1
Model of Robotic Manipulator with Revolute and
Prismatic Joints
03/25/2016
Travis Heidrich
Report Contents:
Dimensions of the Robot 2
Denavit-Hartenberg Parameters 2-3
MATLAB Script 3-5
Frame Transformation Matrices 6
Reachable Workspace for Manipulator 7-8
Inverse Kinematics for Manipulator 8-9
Jacobian and Singularity 10
Angular and Linear Velocities, Forces, and Torques of Robot 11
2
Dimensions of Robot
L1 = 1 m; L2 = 0.5 sin(45°) = 0.3536 m; LE = 0.5 m
D-H Parameters
Figure 1: Reference Frames and Dimensions of the three link robot
3
Table 1: D-H Parameter Table for all frames of the robot
i αi - 1 ai - 1 di - 1 θi
1 0 0 L1 θ1 + 135°
2 L2 90° d2 0
3 0 0 0 θ3
E 0 -90° LE 0
MatLab Script
%Solutions
clear all
close all
%Robot Dimensions
L_1 = 1; %meters
L_2 = 0.5*sind(45); %meters
L_E = 0.5; %meters
syms ai alphai di thetai theta1 d_2 theta3
T_x=[1 0 0 0;0 cos(alphai) -sin(alphai) 0;0 sin(alphai) cos(alphai) 0;0 0 0
1];
D_x=[1 0 0 ai;0 1 0 0;0 0 1 0;0 0 0 1];
T_z=[cos(thetai) -sin(thetai) 0 0;sin(thetai) cos(thetai) 0 0;0 0 1 0 ;0 0 0
1];
D_z=[1 0 0 0;0 1 0 0;0 0 1 di;0 0 0 1];
%Link the reference frames into one homogeneous transform matrix
AtB=T_x*D_x*T_z*D_z;
%Transformation from frame 0 to frame 1
ai = 0;
alphai = 0;
di = L1;
thetai = theta1 + 3*pi/4;
T_01 = subs(AtB);
iT_01 = inv(T_01);
%Transformation from frame 1 to frame 2
ai = L_2;
alphai = pi/2;
di = d_2;
thetai = 0;
T_12 = subs(AtB);
%iT_12 = inv(T_12);
%Transformation from frame 2 to frame 3
ai = 0;
4
alphai = 0;
di = 0;
thetai = theta3;
T_23 = subs(AtB);
%Transformation from frame 3 to frame E
ai = 0;
alphai = -pi/2;
di = LE;
thetai = 0;
T3E = subs(AtB);
%iT3E = inv(T3E);
% Linking the Transformations
T_02 = T_01*T_12;
T_03 = T_01*T_12*T_23;
T_0E = T_01*T_12*T_23*T_3E;
T_1E = T_12*T_23*T_3E;
T_2E = T_23*T_3E;
x = T_0E(1,4);
y = T_0E(2,4);
z = T_0E(3,4);
%Inverse Kinematics for robot
syms px py pz
theta3 = solve( pz == z, theta3);
[d_2, theta1] = solve(px == x, py == y, d_2, theta1);
%Rotation Matrices frame to frame
R_01 = T_01(1:3,1:3);
R_12 = T_12(1:3,1:3);
R_23 = T_23(1:3,1:3);
R_3E = T_3E(1:3,1:3);
R_02 = R_01*R_12;
R_03 = R_01*R_12*R_23;
R_0E = R_01*R_12*R_23*R_3E;
%Forces 10,5,and 1
f_EE = [10;5;1];
f_33 = R_3E*f_EE;
f_22 = R_23*f_33;
f_11 = R_12*f_22;
f_00 = R_01*f_11;
%Vectors between D-H Origins
P_01 = T_01(1:3,4);
P_12 = T_12(1:3,4);
P_23 = T_23(1:3,4);
P_3E = T_3E(1:3,4);
P_00 = [0;0;0];
P_02 = T_02(1:3,4);
P_03 = T_03(1:3,4);
P_0E = T_0E(1:3,4);
5
%Robot Torques
n_EE = zeros(3,1);
n_33 = R_01*n_EE + cross(P_3E,f_33);
n_22 = R_01*n_33 + cross(P_23,f_22);
n_11 = R_01*n_22 + cross(P_12,f_11);
n_00 = R_01*n_11 + cross(P_01,f_00);
t_0 = transpose(n_00)*[0;0;1];
t_1 = transpose(n_11)*[0;0;1];
t_2 = transpose(f_22)*[0;0;1];
t_3 = transpose(n_33)*[0;0;1];
t_E = zeros(3,1);
%Velocities
syms theta1Dot theta2Dot theta3Dot d_2Dot
%Unit Vectors
u_i = [1;0;0];
u_j = [0;1;0];
u_k = [0;0;1];
%Angular rotations
z_00 = u_k;
z_01 = R_01*u_k;
z_02 = R_02*u_k; %Prismatic
z_03 = R_03*u_k;
J_angular = [z00, 0*z01, z02];
Omega_0E = theta1Dot*u_k + 0 + theta3Dot*R_02*u_k + 0;
%Linear
J_linear = [cross(z_00,P_0E – P_00), z_02, cross(z_02,P_0E – P_02)];
%linear velocity equations
W_00 = zeros(3,1);
w_11 = inv(R_01)*w_00+[0;0;1]*theta1Dot;
w_22 = inv(R_12)*w_11+[0;0;0]*theta2Dot;
w_33 = inv(R_23)*w_22+[0;0;1]*theta3Dot;
w_EE = zeros(3,1);
v_00 = zeros(3,1);
v_11 = inv(R_01)*(v_00+cross(w_00,P_01));
v_22 = inv(R_12)*(v_11+cross(w_11,P_12))+d_2Dot*[0;0;1]; %Prismatic
v_33 = inv(R_23)*(v_22+cross(w_22,P_23));
v_EE = inv(R_3E)*(v_33+cross(w_33,P_3E));
v_0E = R_0E*v_EE;
6
Frame Transformation Matrices
𝑇0
1
=
[
−sin (
𝜋
4
+ 𝜃1) −cos (
𝜋
4
+ 𝜃1) 0 0
cos (
𝜋
4
+ 𝜃1) − sin (
𝜋
4
+ 𝜃1) 0 0
0 0 1 1
0 0 0 1]
𝑇1
2
=
[
1 0 0
√2
4
0 0 −1 −𝑑2
0 1 0 0
0 0 0 1 ]
𝑇2
3
= [
cos(𝜃3) −sin(𝜃3) 0 0
sin(𝜃3) cos(𝜃3) 0 0
0 0 1 0
0 0 0 1
]
𝑇3
𝐸
=
[
1 0 0 0
0 0 1
1
2
0 0 1 0
0 0 0 1]
𝑇0
𝐸
=
[
− cos(𝜃3) ∗ sin(
𝜋
4
+ 𝜃1) −cos(
𝜋
4
+ 𝜃1) sin(𝜃3) ∗ sin (
𝜋
4
+ 𝜃1)
(sin(𝜃3) ∗ sin(
𝜋
4
+ 𝜃1))
2
+ 𝑑2 ∗ cos (
𝜋
4
+ 𝜃1) −
(√2 ∗ sin(
𝜋
4
+ 𝜃1))
4
cos(𝜃3) ∗ sin(
𝜋
4
+ 𝜃1) −𝑠𝑖𝑛(
𝜋
4
+ 𝜃1) − cos (
𝜋
4
+ 𝜃1) ∗ sin(𝜃3)
(√2 ∗ cos (
𝜋
4
+ 𝜃1))
4
−
(cos (
𝜋
4
+ 𝜃1) ∗ sin(𝜃3))
2
+ 𝑑2 ∗ sin(
𝜋
4
+ 𝜃1)
sin(𝜃3) 0 cos(𝜃3)
cos(𝜃3)
2
+ 1
0 0 0 1 ]
7
Reachable Workspace for Manipulator
Figure 2: X-Z Plane View of reachable workspace
Figure 3: X-Y Plane View of reachable workspace
8
Figure 4: Trimetric view of reachable workspace
Inverse Kinematics for Manipulator
𝑇0
𝐸
= [
𝑟11 𝑟12 𝑟13 𝑝 𝑥
𝑟21 𝑟22 𝑟23 𝑝 𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1
]
𝑝𝑧 =
cos(𝜃3)
2
+1
𝑝 𝑦 =
(√2 𝑐𝑜𝑠 (
𝜋
4 + 𝜃1))
4
−
( 𝑐𝑜𝑠 (
𝜋
4 + 𝜃1) 𝑠𝑖𝑛(𝜃3))
2
+ 𝑑2 𝑠𝑖𝑛 (
𝜋
4
+ 𝜃1)
𝑝 𝑥 =
( 𝑠𝑖𝑛(𝜃3) 𝑠𝑖𝑛 (
𝜋
4 + 𝜃1))
2
−
(√2 𝑠𝑖𝑛 (
𝜋
4 + 𝜃1))
4
+ 𝑑2 𝑐𝑜𝑠 (
𝜋
4
+ 𝜃1)
Solving for θ3
𝜃3 = ± cos−1(2𝑝𝑧 − 2)
Substituting θ3 and solving for θ1 and d2
𝜃1 = 2 tan−1
(4𝑝 𝑦 ± √2√(8𝑝 𝑥
2 − 2√2 sin(𝜃3) + cos(2𝜃3) + 8𝑝 𝑦
2 − 2)) −
3𝜋
4
9
𝑑2 = ±
(√2√(8𝑝 𝑥
2 + 8𝑝 𝑦
2 + cos(2𝜃3) + 2√2 sin(𝜃3) − 2))
4
Solutions for the point: (-0.275, 0.6125, 1.4375)
𝜃3 = ± 0.5054 𝑟𝑎𝑑
𝜃1
𝑑2
= {
−5.2426 0.1163 −1.7674 −0.8431 𝑟𝑎𝑑
0.6621 0.3099 −0.6621 −0.3099 𝑚
Solution set to satisfy the limits is
𝜃3 = 0.5054 𝑟𝑎𝑑
𝜃1 = −5.2426 𝑟𝑎𝑑 = 1.0406 𝑟𝑎𝑑
𝑑2 = 0.6621 𝑚
Where d2 for both the offset L2 and the 0.1 m limit.
𝑑2 − 𝐿2 − 0.1 = 0.2085 𝑚
Figure 5: MatLab output of robot configured with the inverse kinematic solution
10
Jacobian
[
cos (
𝜋
4
+ 𝜃1) ∗ sin(𝜃3)
2
−
√2 ∗ cos (
𝜋
4
+ 𝜃1)
4
− 𝑑2 ∗ sin (
𝜋
4
+ 𝜃1) cos (
𝜋
4
+ 𝜃1)
cos(𝜃3) ∗ sin (
𝜋
4
+ 𝜃1)
2
sin(𝜃3) ∗ sin (
𝜋
4 + 𝜃1)
2
−
√2 ∗ sin (
𝜋
4 + 𝜃1)
4
+ 𝑑2 ∗ cos (
𝜋
4
+ 𝜃1) sin(
𝜋
4
+ 𝜃1) −
cos(𝜃3) ∗ cos (
𝜋
4 + 𝜃1)
2
0 0
− sin(𝜃3)
2
0 0 − cos (
𝜃
4
+ 𝜃1)
0 0 sin (
𝜃
4
+ 𝜃1)
1 0 0 ]
𝐷𝑒𝑡(𝐽𝑙𝑖𝑛𝑒𝑎𝑟) =
𝑑2 ∗ sin(𝜃3)
2
𝐷𝑒𝑡(𝐽 𝑎𝑛𝑔𝑢𝑙𝑎𝑟) = 0
Singularities
When determinate of Jacobian = 0
The was no determinate for the angular Jacobian
There was no theta 1 that resulted in singularities
Given theta3 = 0 and pi
For d_2 < = 0.5(sin(45)) + 0.1
OR
d_2 > 0.5(sin(45)) + 0.5
11
Angular and Linear Velocities, Forces, and
Torques of Robot
Table 2: The angular velocity of the end effector
𝜔0𝐸
𝜃̇3 ∗ sin(
3𝜋
4
+ 𝜃1) −𝜃̇3 ∗ cos(
3𝜋
4
+ 𝜃1)
𝜃̇1
Table 3: The linear velocity of the end effector
𝑣0𝐸 𝑣 𝑥 =
𝜃̇1∗sin(𝜃1)
4
−
𝜃̇1∗cos(𝜃1)
4
−
√2∗𝑑̇2∗sin(𝜃1)
2
+
√2∗𝑑̇2∗cos(𝜃1)
2
−
√2∗𝜃1
̇ ∗sin(𝜃1)∗sin(𝜃3)
4
−
(√2∗𝑑2∗𝜃1
̇ ∗cos(𝜃1))
2
−
(√2∗𝑑2∗𝜃1
̇ ∗sin(𝜃1))
2
+
√2∗𝜃̇3∗cos(𝜃1)∗cos(𝜃3)
4
+
√2∗𝜃̇1∗cos(𝜃1)∗sin(𝜃3)
4
+
√2∗𝜃̇3∗cos(𝜃3)∗sin(𝜃1)
4
𝑣 𝑦 =
√2∗𝑑̇2∗sin(𝜃1)
2
−
𝜃̇1∗sin(𝜃1)
4
−
𝜃̇1∗cos(𝜃1)
4
+
√2∗𝑑̇2∗cos(𝜃1)
2
+
√2∗𝜃̇1∗sin(𝜃1)∗sin(𝜃3)
4
+
√2∗𝑑2∗𝜃̇1∗cos(𝜃1)
2
−
√2∗𝑑2∗𝜃̇1∗sin(𝜃1)
2
−
√2∗𝜃̇3∗cos(𝜃1)∗cos(𝜃3)
4
+
√2∗𝜃̇1∗cos(𝜃1)∗sin(𝜃3)
4
+
√2∗𝑑2∗𝜃̇3∗cos(𝜃3)∗sin(𝜃1)
4
𝑣𝑧 = −
𝜃3
̇ sin(𝜃3)
2
Table 4: The forces for each link with respect to each link’s frame in N
End Effector 𝐹𝑥 = 10 𝐹𝑦 = 5 𝐹𝑧 = 1
Third Link 𝐹𝑥 = 10 𝐹𝑦 = 1 𝐹𝑧 = −5
Second Link 𝐹𝑥 = 8.266 𝐹𝑦 = 5.716 𝐹𝑧 = −5
First Link 𝐹𝑥 = 8.266 𝐹𝑦 = 5 𝐹𝑧 = 5.716
Base 𝐹𝑥 = -6.736 𝐹𝑦 =-6.925 𝐹𝑧 = 5.716
Table 5: Each joint torque in Nm:
End Effector 𝜏 𝐸 = 0
Third Link 𝜏3 = −5
Second Link 𝜏2 = −5
First Link 𝜏1 =2.240
Base 𝜏 𝑩 = 0

Robotic Manipulator with Revolute and Prismatic Joints

  • 1.
    1 Model of RoboticManipulator with Revolute and Prismatic Joints 03/25/2016 Travis Heidrich Report Contents: Dimensions of the Robot 2 Denavit-Hartenberg Parameters 2-3 MATLAB Script 3-5 Frame Transformation Matrices 6 Reachable Workspace for Manipulator 7-8 Inverse Kinematics for Manipulator 8-9 Jacobian and Singularity 10 Angular and Linear Velocities, Forces, and Torques of Robot 11
  • 2.
    2 Dimensions of Robot L1= 1 m; L2 = 0.5 sin(45°) = 0.3536 m; LE = 0.5 m D-H Parameters Figure 1: Reference Frames and Dimensions of the three link robot
  • 3.
    3 Table 1: D-HParameter Table for all frames of the robot i αi - 1 ai - 1 di - 1 θi 1 0 0 L1 θ1 + 135° 2 L2 90° d2 0 3 0 0 0 θ3 E 0 -90° LE 0 MatLab Script %Solutions clear all close all %Robot Dimensions L_1 = 1; %meters L_2 = 0.5*sind(45); %meters L_E = 0.5; %meters syms ai alphai di thetai theta1 d_2 theta3 T_x=[1 0 0 0;0 cos(alphai) -sin(alphai) 0;0 sin(alphai) cos(alphai) 0;0 0 0 1]; D_x=[1 0 0 ai;0 1 0 0;0 0 1 0;0 0 0 1]; T_z=[cos(thetai) -sin(thetai) 0 0;sin(thetai) cos(thetai) 0 0;0 0 1 0 ;0 0 0 1]; D_z=[1 0 0 0;0 1 0 0;0 0 1 di;0 0 0 1]; %Link the reference frames into one homogeneous transform matrix AtB=T_x*D_x*T_z*D_z; %Transformation from frame 0 to frame 1 ai = 0; alphai = 0; di = L1; thetai = theta1 + 3*pi/4; T_01 = subs(AtB); iT_01 = inv(T_01); %Transformation from frame 1 to frame 2 ai = L_2; alphai = pi/2; di = d_2; thetai = 0; T_12 = subs(AtB); %iT_12 = inv(T_12); %Transformation from frame 2 to frame 3 ai = 0;
  • 4.
    4 alphai = 0; di= 0; thetai = theta3; T_23 = subs(AtB); %Transformation from frame 3 to frame E ai = 0; alphai = -pi/2; di = LE; thetai = 0; T3E = subs(AtB); %iT3E = inv(T3E); % Linking the Transformations T_02 = T_01*T_12; T_03 = T_01*T_12*T_23; T_0E = T_01*T_12*T_23*T_3E; T_1E = T_12*T_23*T_3E; T_2E = T_23*T_3E; x = T_0E(1,4); y = T_0E(2,4); z = T_0E(3,4); %Inverse Kinematics for robot syms px py pz theta3 = solve( pz == z, theta3); [d_2, theta1] = solve(px == x, py == y, d_2, theta1); %Rotation Matrices frame to frame R_01 = T_01(1:3,1:3); R_12 = T_12(1:3,1:3); R_23 = T_23(1:3,1:3); R_3E = T_3E(1:3,1:3); R_02 = R_01*R_12; R_03 = R_01*R_12*R_23; R_0E = R_01*R_12*R_23*R_3E; %Forces 10,5,and 1 f_EE = [10;5;1]; f_33 = R_3E*f_EE; f_22 = R_23*f_33; f_11 = R_12*f_22; f_00 = R_01*f_11; %Vectors between D-H Origins P_01 = T_01(1:3,4); P_12 = T_12(1:3,4); P_23 = T_23(1:3,4); P_3E = T_3E(1:3,4); P_00 = [0;0;0]; P_02 = T_02(1:3,4); P_03 = T_03(1:3,4); P_0E = T_0E(1:3,4);
  • 5.
    5 %Robot Torques n_EE =zeros(3,1); n_33 = R_01*n_EE + cross(P_3E,f_33); n_22 = R_01*n_33 + cross(P_23,f_22); n_11 = R_01*n_22 + cross(P_12,f_11); n_00 = R_01*n_11 + cross(P_01,f_00); t_0 = transpose(n_00)*[0;0;1]; t_1 = transpose(n_11)*[0;0;1]; t_2 = transpose(f_22)*[0;0;1]; t_3 = transpose(n_33)*[0;0;1]; t_E = zeros(3,1); %Velocities syms theta1Dot theta2Dot theta3Dot d_2Dot %Unit Vectors u_i = [1;0;0]; u_j = [0;1;0]; u_k = [0;0;1]; %Angular rotations z_00 = u_k; z_01 = R_01*u_k; z_02 = R_02*u_k; %Prismatic z_03 = R_03*u_k; J_angular = [z00, 0*z01, z02]; Omega_0E = theta1Dot*u_k + 0 + theta3Dot*R_02*u_k + 0; %Linear J_linear = [cross(z_00,P_0E – P_00), z_02, cross(z_02,P_0E – P_02)]; %linear velocity equations W_00 = zeros(3,1); w_11 = inv(R_01)*w_00+[0;0;1]*theta1Dot; w_22 = inv(R_12)*w_11+[0;0;0]*theta2Dot; w_33 = inv(R_23)*w_22+[0;0;1]*theta3Dot; w_EE = zeros(3,1); v_00 = zeros(3,1); v_11 = inv(R_01)*(v_00+cross(w_00,P_01)); v_22 = inv(R_12)*(v_11+cross(w_11,P_12))+d_2Dot*[0;0;1]; %Prismatic v_33 = inv(R_23)*(v_22+cross(w_22,P_23)); v_EE = inv(R_3E)*(v_33+cross(w_33,P_3E)); v_0E = R_0E*v_EE;
  • 6.
    6 Frame Transformation Matrices 𝑇0 1 = [ −sin( 𝜋 4 + 𝜃1) −cos ( 𝜋 4 + 𝜃1) 0 0 cos ( 𝜋 4 + 𝜃1) − sin ( 𝜋 4 + 𝜃1) 0 0 0 0 1 1 0 0 0 1] 𝑇1 2 = [ 1 0 0 √2 4 0 0 −1 −𝑑2 0 1 0 0 0 0 0 1 ] 𝑇2 3 = [ cos(𝜃3) −sin(𝜃3) 0 0 sin(𝜃3) cos(𝜃3) 0 0 0 0 1 0 0 0 0 1 ] 𝑇3 𝐸 = [ 1 0 0 0 0 0 1 1 2 0 0 1 0 0 0 0 1] 𝑇0 𝐸 = [ − cos(𝜃3) ∗ sin( 𝜋 4 + 𝜃1) −cos( 𝜋 4 + 𝜃1) sin(𝜃3) ∗ sin ( 𝜋 4 + 𝜃1) (sin(𝜃3) ∗ sin( 𝜋 4 + 𝜃1)) 2 + 𝑑2 ∗ cos ( 𝜋 4 + 𝜃1) − (√2 ∗ sin( 𝜋 4 + 𝜃1)) 4 cos(𝜃3) ∗ sin( 𝜋 4 + 𝜃1) −𝑠𝑖𝑛( 𝜋 4 + 𝜃1) − cos ( 𝜋 4 + 𝜃1) ∗ sin(𝜃3) (√2 ∗ cos ( 𝜋 4 + 𝜃1)) 4 − (cos ( 𝜋 4 + 𝜃1) ∗ sin(𝜃3)) 2 + 𝑑2 ∗ sin( 𝜋 4 + 𝜃1) sin(𝜃3) 0 cos(𝜃3) cos(𝜃3) 2 + 1 0 0 0 1 ]
  • 7.
    7 Reachable Workspace forManipulator Figure 2: X-Z Plane View of reachable workspace Figure 3: X-Y Plane View of reachable workspace
  • 8.
    8 Figure 4: Trimetricview of reachable workspace Inverse Kinematics for Manipulator 𝑇0 𝐸 = [ 𝑟11 𝑟12 𝑟13 𝑝 𝑥 𝑟21 𝑟22 𝑟23 𝑝 𝑦 𝑟31 𝑟32 𝑟33 𝑝𝑧 0 0 0 1 ] 𝑝𝑧 = cos(𝜃3) 2 +1 𝑝 𝑦 = (√2 𝑐𝑜𝑠 ( 𝜋 4 + 𝜃1)) 4 − ( 𝑐𝑜𝑠 ( 𝜋 4 + 𝜃1) 𝑠𝑖𝑛(𝜃3)) 2 + 𝑑2 𝑠𝑖𝑛 ( 𝜋 4 + 𝜃1) 𝑝 𝑥 = ( 𝑠𝑖𝑛(𝜃3) 𝑠𝑖𝑛 ( 𝜋 4 + 𝜃1)) 2 − (√2 𝑠𝑖𝑛 ( 𝜋 4 + 𝜃1)) 4 + 𝑑2 𝑐𝑜𝑠 ( 𝜋 4 + 𝜃1) Solving for θ3 𝜃3 = ± cos−1(2𝑝𝑧 − 2) Substituting θ3 and solving for θ1 and d2 𝜃1 = 2 tan−1 (4𝑝 𝑦 ± √2√(8𝑝 𝑥 2 − 2√2 sin(𝜃3) + cos(2𝜃3) + 8𝑝 𝑦 2 − 2)) − 3𝜋 4
  • 9.
    9 𝑑2 = ± (√2√(8𝑝𝑥 2 + 8𝑝 𝑦 2 + cos(2𝜃3) + 2√2 sin(𝜃3) − 2)) 4 Solutions for the point: (-0.275, 0.6125, 1.4375) 𝜃3 = ± 0.5054 𝑟𝑎𝑑 𝜃1 𝑑2 = { −5.2426 0.1163 −1.7674 −0.8431 𝑟𝑎𝑑 0.6621 0.3099 −0.6621 −0.3099 𝑚 Solution set to satisfy the limits is 𝜃3 = 0.5054 𝑟𝑎𝑑 𝜃1 = −5.2426 𝑟𝑎𝑑 = 1.0406 𝑟𝑎𝑑 𝑑2 = 0.6621 𝑚 Where d2 for both the offset L2 and the 0.1 m limit. 𝑑2 − 𝐿2 − 0.1 = 0.2085 𝑚 Figure 5: MatLab output of robot configured with the inverse kinematic solution
  • 10.
    10 Jacobian [ cos ( 𝜋 4 + 𝜃1)∗ sin(𝜃3) 2 − √2 ∗ cos ( 𝜋 4 + 𝜃1) 4 − 𝑑2 ∗ sin ( 𝜋 4 + 𝜃1) cos ( 𝜋 4 + 𝜃1) cos(𝜃3) ∗ sin ( 𝜋 4 + 𝜃1) 2 sin(𝜃3) ∗ sin ( 𝜋 4 + 𝜃1) 2 − √2 ∗ sin ( 𝜋 4 + 𝜃1) 4 + 𝑑2 ∗ cos ( 𝜋 4 + 𝜃1) sin( 𝜋 4 + 𝜃1) − cos(𝜃3) ∗ cos ( 𝜋 4 + 𝜃1) 2 0 0 − sin(𝜃3) 2 0 0 − cos ( 𝜃 4 + 𝜃1) 0 0 sin ( 𝜃 4 + 𝜃1) 1 0 0 ] 𝐷𝑒𝑡(𝐽𝑙𝑖𝑛𝑒𝑎𝑟) = 𝑑2 ∗ sin(𝜃3) 2 𝐷𝑒𝑡(𝐽 𝑎𝑛𝑔𝑢𝑙𝑎𝑟) = 0 Singularities When determinate of Jacobian = 0 The was no determinate for the angular Jacobian There was no theta 1 that resulted in singularities Given theta3 = 0 and pi For d_2 < = 0.5(sin(45)) + 0.1 OR d_2 > 0.5(sin(45)) + 0.5
  • 11.
    11 Angular and LinearVelocities, Forces, and Torques of Robot Table 2: The angular velocity of the end effector 𝜔0𝐸 𝜃̇3 ∗ sin( 3𝜋 4 + 𝜃1) −𝜃̇3 ∗ cos( 3𝜋 4 + 𝜃1) 𝜃̇1 Table 3: The linear velocity of the end effector 𝑣0𝐸 𝑣 𝑥 = 𝜃̇1∗sin(𝜃1) 4 − 𝜃̇1∗cos(𝜃1) 4 − √2∗𝑑̇2∗sin(𝜃1) 2 + √2∗𝑑̇2∗cos(𝜃1) 2 − √2∗𝜃1 ̇ ∗sin(𝜃1)∗sin(𝜃3) 4 − (√2∗𝑑2∗𝜃1 ̇ ∗cos(𝜃1)) 2 − (√2∗𝑑2∗𝜃1 ̇ ∗sin(𝜃1)) 2 + √2∗𝜃̇3∗cos(𝜃1)∗cos(𝜃3) 4 + √2∗𝜃̇1∗cos(𝜃1)∗sin(𝜃3) 4 + √2∗𝜃̇3∗cos(𝜃3)∗sin(𝜃1) 4 𝑣 𝑦 = √2∗𝑑̇2∗sin(𝜃1) 2 − 𝜃̇1∗sin(𝜃1) 4 − 𝜃̇1∗cos(𝜃1) 4 + √2∗𝑑̇2∗cos(𝜃1) 2 + √2∗𝜃̇1∗sin(𝜃1)∗sin(𝜃3) 4 + √2∗𝑑2∗𝜃̇1∗cos(𝜃1) 2 − √2∗𝑑2∗𝜃̇1∗sin(𝜃1) 2 − √2∗𝜃̇3∗cos(𝜃1)∗cos(𝜃3) 4 + √2∗𝜃̇1∗cos(𝜃1)∗sin(𝜃3) 4 + √2∗𝑑2∗𝜃̇3∗cos(𝜃3)∗sin(𝜃1) 4 𝑣𝑧 = − 𝜃3 ̇ sin(𝜃3) 2 Table 4: The forces for each link with respect to each link’s frame in N End Effector 𝐹𝑥 = 10 𝐹𝑦 = 5 𝐹𝑧 = 1 Third Link 𝐹𝑥 = 10 𝐹𝑦 = 1 𝐹𝑧 = −5 Second Link 𝐹𝑥 = 8.266 𝐹𝑦 = 5.716 𝐹𝑧 = −5 First Link 𝐹𝑥 = 8.266 𝐹𝑦 = 5 𝐹𝑧 = 5.716 Base 𝐹𝑥 = -6.736 𝐹𝑦 =-6.925 𝐹𝑧 = 5.716 Table 5: Each joint torque in Nm: End Effector 𝜏 𝐸 = 0 Third Link 𝜏3 = −5 Second Link 𝜏2 = −5 First Link 𝜏1 =2.240 Base 𝜏 𝑩 = 0