This document describes a web application for analyzing building energy management data using predictive modeling and machine learning techniques. The application contains years of sensor data from a CUNY building and allows users to visualize the data, perform statistical analysis, and generate forecasts using Python modules. Key features include interactive data visualization, filtering and selecting subsets of data, defining expressions of sensor variables, and applying machine learning models for prediction. The application provides a customizable platform for exploring time series data while allowing different users to share their work.