1
Remote Sensing Big Data Analytics with GIS
The Five V’s
2
Scale of Data
Analysis of
Data Flow
Structured and
Unstructured Data
Uncertainty
of Data
Big
Data
Volume
Velocity
Value
Veracity
Variety
Big Remote Sensing Data
Earth Observation Satellites
Need of Earth Observation
5
Natural Hazard Monitoring,
Global Climate Change
Soil Conservation
Volcanic Phenomenon
Water Pollution
Earth Observation Data
6
Source: https://commons.wikimedia.org/w/index.php?
search=earth+observation+data&title=Special:MediaSearch&go=Go&type=image
Features of Remote-sensing Big Data
7
Big
Data
Volume
Velocity
Value
Veracity
Variety
Collect
Manage
Store
Archive
Analyse
Visualize
Distribute
Ground, Aerial,
Satellite, UAV
Large achieve,
Real time
Optical, Microwave,
Hyperspectral, LiDAR
Data Enhance Through
Visualization
Features of Remote-sensing Big Data
8
Quick Bird II: Resolution.: 0.61 meter panchromatic
2.4 meter multispectral
Source:
https://www.satimagingcorp.com/gallery/quickbir
d/quickbird-umbrella-cay-bahamas/ Source:
https://nara.getarchive.net/media/ert-landsat-satellite-and-lake
michigan-a8eb2b
Landsat 8 images have 15-meter panchromatic and 30-meter
multi-spectral spatial resolutions along a 185 km (115 mi) swath.
The Dynamic state of Remote Sensing Big Data
9
Raster Data/ Vector Data
10
What is GIS?
11
What is GIS?: “A computer - assisted
system for the capture, storage
retrieval, analysis and display of spatial
data, within a particular Organization”.
(Clarke, 1986)
A GIS is a computer-based system that
provides the four sets of capabilities to
handle geo-referenced data: GIS
Input
Data
Management
Output
Manipulation
and Analysis
How GIS Used
12
 Identify Problems
 Monitor Change
 Manage and Respond to Events
 Perform forecasting
 Set priorities
 Understand trends
Planetary-scale Geospatial Analysis
13
Google Earth Engine: Next Generation Digital Earth
“Big Data,” paradigm of science that emphasizes international collaboration,
data-intensive analysis, huge computing resources, and high-end
visualization.”
Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
33 years Of satellite data
Over 5,000,000 Landsat and
Sentinel scenes analysed
3 Quadrillion Pixels
(3,000,000,000,000,000)
Planetary-scale Geospatial Analysis
14
Google Earth Engine: Next Generation Digital Earth
Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
Planetary-scale Geospatial Analysis
15
Google Earth Engine: Next Generation Digital Earth
Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
Planetary-scale Geospatial Analysis
16
Google Earth Engine: Next Generation Digital Earth
Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
Planetary-scale Geospatial Analysis
17
Google Earth Engine coder
Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
https://code.earthengine.google.com/
Future of big data analytics in remote sensing and GIS?
18
19

Remote Sensing Big Data Analytics with GIS

  • 1.
    1 Remote Sensing BigData Analytics with GIS
  • 2.
    The Five V’s 2 Scaleof Data Analysis of Data Flow Structured and Unstructured Data Uncertainty of Data Big Data Volume Velocity Value Veracity Variety
  • 3.
  • 4.
  • 5.
    Need of EarthObservation 5 Natural Hazard Monitoring, Global Climate Change Soil Conservation Volcanic Phenomenon Water Pollution
  • 6.
    Earth Observation Data 6 Source:https://commons.wikimedia.org/w/index.php? search=earth+observation+data&title=Special:MediaSearch&go=Go&type=image
  • 7.
    Features of Remote-sensingBig Data 7 Big Data Volume Velocity Value Veracity Variety Collect Manage Store Archive Analyse Visualize Distribute Ground, Aerial, Satellite, UAV Large achieve, Real time Optical, Microwave, Hyperspectral, LiDAR Data Enhance Through Visualization
  • 8.
    Features of Remote-sensingBig Data 8 Quick Bird II: Resolution.: 0.61 meter panchromatic 2.4 meter multispectral Source: https://www.satimagingcorp.com/gallery/quickbir d/quickbird-umbrella-cay-bahamas/ Source: https://nara.getarchive.net/media/ert-landsat-satellite-and-lake michigan-a8eb2b Landsat 8 images have 15-meter panchromatic and 30-meter multi-spectral spatial resolutions along a 185 km (115 mi) swath.
  • 9.
    The Dynamic stateof Remote Sensing Big Data 9
  • 10.
  • 11.
    What is GIS? 11 Whatis GIS?: “A computer - assisted system for the capture, storage retrieval, analysis and display of spatial data, within a particular Organization”. (Clarke, 1986) A GIS is a computer-based system that provides the four sets of capabilities to handle geo-referenced data: GIS Input Data Management Output Manipulation and Analysis
  • 12.
    How GIS Used 12 Identify Problems  Monitor Change  Manage and Respond to Events  Perform forecasting  Set priorities  Understand trends
  • 13.
    Planetary-scale Geospatial Analysis 13 GoogleEarth Engine: Next Generation Digital Earth “Big Data,” paradigm of science that emphasizes international collaboration, data-intensive analysis, huge computing resources, and high-end visualization.” Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0 33 years Of satellite data Over 5,000,000 Landsat and Sentinel scenes analysed 3 Quadrillion Pixels (3,000,000,000,000,000)
  • 14.
    Planetary-scale Geospatial Analysis 14 GoogleEarth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
  • 15.
    Planetary-scale Geospatial Analysis 15 GoogleEarth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
  • 16.
    Planetary-scale Geospatial Analysis 16 GoogleEarth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0
  • 17.
    Planetary-scale Geospatial Analysis 17 GoogleEarth Engine coder Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0 https://code.earthengine.google.com/
  • 18.
    Future of bigdata analytics in remote sensing and GIS? 18
  • 19.