60) (Cs-137) (Ra-226)
  • 102. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Geiger and Marsden found that: • positive charge negative electrons Thomson atomic model Rutherford atomic model positive charge negative electrons 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure Visible lines of emission spectrum for Hydrogen
  • 103. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Diagram representing Bohr’s model of the hydrogen atom, in which the orbiting electron is allowed to be only in specific orbits of discrete radii ‫لإلكترونات‬ ‫الطاقة‬ ‫مستويات‬ ‫يوضح‬ ‫الرسم‬ proton M, + e r electron m, - e F v ground state excited state Quantization of energy, with n = 1, 2, 3... 2 6 . 13 ) eV ( n En − = 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 104. Dr. Mohamed Adnan RSO Training Course Gulf House Institute 2020 Zero Valence e- N M K -13.6 -3.4 -1.51 Hydrogen Z = 1 K series L series Energy (eV) L Energy (eV) N M L K L series K series Tungsten Z = 74 Valence e- Zero - 11,500 - 69,500 - 2,300 Energy levels for hydrogen and tungsten. Possible transitions between the various energy levels are shown with arrows ‫والتنجستين‬ ‫الهيدروجين‬ ‫لذرتي‬ ‫الطاقة‬ ‫مستويات‬ 1.3. ATOMIC AND NUCLEAR STRUCTURE 1.3.2. Atomic structure
  • 105. Chose the correct answer • Known as the atomic number of any atom (element – isotope)? • 1-The number of photons in the atom • 2-The number of neutrons in the atom • 3-The number of protons in the atom • 4-Total number of protons and neutrons In the nucleus • Atom • 1-Positively charged particles in the nucleus of the atom. • 2- Particles circulate around the nucleus in the atom. • 3-The basic construction unit in the article. • 4- particles with no electrical charge and in the nucleus of the atom. • 5- Atomic substances have the same number of protons
  • 106. •Protons • 1-Positively charged particles in the nucleus of the atom. • 2- Particles circulate around the nucleus in the atom. • 3-The basic construction unit in the article. • 4- particles with no electrical charge and in the nucleus of the atom. • 5- Atomic substances have the same number of protons •neutrons • 1-Positively charged particles in the nucleus of the atom. • 2- Particles circulate around the nucleus in the atom. • 3-The basic construction unit in the article. • 4- particles with no electrical charge and in the nucleus of the atom. • 5- Atomic substances have the same number of protons
  • 107. • Atomic number • 1 - atoms of a certain element have the same number of protons but different numbers of neutrons. • 2-The total number of protons and neutrons inside the nucleus of the atom. • 3 - A general expression that symbolizes any counterparty to any element. • 4-The number of protons in an atom. • Known mass number of the atom? • 1-The number of photons in the atom • 2-The number of neutrons in the atom • 3-The number of protons in the atom • 4-Total number of protons and neutrons In the nucleus
  • 108. • electron • 1-Positively charged particles in the nucleus of the atom. • 2- Particles circulate around the nucleus in the atom. • 3-The basic construction unit in the article. • 4- particles with no electrical charge and in the nucleus of the atom. • 5- Atomic substances have the same number of protons • element • 1-Positively charged particles in the nucleus of the atom. • 2- Particles circulate around the nucleus in the atom. • 3-The basic construction unit in the article. • 4- particles with no electrical charge and in the nucleus of the atom. • 5- Atomic substances have the same number of protons
  • 109. • According to the Bohr model of the atom nucleus of an atom, which consists? • 1-The nucleus is made up of protons and neutrons and orbits around electrons in orbits. • 2- Nucleus by protons, neutrons and electrons. • 3-The nucleus is made up of protons and electrons and is orbited by neutrons • According to the Bohr model of atoms, electrons can move freely within the atom( ). • According to the Bohr model of the atom when the electrons are able to change its orbit?
  • 110. Isotopes, radioisotopes and radionuclide's •Isotopes are atoms of an element •1- It has the same number of protons •2- It has a different number of neutrons. •3 - have the same chemical properties .. Why? •4 - The atomic mass has different ........ Why? •5. They may have different radiological properties.
  • 111. Thanks
  • 112. 4 RADIOACTIVITY •DR. MOHAMED ADNAN GULF HOUSE INSTITUTE •HTTPS://TWITTER.COM/GHINSTITUTESA HTTP://ROADINSTITUTE.EDU.SA/PAGES/DEFAULT.ASPX
  • 113. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY • Radioactivity is a process by which an unstable nucleus (parent) decays into a new nuclear configuration (daughter) that may be stable or unstable. • Radioactive decay involves a transition from the quantum state of the parent P to a quantum state of the daughter D. • The energy difference between the two quantum states is called the decay energy Q
  • 114. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY • All radioactive processes are governed by the same formalism based on: • Specific activity a is the parent’s activity per unit mass: NA Avogadro’s number A atomic mass number A(t) = N(t) a = A (t) M = N(t) M = NA A
  • 115. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY • Activity represents the total number of disintegrations (decays) of parent nuclei per unit time. • The SI unit of activity is the becquerel (1 Bq = 1 s-1). Both becquerel and hertz correspond to s-1 yet hertz expresses frequency of periodic motion, while becquerel expresses activity. • The older unit of activity is the curie , originally defined as the activity of 1 g of radium-226. Currently, the activity of 1 g of radium-226 is 0.988 Ci. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 5 (1 Ci = 3.7 1010 s−1 )
  • 116. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY • Decay of radioactive parent P into stable daughter D: • The number of radioactive parent nuclei as a function of time t is: • The activity of the radioactive parent as a function of time t is: where is the initial activity at time t = 0. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 7 NP (t) = NP (0)e −Pt AP (t) = P NP (t) = P NP (0)e −Pt = AP (0)e −Pt NP (t) AP (t) 0 P( ) A P P ⎯ → ⎯ D
  • 117. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY Parent activity plotted against time t illustrating: • Exponential decay of the activity • Concept of half life • Concept of mean life REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 8 AP (t)
  • 118. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY • Half life of radioactive parent P is the time during which the number of radioactive parent nuclei decays from the initial value at time t = 0 to half the initial value: • The decay constant and the half life are related as follows: REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 9 (t1/2 )P NP (0) NP (t = t1/2 ) = (1/ 2)NP (0) = NP (0)e −P (t1/2 )P P (t1/2 )P P = ln2 (t1/2 )P
  • 119. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.7 RADIOACTIVITY Parent and daughter activities against time for REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.7 SLIDE 12 P P ⎯ → ⎯ D D ⎯ → ⎯ G At the parent and daughter activities are equal and the daughter activity reaches its maximum. and t = tmax 0 max D d d t t t = = A tmax = ln D P D − P
  • 120. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.8 ACTIVATION OF NUCLIDES • Radioactivation of nuclides occurs when a parent nuclide P is bombarded with thermal neutrons in a nuclear reactor and transforms into a radioactive daughter nuclide D that decays into a granddaughter nuclide G. • The probability for radioactivation to occur is governed by the cross section for the nuclear reaction and the neutron fluence rate . • The unit of is barn per atom where • The unit of is REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.8 SLIDE 1 D P D G   → →   1 barn = 1 b = 10−24 cm2 .   cm−2 s−1 .
  • 121. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.8 ACTIVATION OF NUCLIDES • An important example of nuclear activation is the production of the cobalt-60 radionuclide through bombarding stable cobalt- 59 with thermal neutrons • For cobalt-59 the cross section • Typical reactor fluence rates are of the order of 1014 . REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.8 SLIDE 4 59 60 27 27 Co + n Co +  → 59 60 27 27 Co(n, ) Co  or  is 37 b/atom cm−2 s−1 
  • 122. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Radioactive decay is a process by which unstable nuclei reach a more stable configuration. • There are four main modes of radioactive decay: • Alpha decay • Beta decay • Beta plus decay • Beta minus decay • Electron capture • Gamma decay • Pure gamma decay • Internal conversion • Spontaneous fission REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 1
  • 123. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Nuclear transformations are usually accompanied by emission of energetic particles (charged particles, neutral particles, photons, neutrinos) • Radioactive decay Emitted particles • Alpha decay particle • Beta plus decay particle (positron), neutrino • Beta minus decay particle (electron), antineutrino • Electron capture neutrino • Pure gamma decay photon • Internal conversion orbital electron • Spontaneous fission fission products REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 2  + −
  • 124. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • In each nuclear transformation a number of physical quantities must be conserved. • The most important conserved physical quantities are: • Total energy • Momentum • Charge • Atomic number • Atomic mass number (number of nucleons) REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 3
  • 125. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Total energy of particles released by the transformation process is equal to the net decrease in the rest energy of the neutral atom, from parent P to daughter D. • The decay energy (Q value) is given as: M(P), M(D), and m are the nuclear rest masses of the parent, daughter and emitted particles. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 4     2 (P) (D) Q M M m c = − +
  • 126. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Alpha decay is a nuclear transformation in which: • An energetic alpha particle (helium-4 ion) is emitted. • The atomic number Z of the parent decreases by 2. • The atomic mass number A of the parent decreases by 4. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 5 Z A P → Z−2 A−4 D + 2 4 He
  • 127. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Henri Becquerel discovered alpha decay in 1896; George Gamow explained its exact nature in 1928 using the quantum mechanical effect of tunneling. • Hans Geiger and Ernest Marsden used 5.5 MeV alpha particles emitted by radon-222 in their experiment of alpha particle scattering on a gold foil. • Kinetic energy of alpha particles released by naturally occurring radionuclides is between 4 and 9 MeV. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 6
  • 128. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Best known example of alpha decay is the transformation of radium-226 into radon-222 with a half life of 1600 y. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 7 88 226 Ra → 86 222 Rn+ Z A P → Z−2 A−4 D + 2 4 He
  • 129. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Beta plus decay is a nuclear transformation in which: • A proton-rich radioactive parent nucleus transforms a proton into a neutron. • A positron and neutrino, sharing the available energy, are ejected from the parent nucleus. • The atomic number Z of the parent decreases by one; the atomic mass number A remains the same. • The number of nucleons and total charge are conserved in the beta decay process and the daughter D can be referred to as an isobar of the parent P. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 8 Z A P → Z-1 A D + e+ +e p → n+ e+ +e
  • 130. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • An example of a beta plus decay is the transformation of nitrogen-13 into carbon-13 with a half life of 10 min. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 9 Z A P → Z-1 A D + e+ +e p → n+ e+ +e 7 13 N→ 6 13 C + e+ +e
  • 131. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Beta minus decay is a nuclear transformation in which: • A neutron-rich radioactive parent nucleus transforms a neutron into a proton. • An electron and anti-neutrino, sharing the available energy, are ejected from the parent nucleus. • The atomic number Z of the parent increases by one; the atomic mass number A remains the same. • The number of nucleons and total charge are conserved in the beta decay process and the daughter D can be referred to as an isobar of the parent P. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 10 n→ p + e− +e Z A P → Z+1 A D + e− +e
  • 132. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • An example of beta minus decay is the transformation of cobalt-60 into nickel-60 with a half life of 5.26 y. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 11 n→ p + e− +e Z A P → Z+1 A D + e− +e 27 60 Co → 28 60 Ni+ e− +e
  • 133. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Electron capture decay is a nuclear transformation in which: • A nucleus captures an atomic orbital electron (usually K shell). • A proton transforms into a neutron. • A neutrino is ejected. • The atomic number Z of the parent decreases by one; the atomic mass number A remains the same. • The number of nucleons and total charge are conserved in the beta decay process and the daughter D can be referred to as an isobar of the parent P. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 12 p + e− = n+e  − + = + A A Z Z-1 e P e D
  • 134. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • An example of nuclear decay by electron capture is the transformation of berillium-7 into lithium-7 REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 13 p + e− = n+e Z A P + e− = Z+1 A D +e 4 7 Be + e− = 3 7 Li+e
  • 135. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Gamma decay is a nuclear transformation in which an excited parent nucleus P, generally produced through alpha decay, beta minus decay or beta plus decay, attains its ground state through emission of one or several gamma photons. • The atomic number Z and atomic mass number A do not change in gamma decay. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 14
  • 136. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY ❑ In most alpha and beta decays the daughter de-excitation occurs instantaneously, so that we refer to the emitted gamma rays as if they were produced by the parent nucleus. ❑ If the daughter nucleus de-excites with a time delay, the excited state of the daughter is referred to as a metastable state and process of de-excitation is called an isomeric transition. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 15
  • 137. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Examples of gamma decay are the transformation of cobalt-60 into nickel-60 by beta minus decay, and trans-formation of radium-226 into radon-222 by alpha decay. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 16
  • 138. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Internal conversion is a nuclear transformation in which: • The nuclear de-excitation energy is transferred to an orbital electron (usually K shell) . • The electron is emitted form the atom with a kinetic energy equal to the de-excitation energy less the electron binding energy. • The resulting shell vacancy is filled with a higher-level orbital electron and the transition energy is emitted in the form of characteristic photons or Auger electrons. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 17 Z A X* → Z A X+ + e−
  • 139. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • An example for both the emission of gamma photons and emission of conversion electrons is the beta minus decay of cesium-137 into barium-137 with a half life of 30 y. 55 137 Cs → 56 137 Ba + e− + e n→ p + e− +e Z A P → Z+1 A D + e− +e
  • 140. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • Spontaneous fission is a nuclear transformation by which a high atomic mass nucleus spontaneously splits into two nearly equal fission fragments. • Two to four neutrons are emitted during the spontaneous fission process. • Spontaneous fission follows the same process as nuclear fission except that it is not self-sustaining, since it does not generate the neutron fluence rate required to sustain a “chain reaction”.
  • 141. 1.2 ATOMIC AND NUCLEAR STRUCTURE 1.2.9 MODES OF RADIOACTIVE DECAY • In practice, spontaneous fission is only energetically feasible for nuclides with atomic masses above 230 u or with . • The spontaneous fission is a competing process to alpha decay; the higher is A above uranium-238, the more prominent is the spontaneous fission in comparison with the alpha decay and the shorter is the half-life for spontaneous fission. REVIEW OF RADIATION ONCOLOGY PHYSICS: A HANDBOOK FOR TEACHERS AND STUDENTS - 1.2.9 SLIDE 20 Z2 /A  235
  • 143. 2 RADIATION INTERACTIONS WITH MATTER •DR. MOHAMED ADNAN GULF HOUSE INSTITUTE •HTTPS://TWITTER.COM/GHINSTITUTESA HTTP://ROADINSTITUTE.EDU.SA/PAGES/DEFAULT.ASPX
  • 144. CHAPTER 1. TABLE OF CONTENTS 1.1. INTRODUCTION 1.2. ATOMIC AND NUCLEAR STRUCTURE 1.3. ELECTRON INTERACTIONS 1.4. PHOTON INTERACTIONS Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.
  • 145. 1.3 ELECTRON INTERACTIONS • AS AN ENERGETIC ELECTRON TRAVERSES MATTER, IT UNDERGOES COULOMB INTERACTIONS WITH ABSORBER ATOMS, I.E., WITH: • ATOMIC ORBITAL ELECTRONS • ATOMIC NUCLEI • THROUGH THESE COLLISIONS THE ELECTRONS MAY: • LOSE THEIR KINETIC ENERGY (COLLISION AND RADIATION LOSS) • CHANGE DIRECTION OF MOTION (SCATTERING) Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 1
  • 146. 1.3ELECTRON INTERACTIONS • ENERGY LOSSES ARE DESCRIBED BY STOPPING POWER. • SCATTERING IS DESCRIBED BY ANGULAR SCATTERING POWER. • COLLISION BETWEEN THE INCIDENT ELECTRON AND AN ABSORBER ATOM MAY BE: • ELASTIC • INELASTIC Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide2
  • 147. 1.3ELECTRON INTERACTIONS • IN AN ELASTIC COLLISION THE INCIDENT ELECTRON IS DEFLECTED FROM ITS ORIGINAL PATH BUT NO ENERGY LOSS OCCURS. • IN AN INELASTIC COLLISION WITH ORBITAL ELECTRON THE INCIDENT ELECTRON IS DEFLECTED FROM ITS ORIGINAL PATH AND LOSES PART OF ITS KINETIC ENERGY. • IN AN INELASTIC COLLISION WITH NUCLEUS THE INCIDENT ELECTRON IS DEFLECTED FROM ITS ORIGINAL PATH AND LOSES PART OF ITS KINETIC ENERGY IN THE FORM OF BREMSSTRAHLUNG. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 3
  • 148. 1.3ELECTRON INTERACTIONS THE TYPE OF INELASTIC INTERACTION THAT AN ELECTRON UNDERGOES WITH A PARTICULAR ATOM OF RADIUS A DEPENDS ON THE IMPACT PARAMETER B OF THE INTERACTION. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 4
  • 149. 1.3ELECTRON INTERACTIONS • FOR , THE INCIDENT ELECTRON WILL UNDERGO A SOFT COLLISION WITH THE WHOLE ATOM AND ONLY A SMALL AMOUNT OF ITS KINETIC ENERGY (FEW %) WILL BE TRANSFERRED FROM THE INCIDENT ELECTRON TO ORBITAL ELECTRON. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 5 b  a
  • 150. 1.3ELECTRON INTERACTIONS • FOR , THE ELECTRON WILL UNDERGO A HARD COLLISION WITH AN ORBITAL ELECTRON AND A SIGNIFICANT FRACTION OF ITS KINETIC ENERGY (UP TO 50%) WILL BE TRANSFERRED TO THE ORBITAL ELECTRON. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 6 b  a
  • 151. 1.3ELECTRON INTERACTIONS • FOR , THE INCIDENT ELECTRON WILL UNDERGO A RADIATION COLLISION WITH THE ATOMIC NUCLEUS AND EMIT A BREMSSTRAHLUNG PHOTON WITH ENERGY BETWEEN 0 AND THE INCIDENT ELECTRON KINETIC ENERGY. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3 Slide 7 b  a
  • 152. 1.3ELECTRON INTERACTIONS 1.3.1 ELECTRON-ORBITAL ELECTRON INTERACTIONS • INELASTIC COLLISIONS BETWEEN THE INCIDENT ELECTRON AND AN ORBITAL ELECTRON ARE COULOMB INTERACTIONS THAT RESULT IN: • ATOMIC IONIZATION: EJECTION OF THE ORBITAL ELECTRON FROM THE ABSORBER ATOM. • ATOMIC EXCITATION: TRANSFER OF AN ATOMIC ORBITAL ELECTRON FROM ONE ALLOWED ORBIT (SHELL) TO A HIGHER LEVEL ALLOWED ORBIT. • ATOMIC IONIZATIONS AND EXCITATIONS RESULT IN COLLISION ENERGY LOSSES EXPERIENCED BY THE INCIDENT ELECTRON AND ARE CHARACTERIZED BY COLLISION (IONIZATION) STOPPING POWER. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.1 Slide 1
  • 153. 1.3ELECTRON INTERACTIONS 1.3.2 ELECTRON-NUCLEUS INTERACTION • COULOMB INTERACTION BETWEEN THE INCIDENT ELECTRON AND AN ABSORBER NUCLEUS RESULTS IN: • ELECTRON SCATTERING AND NO ENERGY LOSS (ELASTIC COLLISION): CHARACTERIZED BY ANGULAR SCATTERING POWER • ELECTRON SCATTERING AND SOME LOSS OF KINETIC ENERGY IN THE FORM OF BREMSSTRAHLUNG (RADIATION LOSS): CHARACTERIZED BY RADIATION STOPPING POWER Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 2
  • 154. 1.3ELECTRON INTERACTIONS 1.3.2 ELECTRON-NUCLEUS INTERACTION • BREMSSTRAHLUNG PRODUCTION IS GOVERNED BY THE LARMOR RELATIONSHIP: . Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 3 P = q2 a2 6o c3
  • 155. 1.3ELECTRON INTERACTIONS 1.3.2 ELECTRON-NUCLEUS INTERACTIONS • THE ANGULAR DISTRIBUTION OF THE EMITTED BREMSSTRAHLUNG PHOTONS IS IN GENERAL PROPORTIONAL TO: Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.2 Slide 4 sin2  (1−  cos)5
  • 156. • ELECTRONS TRAVERSING AN ABSORBER LOSE THEIR KINETIC ENERGY THROUGH IONIZATION COLLISIONS AND RADIATION COLLISIONS. • THE RATE OF ENERGY LOSS PER GRAM AND PER CM2 IS CALLED THE MASS STOPPING POWER AND IT IS A SUM OF TWO COMPONENTS: • MASS COLLISION STOPPING POWER • MASS RADIATION STOPPING POWER • THE RATE OF ENERGY LOSS FOR A THERAPY ELECTRON BEAM IN WATER AND WATER-LIKE TISSUES, AVERAGED OVER THE ELECTRON’S RANGE, IS ABOUT 2 MEV/CM. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 5 1.3 ELECTRON INTERACTIONS 1.3.3 Stopping power
  • 157. 1.3ELECTRON INTERACTIONS 1.3.3 STOPPING POWER Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 6 ❑ The rate of energy loss for collision interactions depends on: • Kinetic energy of the electron. • Electron density of the absorber.
  • 158. 1.3 ELECTRON INTERACTIONS 1.3.3 STOPPING POWER BREMSSTRAHLUNG PRODUCTION THROUGH RADIATIVE LOSSES IS MORE EFFICIENT FOR HIGHER ENERGY ELECTRONS AND HIGHER ATOMIC NUMBER ABSORBERS Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 7 ❑ The rate of energy loss for radiation interactions (brems- strahlung) is approximately proportional to: • Kinetic energy of the electron. • Square of the atomic number of the absorber. Solid lines: mass radiation stopping power Dotted lines: mass collision stopping power
  • 159. 1.3 ELECTRON INTERACTIONS 1.3.3 STOPPING POWER • TOTAL MASS STOPPING POWER FOR ELECTRONS IN WATER, ALUMINUM AND LEAD AGAINST THE ELECTRON KINETIC ENERGY (SOLID CURVES). SOLID LINES: TOTAL MASS STOPPING POWER DASHED LINES: MASS COLLISION STOPPING POWER DOTTED LINES: MASS RADIATION STOPPING POWER Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.3 Slide 9 (S/)tot
  • 160. 1.3ELECTRON INTERACTIONS 1.3.4 MASS ANGULAR SCATTERING POWER • THE ANGULAR AND SPATIAL SPREAD OF A PENCIL ELECTRON BEAM TRAVERSING AN ABSORBING MEDIUM CAN BE APPROXIMATED WITH A GAUSSIAN DISTRIBUTION. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.3.4 Slide 1
  • 161. 1.4 PHOTON INTERACTIONS 1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS IONIZING PHOTON RADIATION IS CLASSIFIED INTO FOUR CATEGORIES: • CHARACTERISTIC X RAY RESULTS FROM ELECTRONIC TRANSITIONS BETWEEN ATOMIC SHELLS • BREMSSTRAHLUNG RESULTS MAINLY FROM ELECTRON-NUCLEUS COULOMB INTERACTIONS • GAMMA RAY RESULTS FROM NUCLEAR TRANSITIONS • ANNIHILATION QUANTUM (ANNIHILATION RADIATION) RESULTS FROM POSITRON-ELECTRON ANNIHILATION Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 1
  • 162. 1.4 PHOTON INTERACTIONS 1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS • IN PENETRATING AN ABSORBING MEDIUM, PHOTONS MAY EXPERIENCE VARIOUS INTERACTIONS WITH THE ATOMS OF THE MEDIUM, INVOLVING: • ABSORBING ATOM AS A WHOLE • NUCLEI OF THE ABSORBING MEDIUM • ORBITAL ELECTRONS OF THE ABSORBING MEDIUM. Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 2
  • 163. 1.4 PHOTON INTERACTIONS 1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS • INTERACTIONS OF PHOTONS WITH NUCLEI MAY BE: • DIRECT PHOTON-NUCLEUS INTERACTIONS (PHOTODISINTEGRATION) OR • INTERACTIONS BETWEEN THE PHOTON AND THE ELECTROSTATIC FIELD OF THE NUCLEUS (PAIR PRODUCTION). • PHOTON-ORBITAL ELECTRON INTERACTIONS ARE CHARACTERIZED AS INTERACTIONS BETWEEN THE PHOTON AND EITHER • A LOOSELY BOUND ELECTRON (COMPTON EFFECT, TRIPLET PRODUCTION) OR • A TIGHTLY BOUND ELECTRON (PHOTOELECTRIC EFFECT). Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 3
  • 164. 1.4 PHOTON INTERACTIONS 1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS • AS FAR AS THE PHOTON FATE AFTER THE INTERACTION WITH AN ATOM IS CONCERNED THERE ARE TWO POSSIBLE OUTCOMES: • PHOTON DISAPPEARS (I.E., IS ABSORBED COMPLETELY) AND A PORTION OF ITS ENERGY IS TRANSFERRED TO LIGHT CHARGED PARTICLES (ELECTRONS AND POSITRONS IN THE ABSORBING MEDIUM). • PHOTON IS SCATTERED AND TWO OUTCOMES ARE POSSIBLE: • THE RESULTING PHOTON HAS THE SAME ENERGY AS THE INCIDENT PHOTON AND NO LIGHT CHARGED PARTICLES ARE RELEASED IN THE INTERACTION. • THE RESULTING SCATTERED PHOTON HAS A LOWER ENERGY THAN THE INCIDENT PHOTON AND THE ENERGY EXCESS IS TRANSFERRED TO A LIGHT CHARGED PARTICLE (ELECTRON). Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 6
  • 165. 1.4 PHOTON INTERACTIONS 1.4.1 TYPES OF INDIRECTLY IONIZING PHOTON IRRADIATIONS • THE LIGHT CHARGED PARTICLES PRODUCED IN THE ABSORBING MEDIUM THROUGH PHOTON INTERACTIONS WILL: • EITHER DEPOSIT THEIR ENERGY TO THE MEDIUM THROUGH COULOMB INTERACTIONS WITH ORBITAL ELECTRONS OF THE ABSORBING MEDIUM (COLLISION LOSS ALSO REFERRED TO AS IONIZATION LOSS). • OR RADIATE THEIR KINETIC ENERGY AWAY THROUGH COULOMB INTERACTIONS WITH THE NUCLEI OF THE ABSORBING MEDIUM (RADIATION LOSS). Review of Radiation Oncology Physics: A Handbook for Teachers and Students - 1.4.1 Slide 7