SlideShare a Scribd company logo
The views expressed here are our own and do not necessarily reflect the views of Nomura Asset management.
Any errors and inadequacies are our own.
IEEE Data Science and Advanced Analytics(DSAA) 2020
October 9th, 2020
Masaya Abe1 and Junpei Komiyama2
RIC-NN: A Robust Transferable Deep Learning
Framework for Cross-sectional Investment Strategy
1. Nomura Asset Management Co., Ltd.
2. New York University
Kei Nakagawa1,
1. Introduction and Motivation
2. Data and Methodology
3. Experimental Results
4. Conclusion
Agenda
1
Agenda
1. Introduction and Motivation
2. Data and Methodology
3. Experimental Results
4. Conclusion
2
3
Motivation – Stock Return Prediction
・ Those studies are mostly based on time series prediction and not
practical.
Therefore, we propose a practical framework for stock return
forecasting by cross-sectional prediction with deep learning.
・ Stock returns follow “random walk”, and it is difficult to predict
them with time series prediction for a long time.
・ Many study of stock return prediction using machine learning.
4
Motivation – Stock Return Prediction
クロスセクションで予測
Stock A Stock B ・・・
T+1
T
T-1
・
・
・
Buyastockwithabsolutely
highreturn.
Buy stocks with relatively high scores
based on certain criteria
Investment Universe
TimeSeries
Cross SectionOrthogonal
1≤ 𝑛 ≤N
5
・ Over 300 factors until 2012 [Harvey et al. 2017]
・ In practice, we predict future relative stock returns (scores) by
combining various factors.
Cross-sectional Prediction
・ Criteria for describing the score is called Factor in Finance
Cross-sectional Investment Strategy
ROE
1 Month Return
●
●
●
Score
Value
Growth
Quality
Momentum
・Linear Regression
Factor
Candidates
Factor Classification
by human
Calculate
Relative Goodness
Cross-sectional Investment Strategy
Relative Stock Returns
・Rank IC (Spearman correlation):
6
・Cross-sectional Investment Strategy in practice
7
Cross-sectional Investment Strategy
(2) A few studies use deep learning for cross sectional investment
strategy but they suffer from overfitting.
・ Challenges in cross-sectional investment strategy
(1) Traditionally, assume the relationship between factors and
returns is linear but actually, it's non-linear. Levin[1996]
(3) Not enough data for deep learning can be gathered in some markets.
RIC-NN: Our methodology
Score
Input Output
(3) Deep Transfer Learning
Loss
rank IC
Stop
Epoch
Time step t-1 Time step t
𝒗𝒊 𝒗 𝒇
(2) Weight Initialization and Stopping
Stop
𝒗 𝒇
Loss
(1) Multi-factor Deep Learning Approach
Score
Stock
Input Output
Score
Stock
Input Output
Source Domain
Target Domain
Transfer
Stock Factor
Stock
Factor
Stock
Stock
Factor
Initialization
𝒗𝒊
NorthAmericaAsiaPacific
Initialization
8
Score
Factor
Candidates Deep Learning
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
ROE
1 Month Return
●
●
●
RIC-NN: Multi-factor Deep Learning Approach
Calculate
Relative Goodness
9
・ Deep learning for cross sectional investment strategy
Capture the non-linear relationship
between factors and scores
・ DL for stock return prediction easily overfits to training data.
✓ Use early stopping to control the fitness to the past data.
RIC-NN: Weight Initialization and Stopping
・Use RankIC (Spearman
correlation) in terms of the fitness.
-> intuitive and controllable.
Loss
rank IC
Epoch
Time step T-1 Time step T
Stop
Loss
Initialization
・ Epoch-based stopping,
Risk of overfitting or underfitting
because the training speed varies.0.20.16
Stopping: the rank IC reaches 0.20.
Initialization: Use the model of timestep t-1 when rank IC is 0.16.
c.f.: fitness of a good portfolio to
future return is around 0.10
Initialization
Our Proposed (RIC-NN)
✓ Training at time step t:
10
ScoreRIC-NN
Factor
Stock
Input Output
Score
Factor
Stock
Input Output
North America Stock Market Asia Pacific Stock Market
(Source Domain) (Target Domain)
Transfer
RIC-NN
・Augment the model using the knowledge of a larger market.
✓ Use transfer learning
RIC-NN: Deep Transfer Learning
We want to capture the asymmetric structure between the two markets.
11
Agenda
1. Introduction and Motivation
2. Data and Methodology
3. Experimental Results
4. Conclusion
12
・ We use the 20 factors that are often used in practice.
✓ Calculated for each regional index constituents
- MSCI North America Index (NA)
- MSCI Pacific Index (PA)
Features (Various Factors)
No. Feature (Factor) No. Feature (Factor) No. Feature (Factor)
1 Book-to-market Ratio 8 Return on Invested Capital 15 EPS Revision(1 month)
2 Earnings-to-price Ratio 9 Accruals 16 EPS Revision(3 months)
3 Dividend Yield 10 Total Asset Growth Rate 17 Past Stock Return(1 month)
4 Sales-to-price Ratio 11 Current Ratio 18 Past Stock Return(12 months)
5 Cash flow-to-price Ratio 12 Equity Ratio 19 Volatility
6 Return on Equity 13 Total Asset Turnover Rate 20 Skewness
7 Return on Asset 14 CAPEX Growth Rate
※ Monthly data
Data sources: Namely, Compustat, WorldScope, Thomson Reuters, I/B/E/S and EXSHARE.
13
Features (Various Factors)
・ Cumulative returns in NA(left-side) and PA(right-side) on 20 factors
・ Return of each factor varies largely over time.
14
Problem Formulation
MSE 𝑡 =
1
𝐾
෍
𝑡′=𝑡−𝑁
𝑡−1
෍
𝑖∈𝑈 𝑡′
𝑟𝑖,𝑡′+1 − 𝑓 𝒗𝑖,𝑇; 𝜽 𝑇+1
2
𝑁 = 120 (10 years)
𝐾 = ෍
𝑡′=𝑡−𝑁
𝑡−1
𝑈 𝑡′
・ We define the problem as a regression problem to minimize MSE.
✓ Approximate function 𝑓 ∙ with the parameter 𝜽 𝑇+1 that maps 𝒗𝑖,𝑇 to 𝑟𝑖,𝑇+1
𝑓 𝒗𝑖,𝑇; 𝜽 𝑇+1 → 𝑟𝑖,𝑇+1
✓ Train the models using the data of the latest 120 time steps from the
past 10 years.
15
𝒗𝑖,𝑇 :Augmented factors
𝜽 𝑇+1:NN Weights
𝑟𝑖,𝑇+1:Relative Stock return
✓ 20 factors:
Problem Formulation
・ Given a stock 𝑖 at month 𝑇 (𝑖 ∈ 𝑈 𝑇: a regional index constituents at 𝑇)
𝒙𝑖,𝑇 ∈ 𝑅20
✓ Features: 20 factors and preprocessed factors
𝑥/ 𝑅 𝑦 ≔ 2(𝑥 − 𝑦)/( 𝑥 + 𝑦 )
✓ Output variable: scaled one-month-ahead stock return (Score)
Scale to the range [0,1]
Pre-processing & Feature augmentation
𝒗𝑖,𝑇 = (𝒙𝑖,𝑇, 𝒙𝑖,𝑇−3, … , 𝒙𝑖,𝑇−12, 𝒙𝑖,𝑇/ 𝑅
𝒙𝑖,𝑇−3, … , 𝒙𝑖,𝑇/ 𝑅
𝒙𝑖,𝑇−12) ∈ [0,1] 𝟏𝟖𝟎
𝑟𝑖,𝑇+1 ∈ [0,1]
16
・Most of factors are updated quarterly ・Time difference between the present and each quarter ago
・ Architecture of RIC-NN is quite standard
✓ Fully-connected feedforward neural networks
✓ 6 Hidden layers: { 150 – 150 – 100 – 100 – 50 – 50 }
Dropout rates: (50% – 50% – 30% – 30% – 10% – 10%)
✓ Activation function: ReLU function
✓ RIC-NN(Transfer Learning: TF)
Compared Models
We use the weights of the first four layers that are trained
in the source region as the initial weight of the target region.
Our Proposed (RIC-NN)
17
Compared Models
・ Other off-the-shelf machine learning models
✓ LASSO Regression (LR)
- scikit-learn: "sklearn.linear_model.Lasso“
✓ Random Forest (RF)
- scikit-learn: "sklearn.ensemble.RandomForestRegressor“
✓ Gradient Boosting Tree(GB)
- xgboost: "XGBRegressor“
✓ Epoch-based Neural Network (NN(Epoch))
- TensorFlow
18
19
Prediction Period
✓ 14 years (from January 2005 to December 2018)
✓ Updated by sliding one-month-ahead and performed a monthly forecast.
14 years ( 168 months )
・・・
October 2018
:
November 2008
December 2018
November 2018
𝜽 𝑇
∗𝒗𝑖,𝑇
December 2004
:
January 1995
February 2005
January 2005
𝒗𝑖,𝑇 𝜽 𝑇
∗
November 2004
:
December 1994
January 2005
December 2004
𝜽 𝑇
∗
Scores
Training
120 set
𝑓 𝒗𝑖,𝑇; 𝜽 𝑇
∗
argmin
𝜽
MSE 𝑇
Features: 𝒗𝑖,𝑇
𝒗𝑖,𝑇
Agenda
1. Introduction and Motivation
2. Data and Methodology
3. Experimental Results
4. Conclusion
20
・ Simple portfolio strategies
Performance Measure
✓ Long Portfolio Strategy
✓ We make quintile portfolios.
- Buy (Long) the top 1/5 score stocks with equal weighting
- Benchmark: the average return of all stocks
→ Relative performance evaluation
1 2 3 4 5
Relative goodness
Investment Universe
21
✓ Long Short Portfolio Strategy
- Buy the top 1/5 score stocks with equal weighting
- Sell the bottom 1/5 score stocks with equal weighting
→ Absolute performance evaluation (No benchmark)
Performance Measure
・ We use the following measures for Long (resp. Long-Short) portfolio.
✓ Alpha Return ≔ ς 𝑡=1
𝑇
1 + 𝑟𝑡
12/𝑇 − 1
✓ 𝑇𝐸 Risk ≔
12
𝑇−1
σ 𝑡=1
𝑇
𝑟𝑡 − 𝜇 𝑟
2
✓ 𝐼𝑅 R/R ≔ Alpha(Return)/𝑇𝐸(Risk)
portfolio return – benchmark return
𝜇 𝑟: Average of 𝑟𝑡
𝑟𝑡:
✓ MaxDD ≔ min
𝑘∈[1,𝑇]
(0,
𝑊𝑘
𝑃𝑜𝑟𝑡
max
𝑗∈ 1,𝑘
𝑊𝑗
𝑃𝑜𝑟𝑡 − 1)
𝑊𝑘
𝑃𝑜𝑟𝑡
: Cumulative return of the portfolio
22
Linear Linear
LR RF GB
NN
(Epoch)
RIC-NN
RIC-NN
(TF from PF)
LR RF GB
NN
(Epoch)
RIC-NN
RIC-NN
(TF from NA)
Alpha [%] 0.62 0.79 0.87 0.82 1.23 1.20 5.35 3.79 5.59 4.34 5.25 5.78
TE [%] 5.40 5.14 4.36 4.48 4.14 4.43 5.17 5.75 5.00 4.18 4.20 3.95
IR 0.11 0.15 0.20 0.18 0.30 0.27 1.04 0.66 1.12 1.04 1.25 1.46
MaxDD [%] -21.84 -24.57 -18.10 -17.41 -14.37 -20.57 -11.53 -11.43 -8.86 -9.37 -7.51 -3.37
Linear Linear
LR RF GB
NN
(Epoch)
RIC-NN
RIC-NN
(TF from PF)
LR RF GB
NN
(Epoch)
RIC-NN
RIC-NN
(TF from NA)
Return [%] 2.24 1.71 2.29 2.10 3.86 2.16 10.27 7.78 10.79 8.52 9.81 10.95
Risk [%] 10.90 11.51 8.62 9.47 7.85 9.52 9.23 9.65 8.68 7.78 7.83 7.14
R/R 0.21 0.15 0.27 0.22 0.49 0.23 1.11 0.81 1.24 1.10 1.25 1.53
MaxDD [%] -34.73 -42.21 -34.35 -34.49 -21.26 -39.35 -18.07 -18.66 -13.92 -19.74 -11.06 -8.89
Long
MSCI North America MSCI Pacific
Nonlinear Nonlinear
Long-Short
MSCI North America MSCI Pacific
Nonlinear Nonlinear
Experimental Results (1/3)
・ NA: RIC-NN without transfer learning performed best.
・ PA: RIC-NN with transfer learning performed best.
・ NA as a source domain enhances the performance of PA,
not vice versa.
23
Experimental Results (2/3)
・ While NN at epoch 50 performs better in NA, NN at epoch 60 performs better in PA.
・ NN(Epoch) is very sensitive to the choice of the epoch.
・ RIC-NN outperforms epoch-based stopping: rank IC controls the fitness of
the stock prediction models consistently.
*These epochs are chosen so that the rank IC reaches 0.20 during the training of the first time step.
24
40 50 56 60 80 40 46 50 60 80
Alpha [%] 1.23 0.18 1.48 0.82 1.25 0.70 5.25 4.13 4.34 4.28 4.52 2.99
TE [%] 4.14 4.52 4.35 4.48 4.49 4.14 4.20 4.36 4.18 4.73 4.34 4.06
IR 0.30 0.04 0.34 0.18 0.28 0.17 1.25 0.95 1.04 0.90 1.04 0.74
MaxDD [%] -14.37 -22.67 -13.48 -17.41 -20.98 -15.94 -7.51 -8.08 -9.37 -7.16 -7.45 -7.52
40 50 56 60 80 40 46 50 60 80
Return 3.86 0.67 3.24 2.10 2.02 3.10 9.81 8.89 8.52 8.97 9.78 6.15
Risk 7.85 9.08 10.06 9.47 9.05 7.73 7.83 7.63 7.78 8.05 7.73 7.18
Return/Risk 0.49 0.07 0.32 0.22 0.22 0.40 1.25 1.16 1.10 1.11 1.26 0.86
MaxDD -21.26 -40.09 -26.20 -34.49 -31.62 -23.47 -11.06 -13.07 -19.74 -12.17 -14.70 -13.44
MSCI Pacific
MSCI Pacific
NN(Epoch)Long
Long-Short
MSCI North America
MSCI North America
RIC-NN
NN(Epoch)
RIC-NN
RIC-NN
NN(Epoch)
RIC-NN
NN(Epoch)
*
*
*
*
Experimental Results (3/3)
25
・ We select these funds by querying Bloomberg fund
screening search with the following conditions:
・We compare the performance of RIC-NN with major funds where
the investments involve decision-making by human experts.
・ We select the top 5 funds in terms of the total assets and
calculate average total return series of these funds, including the
trust fees.
Fund Asset Class Focus: Equity Asset Class
Fund Geographical Focus: North America Region (resp. Asian Pacific Region)
Fund Type: Open-End-Funds
Currency Base: US dollar
Market Cap Focus: Large-cap and Mid-cap focus
26
5 Funds
(average)
RIC-NN
RIC-NN
(After Cost
Reduction)
5 Funds
(average)
RIC-NN
RIC-NN
(After Cost
Reduction)
Return [%] 5.90 9.09 7.79 7.88 12.08 9.44
Risk [%] 14.91 17.78 17.78 17.58 17.23 17.23
R/R 0.40 0.51 0.44 0.45 0.70 0.55
MSCI Pacific
Long
MSCI North America
Experimental Results (3/3)
・RIC-NN after transaction costs outperformed the top 5 funds average.
27
・ Machine learning methods in finance
✓ Survey: Bahrammirzaee (2010), Cavalcante et al. (2016)
→ Most of all studies are time series prediction
・ Neural Networks for cross sectional investment strategy
✓ Classical Neural Networks(Epoch): Levin (1996)
✓ Deep Neural Networks(Epoch): Abe and Nakayama (2018),
Nakagawa et al (2018, 2019)
Related Work
However, as we confirmed epoch based networks are very sensitive
to the choice of the epoch.
・ We have proposed a new cross sectional stock return prediction framework
called RIC-NN.
by introducing three practical ideas:
(1) A nonlinear multi-factor approach is better than a linear approach.
(2) Rank IC-based stopping outperforms epoch-based stopping.
(3) Multi-region transfer learning works well.
・ Better return of the portfolio, better control of the fitness of the model to
the past dataset.
Conclusion
28

More Related Content

What's hot

因果チェーンを用いたリードラグ効果の実証分析
因果チェーンを用いたリードラグ効果の実証分析因果チェーンを用いたリードラグ効果の実証分析
因果チェーンを用いたリードラグ効果の実証分析
Kei Nakagawa
 
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
Kenichi Hironaka
 
多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識
佑 甲野
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門Momoko Hayamizu
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
Akisato Kimura
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数
Deep Learning JP
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
Eiji Uchibe
 
自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep LearningYuta Kikuchi
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
Shohei Taniguchi
 
Graphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data ScienceGraphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data Science
Kenji Hiranabe
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論
Deep Learning JP
 
系列ラベリングの基礎
系列ラベリングの基礎系列ラベリングの基礎
系列ラベリングの基礎
Takatomo Isikawa
 
深層学習 第6章
深層学習 第6章深層学習 第6章
深層学習 第6章
KCS Keio Computer Society
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
Jun Okumura
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
joisino
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫
Masahiro Yasumoto
 
強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)
HarukaKiyohara
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門Miyoshi Yuya
 

What's hot (20)

因果チェーンを用いたリードラグ効果の実証分析
因果チェーンを用いたリードラグ効果の実証分析因果チェーンを用いたリードラグ効果の実証分析
因果チェーンを用いたリードラグ効果の実証分析
 
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
渡辺澄夫著「ベイズ統計の理論と方法」5.1 マルコフ連鎖モンテカルロ法
 
多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
 
Graphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data ScienceGraphic Notes on Linear Algebra and Data Science
Graphic Notes on Linear Algebra and Data Science
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論
 
系列ラベリングの基礎
系列ラベリングの基礎系列ラベリングの基礎
系列ラベリングの基礎
 
深層学習 第6章
深層学習 第6章深層学習 第6章
深層学習 第6章
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
深層強化学習の分散化・RNN利用の動向〜R2D2の紹介をもとに〜
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫
 
強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
 

Similar to RIC-NN: A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy

A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
Kei Nakagawa
 
IFTA2020 Kei Nakagawa
IFTA2020 Kei NakagawaIFTA2020 Kei Nakagawa
IFTA2020 Kei Nakagawa
Kei Nakagawa
 
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin..."Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
Quantopian
 
quantmachine
quantmachinequantmachine
quantmachine
Hovhannes Grigoryan
 
Persistence of Mutual Fund Performance in India
Persistence of Mutual Fund Performance in IndiaPersistence of Mutual Fund Performance in India
Persistence of Mutual Fund Performance in IndiaAman Kesarwani
 
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
Hari KC
 
Integration of Principal Component Analysis and Support Vector Regression fo...
 Integration of Principal Component Analysis and Support Vector Regression fo... Integration of Principal Component Analysis and Support Vector Regression fo...
Integration of Principal Component Analysis and Support Vector Regression fo...
IJCSIS Research Publications
 
Barga Data Science lecture 3
Barga Data Science lecture 3Barga Data Science lecture 3
Barga Data Science lecture 3
Roger Barga
 
Online advertising and large scale model fitting
Online advertising and large scale model fittingOnline advertising and large scale model fitting
Online advertising and large scale model fitting
Wush Wu
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
WeCloudData
 
Value at Risk Engine
Value at Risk EngineValue at Risk Engine
Value at Risk Engine
Lov Loothra
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
Gaetan Lion
 
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
Yigal D. Jhirad
 
Trading decision trees ( Elaborated by Mohamed DHAOUI )
Trading decision trees ( Elaborated by Mohamed DHAOUI )Trading decision trees ( Elaborated by Mohamed DHAOUI )
Trading decision trees ( Elaborated by Mohamed DHAOUI )
Mohamed DHAOUI
 
Imitation Learning for Autonomous Driving in TORCS
Imitation Learning for Autonomous Driving in TORCSImitation Learning for Autonomous Driving in TORCS
Imitation Learning for Autonomous Driving in TORCS
Preferred Networks
 
Deep Learning in Finance
Deep Learning in FinanceDeep Learning in Finance
Deep Learning in Finance
Altoros
 
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
The Statistical and Applied Mathematical Sciences Institute
 
0415_seminar_DeepDPG
0415_seminar_DeepDPG0415_seminar_DeepDPG
0415_seminar_DeepDPG
Hye-min Ahn
 
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
Jisang Yoon
 
IRJET- Stock Market Prediction using Machine Learning
IRJET- Stock Market Prediction using Machine LearningIRJET- Stock Market Prediction using Machine Learning
IRJET- Stock Market Prediction using Machine Learning
IRJET Journal
 

Similar to RIC-NN: A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy (20)

A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
A Robust Transferable Deep Learning Framework for Cross-sectional Investment ...
 
IFTA2020 Kei Nakagawa
IFTA2020 Kei NakagawaIFTA2020 Kei Nakagawa
IFTA2020 Kei Nakagawa
 
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin..."Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
 
quantmachine
quantmachinequantmachine
quantmachine
 
Persistence of Mutual Fund Performance in India
Persistence of Mutual Fund Performance in IndiaPersistence of Mutual Fund Performance in India
Persistence of Mutual Fund Performance in India
 
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
PERFORMANCE ANALYSIS and PREDICTION of NEPAL STOCK MARKET (NEPSE) for INVESTM...
 
Integration of Principal Component Analysis and Support Vector Regression fo...
 Integration of Principal Component Analysis and Support Vector Regression fo... Integration of Principal Component Analysis and Support Vector Regression fo...
Integration of Principal Component Analysis and Support Vector Regression fo...
 
Barga Data Science lecture 3
Barga Data Science lecture 3Barga Data Science lecture 3
Barga Data Science lecture 3
 
Online advertising and large scale model fitting
Online advertising and large scale model fittingOnline advertising and large scale model fitting
Online advertising and large scale model fitting
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
 
Value at Risk Engine
Value at Risk EngineValue at Risk Engine
Value at Risk Engine
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
 
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
Parallel Processing of Big Data in Finance for Alpha Generation and Risk Mana...
 
Trading decision trees ( Elaborated by Mohamed DHAOUI )
Trading decision trees ( Elaborated by Mohamed DHAOUI )Trading decision trees ( Elaborated by Mohamed DHAOUI )
Trading decision trees ( Elaborated by Mohamed DHAOUI )
 
Imitation Learning for Autonomous Driving in TORCS
Imitation Learning for Autonomous Driving in TORCSImitation Learning for Autonomous Driving in TORCS
Imitation Learning for Autonomous Driving in TORCS
 
Deep Learning in Finance
Deep Learning in FinanceDeep Learning in Finance
Deep Learning in Finance
 
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
GDRR Opening Workshop - Deep Reinforcement Learning for Asset Based Modeling ...
 
0415_seminar_DeepDPG
0415_seminar_DeepDPG0415_seminar_DeepDPG
0415_seminar_DeepDPG
 
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
PPT - Adaptive Quantitative Trading : An Imitative Deep Reinforcement Learnin...
 
IRJET- Stock Market Prediction using Machine Learning
IRJET- Stock Market Prediction using Machine LearningIRJET- Stock Market Prediction using Machine Learning
IRJET- Stock Market Prediction using Machine Learning
 

More from Kei Nakagawa

AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
Kei Nakagawa
 
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
Kei Nakagawa
 
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
Kei Nakagawa
 
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
Kei Nakagawa
 
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
Kei Nakagawa
 
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
Kei Nakagawa
 
金融リスクとポートフォリオマネジメント
金融リスクとポートフォリオマネジメント金融リスクとポートフォリオマネジメント
金融リスクとポートフォリオマネジメント
Kei Nakagawa
 
RIC-NN:深層転移学習を用いたマルチファクター運用
RIC-NN:深層転移学習を用いたマルチファクター運用RIC-NN:深層転移学習を用いたマルチファクター運用
RIC-NN:深層転移学習を用いたマルチファクター運用
Kei Nakagawa
 
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
Kei Nakagawa
 
Economic Causal Chain and Predictable Stock Returns
Economic Causal Chain and Predictable Stock ReturnsEconomic Causal Chain and Predictable Stock Returns
Economic Causal Chain and Predictable Stock Returns
Kei Nakagawa
 
Cfa 20190620
Cfa 20190620Cfa 20190620
Cfa 20190620
Kei Nakagawa
 
Stock price prediction using k* nearest neighbors and indexing dynamic time w...
Stock price prediction using k* nearest neighbors and indexing dynamic time w...Stock price prediction using k* nearest neighbors and indexing dynamic time w...
Stock price prediction using k* nearest neighbors and indexing dynamic time w...
Kei Nakagawa
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
Kei Nakagawa
 
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
Kei Nakagawa
 
GARCHSKモデルを用いた条件付き固有モーメントの実証分析
GARCHSKモデルを用いた条件付き固有モーメントの実証分析GARCHSKモデルを用いた条件付き固有モーメントの実証分析
GARCHSKモデルを用いた条件付き固有モーメントの実証分析
Kei Nakagawa
 
Risk based portfolio with large dynamic covariance matrices
Risk based portfolio with large dynamic covariance matricesRisk based portfolio with large dynamic covariance matrices
Risk based portfolio with large dynamic covariance matrices
Kei Nakagawa
 
リスクベースポートフォリオの高次モーメントへの拡張
リスクベースポートフォリオの高次モーメントへの拡張リスクベースポートフォリオの高次モーメントへの拡張
リスクベースポートフォリオの高次モーメントへの拡張
Kei Nakagawa
 

More from Kei Nakagawa (17)

AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
AIトレーダーが市場へ与える影響 –GARCH型モデルのミクロ的基礎づけによる検討
 
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用 SigFin発表スライド
 
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
連続時間フラクショナル・トピックモデル(NLP2023 金融・経済ドメインのための言語処理)
 
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~
 
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
RM-CVaR: Regularized Multiple β-CVaR Portfolio(IJCAI Presentation)
 
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Comp...
 
金融リスクとポートフォリオマネジメント
金融リスクとポートフォリオマネジメント金融リスクとポートフォリオマネジメント
金融リスクとポートフォリオマネジメント
 
RIC-NN:深層転移学習を用いたマルチファクター運用
RIC-NN:深層転移学習を用いたマルチファクター運用RIC-NN:深層転移学習を用いたマルチファクター運用
RIC-NN:深層転移学習を用いたマルチファクター運用
 
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
ブラックリッターマン法による リスクベースポートフォリオの拡張 ~リスクベースポートフォリオの課題と拡張への取り組み~
 
Economic Causal Chain and Predictable Stock Returns
Economic Causal Chain and Predictable Stock ReturnsEconomic Causal Chain and Predictable Stock Returns
Economic Causal Chain and Predictable Stock Returns
 
Cfa 20190620
Cfa 20190620Cfa 20190620
Cfa 20190620
 
Stock price prediction using k* nearest neighbors and indexing dynamic time w...
Stock price prediction using k* nearest neighbors and indexing dynamic time w...Stock price prediction using k* nearest neighbors and indexing dynamic time w...
Stock price prediction using k* nearest neighbors and indexing dynamic time w...
 
金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル金融時系列のための深層t過程回帰モデル
金融時系列のための深層t過程回帰モデル
 
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張
 
GARCHSKモデルを用いた条件付き固有モーメントの実証分析
GARCHSKモデルを用いた条件付き固有モーメントの実証分析GARCHSKモデルを用いた条件付き固有モーメントの実証分析
GARCHSKモデルを用いた条件付き固有モーメントの実証分析
 
Risk based portfolio with large dynamic covariance matrices
Risk based portfolio with large dynamic covariance matricesRisk based portfolio with large dynamic covariance matrices
Risk based portfolio with large dynamic covariance matrices
 
リスクベースポートフォリオの高次モーメントへの拡張
リスクベースポートフォリオの高次モーメントへの拡張リスクベースポートフォリオの高次モーメントへの拡張
リスクベースポートフォリオの高次モーメントへの拡張
 

Recently uploaded

Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
GRAPE
 
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdfTumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
Henry Tapper
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
EasyReports
 
Earn a passive income with prosocial investing
Earn a passive income with prosocial investingEarn a passive income with prosocial investing
Earn a passive income with prosocial investing
Colin R. Turner
 
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
obyzuk
 
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
nexop1
 
how to sell pi coins effectively (from 50 - 100k pi)
how to sell pi coins effectively (from 50 - 100k  pi)how to sell pi coins effectively (from 50 - 100k  pi)
how to sell pi coins effectively (from 50 - 100k pi)
DOT TECH
 
Which Crypto to Buy Today for Short-Term in May-June 2024.pdf
Which Crypto to Buy Today for Short-Term in May-June 2024.pdfWhich Crypto to Buy Today for Short-Term in May-June 2024.pdf
Which Crypto to Buy Today for Short-Term in May-June 2024.pdf
Kezex (KZX)
 
Managing marketing information to gain customer insights
Managing marketing information to gain customer insightsManaging marketing information to gain customer insights
Managing marketing information to gain customer insights
sanamalam3
 
BYD SWOT Analysis and In-Depth Insights 2024.pptx
BYD SWOT Analysis and In-Depth Insights 2024.pptxBYD SWOT Analysis and In-Depth Insights 2024.pptx
BYD SWOT Analysis and In-Depth Insights 2024.pptx
mikemetalprod
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
Neal Brewster
 
APP I Lecture Notes to students 0f 4the year
APP I  Lecture Notes  to students 0f 4the yearAPP I  Lecture Notes  to students 0f 4the year
APP I Lecture Notes to students 0f 4the year
telilaalilemlem
 
GeM ppt in railway for presentation on gem
GeM ppt in railway  for presentation on gemGeM ppt in railway  for presentation on gem
GeM ppt in railway for presentation on gem
CwierAsn
 
The European Unemployment Puzzle: implications from population aging
The European Unemployment Puzzle: implications from population agingThe European Unemployment Puzzle: implications from population aging
The European Unemployment Puzzle: implications from population aging
GRAPE
 
how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.
DOT TECH
 
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
nimaruinazawa258
 
This assessment plan proposal is to outline a structured approach to evaluati...
This assessment plan proposal is to outline a structured approach to evaluati...This assessment plan proposal is to outline a structured approach to evaluati...
This assessment plan proposal is to outline a structured approach to evaluati...
lamluanvan.net Viết thuê luận văn
 
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
muslimdavidovich670
 
Instant Issue Debit Cards
Instant Issue Debit CardsInstant Issue Debit Cards
Instant Issue Debit Cards
egoetzinger
 
Scope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theoriesScope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theories
nomankalyar153
 

Recently uploaded (20)

Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
 
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdfTumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
Tumelo-deep-dive-into-pass-through-voting-Feb23 (1).pdf
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
 
Earn a passive income with prosocial investing
Earn a passive income with prosocial investingEarn a passive income with prosocial investing
Earn a passive income with prosocial investing
 
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
一比一原版(GWU,GW毕业证)加利福尼亚大学|尔湾分校毕业证如何办理
 
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
一比一原版(UoB毕业证)伯明翰大学毕业证如何办理
 
how to sell pi coins effectively (from 50 - 100k pi)
how to sell pi coins effectively (from 50 - 100k  pi)how to sell pi coins effectively (from 50 - 100k  pi)
how to sell pi coins effectively (from 50 - 100k pi)
 
Which Crypto to Buy Today for Short-Term in May-June 2024.pdf
Which Crypto to Buy Today for Short-Term in May-June 2024.pdfWhich Crypto to Buy Today for Short-Term in May-June 2024.pdf
Which Crypto to Buy Today for Short-Term in May-June 2024.pdf
 
Managing marketing information to gain customer insights
Managing marketing information to gain customer insightsManaging marketing information to gain customer insights
Managing marketing information to gain customer insights
 
BYD SWOT Analysis and In-Depth Insights 2024.pptx
BYD SWOT Analysis and In-Depth Insights 2024.pptxBYD SWOT Analysis and In-Depth Insights 2024.pptx
BYD SWOT Analysis and In-Depth Insights 2024.pptx
 
2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf2. Elemental Economics - Mineral demand.pdf
2. Elemental Economics - Mineral demand.pdf
 
APP I Lecture Notes to students 0f 4the year
APP I  Lecture Notes  to students 0f 4the yearAPP I  Lecture Notes  to students 0f 4the year
APP I Lecture Notes to students 0f 4the year
 
GeM ppt in railway for presentation on gem
GeM ppt in railway  for presentation on gemGeM ppt in railway  for presentation on gem
GeM ppt in railway for presentation on gem
 
The European Unemployment Puzzle: implications from population aging
The European Unemployment Puzzle: implications from population agingThe European Unemployment Puzzle: implications from population aging
The European Unemployment Puzzle: implications from population aging
 
how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.
 
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
 
This assessment plan proposal is to outline a structured approach to evaluati...
This assessment plan proposal is to outline a structured approach to evaluati...This assessment plan proposal is to outline a structured approach to evaluati...
This assessment plan proposal is to outline a structured approach to evaluati...
 
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
 
Instant Issue Debit Cards
Instant Issue Debit CardsInstant Issue Debit Cards
Instant Issue Debit Cards
 
Scope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theoriesScope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theories
 

RIC-NN: A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy

  • 1. The views expressed here are our own and do not necessarily reflect the views of Nomura Asset management. Any errors and inadequacies are our own. IEEE Data Science and Advanced Analytics(DSAA) 2020 October 9th, 2020 Masaya Abe1 and Junpei Komiyama2 RIC-NN: A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy 1. Nomura Asset Management Co., Ltd. 2. New York University Kei Nakagawa1,
  • 2. 1. Introduction and Motivation 2. Data and Methodology 3. Experimental Results 4. Conclusion Agenda 1
  • 3. Agenda 1. Introduction and Motivation 2. Data and Methodology 3. Experimental Results 4. Conclusion 2
  • 4. 3 Motivation – Stock Return Prediction ・ Those studies are mostly based on time series prediction and not practical. Therefore, we propose a practical framework for stock return forecasting by cross-sectional prediction with deep learning. ・ Stock returns follow “random walk”, and it is difficult to predict them with time series prediction for a long time. ・ Many study of stock return prediction using machine learning.
  • 5. 4 Motivation – Stock Return Prediction クロスセクションで予測 Stock A Stock B ・・・ T+1 T T-1 ・ ・ ・ Buyastockwithabsolutely highreturn. Buy stocks with relatively high scores based on certain criteria Investment Universe TimeSeries Cross SectionOrthogonal 1≤ 𝑛 ≤N
  • 6. 5 ・ Over 300 factors until 2012 [Harvey et al. 2017] ・ In practice, we predict future relative stock returns (scores) by combining various factors. Cross-sectional Prediction ・ Criteria for describing the score is called Factor in Finance Cross-sectional Investment Strategy
  • 7. ROE 1 Month Return ● ● ● Score Value Growth Quality Momentum ・Linear Regression Factor Candidates Factor Classification by human Calculate Relative Goodness Cross-sectional Investment Strategy Relative Stock Returns ・Rank IC (Spearman correlation): 6 ・Cross-sectional Investment Strategy in practice
  • 8. 7 Cross-sectional Investment Strategy (2) A few studies use deep learning for cross sectional investment strategy but they suffer from overfitting. ・ Challenges in cross-sectional investment strategy (1) Traditionally, assume the relationship between factors and returns is linear but actually, it's non-linear. Levin[1996] (3) Not enough data for deep learning can be gathered in some markets.
  • 9. RIC-NN: Our methodology Score Input Output (3) Deep Transfer Learning Loss rank IC Stop Epoch Time step t-1 Time step t 𝒗𝒊 𝒗 𝒇 (2) Weight Initialization and Stopping Stop 𝒗 𝒇 Loss (1) Multi-factor Deep Learning Approach Score Stock Input Output Score Stock Input Output Source Domain Target Domain Transfer Stock Factor Stock Factor Stock Stock Factor Initialization 𝒗𝒊 NorthAmericaAsiaPacific Initialization 8
  • 10. Score Factor Candidates Deep Learning ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ROE 1 Month Return ● ● ● RIC-NN: Multi-factor Deep Learning Approach Calculate Relative Goodness 9 ・ Deep learning for cross sectional investment strategy Capture the non-linear relationship between factors and scores
  • 11. ・ DL for stock return prediction easily overfits to training data. ✓ Use early stopping to control the fitness to the past data. RIC-NN: Weight Initialization and Stopping ・Use RankIC (Spearman correlation) in terms of the fitness. -> intuitive and controllable. Loss rank IC Epoch Time step T-1 Time step T Stop Loss Initialization ・ Epoch-based stopping, Risk of overfitting or underfitting because the training speed varies.0.20.16 Stopping: the rank IC reaches 0.20. Initialization: Use the model of timestep t-1 when rank IC is 0.16. c.f.: fitness of a good portfolio to future return is around 0.10 Initialization Our Proposed (RIC-NN) ✓ Training at time step t: 10
  • 12. ScoreRIC-NN Factor Stock Input Output Score Factor Stock Input Output North America Stock Market Asia Pacific Stock Market (Source Domain) (Target Domain) Transfer RIC-NN ・Augment the model using the knowledge of a larger market. ✓ Use transfer learning RIC-NN: Deep Transfer Learning We want to capture the asymmetric structure between the two markets. 11
  • 13. Agenda 1. Introduction and Motivation 2. Data and Methodology 3. Experimental Results 4. Conclusion 12
  • 14. ・ We use the 20 factors that are often used in practice. ✓ Calculated for each regional index constituents - MSCI North America Index (NA) - MSCI Pacific Index (PA) Features (Various Factors) No. Feature (Factor) No. Feature (Factor) No. Feature (Factor) 1 Book-to-market Ratio 8 Return on Invested Capital 15 EPS Revision(1 month) 2 Earnings-to-price Ratio 9 Accruals 16 EPS Revision(3 months) 3 Dividend Yield 10 Total Asset Growth Rate 17 Past Stock Return(1 month) 4 Sales-to-price Ratio 11 Current Ratio 18 Past Stock Return(12 months) 5 Cash flow-to-price Ratio 12 Equity Ratio 19 Volatility 6 Return on Equity 13 Total Asset Turnover Rate 20 Skewness 7 Return on Asset 14 CAPEX Growth Rate ※ Monthly data Data sources: Namely, Compustat, WorldScope, Thomson Reuters, I/B/E/S and EXSHARE. 13
  • 15. Features (Various Factors) ・ Cumulative returns in NA(left-side) and PA(right-side) on 20 factors ・ Return of each factor varies largely over time. 14
  • 16. Problem Formulation MSE 𝑡 = 1 𝐾 ෍ 𝑡′=𝑡−𝑁 𝑡−1 ෍ 𝑖∈𝑈 𝑡′ 𝑟𝑖,𝑡′+1 − 𝑓 𝒗𝑖,𝑇; 𝜽 𝑇+1 2 𝑁 = 120 (10 years) 𝐾 = ෍ 𝑡′=𝑡−𝑁 𝑡−1 𝑈 𝑡′ ・ We define the problem as a regression problem to minimize MSE. ✓ Approximate function 𝑓 ∙ with the parameter 𝜽 𝑇+1 that maps 𝒗𝑖,𝑇 to 𝑟𝑖,𝑇+1 𝑓 𝒗𝑖,𝑇; 𝜽 𝑇+1 → 𝑟𝑖,𝑇+1 ✓ Train the models using the data of the latest 120 time steps from the past 10 years. 15 𝒗𝑖,𝑇 :Augmented factors 𝜽 𝑇+1:NN Weights 𝑟𝑖,𝑇+1:Relative Stock return
  • 17. ✓ 20 factors: Problem Formulation ・ Given a stock 𝑖 at month 𝑇 (𝑖 ∈ 𝑈 𝑇: a regional index constituents at 𝑇) 𝒙𝑖,𝑇 ∈ 𝑅20 ✓ Features: 20 factors and preprocessed factors 𝑥/ 𝑅 𝑦 ≔ 2(𝑥 − 𝑦)/( 𝑥 + 𝑦 ) ✓ Output variable: scaled one-month-ahead stock return (Score) Scale to the range [0,1] Pre-processing & Feature augmentation 𝒗𝑖,𝑇 = (𝒙𝑖,𝑇, 𝒙𝑖,𝑇−3, … , 𝒙𝑖,𝑇−12, 𝒙𝑖,𝑇/ 𝑅 𝒙𝑖,𝑇−3, … , 𝒙𝑖,𝑇/ 𝑅 𝒙𝑖,𝑇−12) ∈ [0,1] 𝟏𝟖𝟎 𝑟𝑖,𝑇+1 ∈ [0,1] 16 ・Most of factors are updated quarterly ・Time difference between the present and each quarter ago
  • 18. ・ Architecture of RIC-NN is quite standard ✓ Fully-connected feedforward neural networks ✓ 6 Hidden layers: { 150 – 150 – 100 – 100 – 50 – 50 } Dropout rates: (50% – 50% – 30% – 30% – 10% – 10%) ✓ Activation function: ReLU function ✓ RIC-NN(Transfer Learning: TF) Compared Models We use the weights of the first four layers that are trained in the source region as the initial weight of the target region. Our Proposed (RIC-NN) 17
  • 19. Compared Models ・ Other off-the-shelf machine learning models ✓ LASSO Regression (LR) - scikit-learn: "sklearn.linear_model.Lasso“ ✓ Random Forest (RF) - scikit-learn: "sklearn.ensemble.RandomForestRegressor“ ✓ Gradient Boosting Tree(GB) - xgboost: "XGBRegressor“ ✓ Epoch-based Neural Network (NN(Epoch)) - TensorFlow 18
  • 20. 19 Prediction Period ✓ 14 years (from January 2005 to December 2018) ✓ Updated by sliding one-month-ahead and performed a monthly forecast. 14 years ( 168 months ) ・・・ October 2018 : November 2008 December 2018 November 2018 𝜽 𝑇 ∗𝒗𝑖,𝑇 December 2004 : January 1995 February 2005 January 2005 𝒗𝑖,𝑇 𝜽 𝑇 ∗ November 2004 : December 1994 January 2005 December 2004 𝜽 𝑇 ∗ Scores Training 120 set 𝑓 𝒗𝑖,𝑇; 𝜽 𝑇 ∗ argmin 𝜽 MSE 𝑇 Features: 𝒗𝑖,𝑇 𝒗𝑖,𝑇
  • 21. Agenda 1. Introduction and Motivation 2. Data and Methodology 3. Experimental Results 4. Conclusion 20
  • 22. ・ Simple portfolio strategies Performance Measure ✓ Long Portfolio Strategy ✓ We make quintile portfolios. - Buy (Long) the top 1/5 score stocks with equal weighting - Benchmark: the average return of all stocks → Relative performance evaluation 1 2 3 4 5 Relative goodness Investment Universe 21 ✓ Long Short Portfolio Strategy - Buy the top 1/5 score stocks with equal weighting - Sell the bottom 1/5 score stocks with equal weighting → Absolute performance evaluation (No benchmark)
  • 23. Performance Measure ・ We use the following measures for Long (resp. Long-Short) portfolio. ✓ Alpha Return ≔ ς 𝑡=1 𝑇 1 + 𝑟𝑡 12/𝑇 − 1 ✓ 𝑇𝐸 Risk ≔ 12 𝑇−1 σ 𝑡=1 𝑇 𝑟𝑡 − 𝜇 𝑟 2 ✓ 𝐼𝑅 R/R ≔ Alpha(Return)/𝑇𝐸(Risk) portfolio return – benchmark return 𝜇 𝑟: Average of 𝑟𝑡 𝑟𝑡: ✓ MaxDD ≔ min 𝑘∈[1,𝑇] (0, 𝑊𝑘 𝑃𝑜𝑟𝑡 max 𝑗∈ 1,𝑘 𝑊𝑗 𝑃𝑜𝑟𝑡 − 1) 𝑊𝑘 𝑃𝑜𝑟𝑡 : Cumulative return of the portfolio 22
  • 24. Linear Linear LR RF GB NN (Epoch) RIC-NN RIC-NN (TF from PF) LR RF GB NN (Epoch) RIC-NN RIC-NN (TF from NA) Alpha [%] 0.62 0.79 0.87 0.82 1.23 1.20 5.35 3.79 5.59 4.34 5.25 5.78 TE [%] 5.40 5.14 4.36 4.48 4.14 4.43 5.17 5.75 5.00 4.18 4.20 3.95 IR 0.11 0.15 0.20 0.18 0.30 0.27 1.04 0.66 1.12 1.04 1.25 1.46 MaxDD [%] -21.84 -24.57 -18.10 -17.41 -14.37 -20.57 -11.53 -11.43 -8.86 -9.37 -7.51 -3.37 Linear Linear LR RF GB NN (Epoch) RIC-NN RIC-NN (TF from PF) LR RF GB NN (Epoch) RIC-NN RIC-NN (TF from NA) Return [%] 2.24 1.71 2.29 2.10 3.86 2.16 10.27 7.78 10.79 8.52 9.81 10.95 Risk [%] 10.90 11.51 8.62 9.47 7.85 9.52 9.23 9.65 8.68 7.78 7.83 7.14 R/R 0.21 0.15 0.27 0.22 0.49 0.23 1.11 0.81 1.24 1.10 1.25 1.53 MaxDD [%] -34.73 -42.21 -34.35 -34.49 -21.26 -39.35 -18.07 -18.66 -13.92 -19.74 -11.06 -8.89 Long MSCI North America MSCI Pacific Nonlinear Nonlinear Long-Short MSCI North America MSCI Pacific Nonlinear Nonlinear Experimental Results (1/3) ・ NA: RIC-NN without transfer learning performed best. ・ PA: RIC-NN with transfer learning performed best. ・ NA as a source domain enhances the performance of PA, not vice versa. 23
  • 25. Experimental Results (2/3) ・ While NN at epoch 50 performs better in NA, NN at epoch 60 performs better in PA. ・ NN(Epoch) is very sensitive to the choice of the epoch. ・ RIC-NN outperforms epoch-based stopping: rank IC controls the fitness of the stock prediction models consistently. *These epochs are chosen so that the rank IC reaches 0.20 during the training of the first time step. 24 40 50 56 60 80 40 46 50 60 80 Alpha [%] 1.23 0.18 1.48 0.82 1.25 0.70 5.25 4.13 4.34 4.28 4.52 2.99 TE [%] 4.14 4.52 4.35 4.48 4.49 4.14 4.20 4.36 4.18 4.73 4.34 4.06 IR 0.30 0.04 0.34 0.18 0.28 0.17 1.25 0.95 1.04 0.90 1.04 0.74 MaxDD [%] -14.37 -22.67 -13.48 -17.41 -20.98 -15.94 -7.51 -8.08 -9.37 -7.16 -7.45 -7.52 40 50 56 60 80 40 46 50 60 80 Return 3.86 0.67 3.24 2.10 2.02 3.10 9.81 8.89 8.52 8.97 9.78 6.15 Risk 7.85 9.08 10.06 9.47 9.05 7.73 7.83 7.63 7.78 8.05 7.73 7.18 Return/Risk 0.49 0.07 0.32 0.22 0.22 0.40 1.25 1.16 1.10 1.11 1.26 0.86 MaxDD -21.26 -40.09 -26.20 -34.49 -31.62 -23.47 -11.06 -13.07 -19.74 -12.17 -14.70 -13.44 MSCI Pacific MSCI Pacific NN(Epoch)Long Long-Short MSCI North America MSCI North America RIC-NN NN(Epoch) RIC-NN RIC-NN NN(Epoch) RIC-NN NN(Epoch) * * * *
  • 26. Experimental Results (3/3) 25 ・ We select these funds by querying Bloomberg fund screening search with the following conditions: ・We compare the performance of RIC-NN with major funds where the investments involve decision-making by human experts. ・ We select the top 5 funds in terms of the total assets and calculate average total return series of these funds, including the trust fees. Fund Asset Class Focus: Equity Asset Class Fund Geographical Focus: North America Region (resp. Asian Pacific Region) Fund Type: Open-End-Funds Currency Base: US dollar Market Cap Focus: Large-cap and Mid-cap focus
  • 27. 26 5 Funds (average) RIC-NN RIC-NN (After Cost Reduction) 5 Funds (average) RIC-NN RIC-NN (After Cost Reduction) Return [%] 5.90 9.09 7.79 7.88 12.08 9.44 Risk [%] 14.91 17.78 17.78 17.58 17.23 17.23 R/R 0.40 0.51 0.44 0.45 0.70 0.55 MSCI Pacific Long MSCI North America Experimental Results (3/3) ・RIC-NN after transaction costs outperformed the top 5 funds average.
  • 28. 27 ・ Machine learning methods in finance ✓ Survey: Bahrammirzaee (2010), Cavalcante et al. (2016) → Most of all studies are time series prediction ・ Neural Networks for cross sectional investment strategy ✓ Classical Neural Networks(Epoch): Levin (1996) ✓ Deep Neural Networks(Epoch): Abe and Nakayama (2018), Nakagawa et al (2018, 2019) Related Work However, as we confirmed epoch based networks are very sensitive to the choice of the epoch.
  • 29. ・ We have proposed a new cross sectional stock return prediction framework called RIC-NN. by introducing three practical ideas: (1) A nonlinear multi-factor approach is better than a linear approach. (2) Rank IC-based stopping outperforms epoch-based stopping. (3) Multi-region transfer learning works well. ・ Better return of the portfolio, better control of the fitness of the model to the past dataset. Conclusion 28