SlideShare a Scribd company logo
4                Reinforced Concrete Design

     Strength of Rectangular Section in Bending

            Location of Reinforcement
            Behavior of Beam under Load
            Beam Design Requirements
            Working Stress Design (WSD)
            Practical Design of RC Beam

                               Asst.Prof.Dr.Mongkol JIRAVACHARADET

SURANAREE                               INSTITUTE OF ENGINEERING
UNIVERSITY OF TECHNOLOGY          SCHOOL OF CIVIL ENGINEERING
Location of Reinforcement
Concrete cracks due to tension, and as a result, reinforcement is required
where flexure, axial loads, or shrinkage effects cause tensile stresses.

• Simply supported beam


                                               tensile stresses and cracks are
                                             developed along bottom of the beam

                                  Positive
                                  Moment
                                                            BMD




                                              longitudinal reinforcement is placed
                                             closed to the bottom side of the beam
Location of Reinforcement

• Cantilever beam
 - Top bars

 - Ties and anchorage
   to support
Location of Reinforcement
• Continuous beam
Location of Reinforcement
• Continuous beam with 2 spans
Figure B-13 : Reinforcement Arrangement for Suspended Beams
Figure B-14 : Reinforcement Arrangement for
Suspended Cantilever Beams
Behavior of Beam under Load
     w




                  L
                                                εc          f < f c′
   Elastic Bending (Plain Concrete)



                                           εc        f < f r = 2.0 f c′

                                           εc               f < f c′
  Working Stress Condition
                                                                       C



                                                                       T = As fs
                                      εs
Brittle failure mode
                             εcu= 0.003
              Crushing                      C



                                          T = As fs
                         εs <εy fs < fy

Ductile failure mode
                             εc < 0.003
                                            C



                                          T = As fs
                         εs ≥εy fs = fy
Beam Design Requirements

 1) Minimum Depth (for deflection control)



  oneway
               L/20      L/24          L/28       L/10
    slab

  BEAM         L/16     L/18.5         L/21       L/8


 2) Temperature Steel (for slab)
    SR24:             As = 0.0025 bt                     b
    SD30:             As = 0.0020 bt          t
    SD40:             As = 0.0018 bt                         As
    fy > 4,000 ksc:   As = 0.0018 4,000 bt
                                 fy
3) Minimum Steel (for beam)

           As min = 14 / fy                       As


    To ensure that steel not fail before first crack

4) Concrete Covering
                                                 stirrup




                                         Durability and Fire protection


                                         > 4/3 max. aggregate size
5) Bar Spacing
WSD of Beam for Moment
  Assumptions:
     1) Section remains plane
     2) Stress proportioned to Strain
     3) Concrete not take tension
     4) No concrete-steel slip

  Modular ratio (n):

                  Es   2.04 × 106   134
               n=    =            ≈
                  Ec 15,100 f c′      f c′
Effective Depth (d) : Distance from compression face to centroid of steel

                                          d




 Cracked transformed section

                           strain condition    force equilibrium
       compression face              εc            f c = Ecε c
                                                          C
                               kd
       d                                                     N.A.
                                                                        jd

                                εs                      T = As f s
              b                                          f s = Es ε s
f c = Ecε c
                                  1
Compression in concrete:       C = f c b kd   kd
                                                          C
                                  2
                                                                 N.A.
                                                                          jd
Tension in steel:              T = As f s
                                                          T = As f s
                                                           f s = Es ε s
    Equilibrium ΣFx= 0 :
             Compression = Tension
                    1
                      f c b kd = As f s
                    2
    Reinforcement ratio:       ρ = As / bd
                    fc 2 ρ
                       =                      1
                    fs   k
Strain compatibility:
                  εc                     εc    kd     k
                                            =      =
                                         ε s d − kd 1 − k
          kd
   d                                     f c / Ec   k
                                                  =
                                         f s / Es 1 − k

                                           fc   k
           εs                            n    =                       2
                                           fs 1 − k

                                                k = 2n ρ + ( n ρ ) − n ρ
                                                                  2
   Analysis: know ρ find k       1        2


                                                        n fc       1
   Design: know fc , fs find k       2           k=            =
                                                      n fc + fs 1 + fs
                                                                   n fc
Allowable Stresses
Plain concrete:                               Steel:
  f c = 0.33 f c′ ≤ 60 kg/cm 2                SR24: fs = 0.5(2,400)   = 1,200 ksc

Reinforced concrete:                          SD30: fs = 0.5(3,000)   = 1,500 ksc

 f c = 0.375 f c′ ≤ 65 kg/cm 2                SD40, SD50: fs          = 1,700 ksc


 Example 3.1: f c′ = 150 ksc , fs = 1,500 ksc

                      134
                 n=        = 10.94 ⇒ 10 (nearest integer)
                       150
                  f c = 0.375(150) = 56 ksc

                          1
                 k=            = 0.2515
                         1,500
                      1+
                         9(56)
Resisting Moment
           kd/3                     Moment arm distance : j d

                       1                            kd
                  C=     fc k b d          jd = d −
 M                     2                             3
      jd
                                                    k
                                             j = 1−
                  T = As fs                         3

 Steel:           M = T × jd = As f s jd
                              1
 Concrete:        M = C × jd = f c k j b d 2 = R b d 2
                              2
                      1
                   R = fc k j
                      2
Design Step: known M, fc, fs, n

 1) Compute parameters
                1                                     1
      k=                   j = 1− k / 3         R=      fc k j
           1 + fs n fc                                2

                                          R (kg/cm2)
       fc
                    n
    (kg/cm2)             fs=1,200          fs=1,500         fs=1,700
                         (kg/cm2)          (kg/cm2)         (kg/cm2)
      45            12    6.260             5.430            4.988
      50            12    7.407             6.463            5.955
      55            11    8.188             7.147            6.587
      60            11    9.386             8.233            7.608
      65            10   10.082             8.835            8.161
Design Parameter k and j

                      fs=1,200        fs=1,500        fs=1,700
    fc                (kg/cm2)        (kg/cm2)        (kg/cm2)
               n
 (kg/cm2)
                      k       j       k       j       k       j
   45         12    0.310   0.897   0.265   0.912   0.241   0.920
   50         12    0.333   0.889   0.286   0.905   0.261   0.913
   55         11    0.335   0.888   0.287   0.904   0.262   0.913
   60         11    0.355   0.882   0.306   0.898   0.280   0.907
   65         10    0.351   0.883   0.302   0.899   0.277   0.908

1) For greater fs , k becomes smaller → smaller compression area
2) j ≈ 0.9 → moment arm j d ≈ 0.9d can be used in approximation
  design.
2) Determine size of section bd2

   Such that resisting moment of concrete Mc = R b d 2 ≥ Required M

   Usually b ≈ d / 2 : b = 10 cm, 20 cm, 30 cm, 40 cm, . . .

                      d = 20 cm, 30 cm, 40 cm, 50 cm, . . .

3) Determine steel area

                                       M
   From    M = As f s jd   →    As =
                                     fs j d

4) Select steel bars and Detailing
.1        F                        F ,     .2

                             Number of Bars
Bar Dia.
             1        2       3       4           5        6
RB6         0.283    0.565   0.848    1.13       1.41    1.70
RB9         0.636     1.27    1.91    2.54       3.18    3.82
DB10        0.785     1.57    2.36    3.14       3.93    4.71
DB12         1.13     2.26    3.53    4.52       5.65    6.79
DB16         2.01     4.02    6.03    8.04      10.05   12.06
DB20         3.14     6.28    9.42   12.57      15.71   18.85
DB25         4.91     9.82   14.73   19.63      24.54   29.45
.3           F                              ACI

                   Simple    One-end Both-ends
  Member                                                   Cantilever
                  supported continuous continuous

One-way slab        L/20         L/24         L/28           L/10

Beam                L/16         L/18.5       L/21           L/8

L = span length

For steel with fy not equal 4,000 kg/cm2 multiply with 0.4 + fy/7,000
Example 3.2: Working Stress Design of Beam

              w = 4 t/m          Concrete: fc = 65 kg/cm2

                                 Steel: fs = 1,700 kg/cm2
          5.0 m                  From table: n = 10, R = 8.161 kg/cm2

 Required moment strength         M = (4) (5)2 / 8 = 12.5 t-m

 Recommended depth for simple supported beam:

                  d = L/16 = 500/16 = 31.25 cm

 USE section 30 x 50 cm with steel bar DB20

                  d = 50 - 4(covering) - 2.0/2(bar) = 45 cm
Moment strength of concrete:

                    Mc = R b d2 = 8.161 (30) (45)2

                       = 495,781 kg-cm

                       = 4.96 t-m < 12.5 t-m          NG

TRY section 40 x 80 cm d = 75 cm

                    Mc = R b d2 = 8.161 (40) (75)2

                       = 1,836,225 kg-cm

                       = 18.36 t-m > 12.5 t-m           OK

                      M        12 . 5 × 10 5
 Steel area:   As =       =                     = 10 . 8 cm 2
                    f s jd 1,700 × 0 . 908 × 75

 Select steel bar 4DB20 (As = 12.57 cm2)
Alternative Solution:

   From Mc = R b d2 = required moment M

                                   M                M
                     bd   2
                               =       ⇒     d =
                                   R                Rb

   For example M = 12.5 t-m, R = 8.161 ksc, b = 40 cm

                              12 . 5 × 10 5
                    d =                     = 61 . 88 cm
                              8 . 161 × 40

   USE section 40 x 80 cm d = 75 cm
Revised Design due to Self Weight

From selected section 40 x 80 cm

   Beam weight wbm = 0.4 × 0.8 × 2.4(t/m3) = 0.768 t/m

   Required moment M = (4 + 0.768) (5)2 / 8 = 14.90 < 18.36 t-m OK

Revised Design due to Support width

        Column width 30 cm
30 cm                        30 cm      Required moment:

                                            M = (4.768) (4.7)2 / 8

                                               = 13.17 t-m

         4.7 m clear span

           5.0 m span
Practical Design of RC Beam
B1 30x60 Mc = 8.02 t-m, Vc = 6.29 t.
                                        fc = 65 ksc, fs = 1,500 ksc, n = 10
                        Load
     w = 2.30 t/m
                        dl      0.43
                                        k = 0.302, j = 0.899, R = 8.835 ksc
                        wall    0.63
                        slab    1.24
                                        b = 30 cm, d = 60 - 5 = 55 cm
       5.00             w       2.30
                                       Mc = 8.835(30)(55)2/105 = 8.02 t-m
  M± = (1/9)(2.3)(5.0)2 = 6.39 t-m
                                       Vc = 0.29(173)1/2(30)(55)/103
 As± = 8.62 cm2 (2DB25)
                                          = 6.29 t
   V = 5.75 t (RB9@0.20 St.)
                                       As± = 6.39×105/(1,500×0.899×55)
                                          = 8.62 cm2
B2 40x80 Mc = 19.88 t-m, Vc = 11.44 t.

                     w = 2.64 t/m                 w = 2.64 t/m


                        8.00                         5.00
          8.54                           9.83
    SFD                                  12.58                   3.37
                        +13.81                       +2.15
    BMD                                  -16.17
                        13.65            15.99        2.13
     As                 3DB25            4DB25       2DB25
GRASP Version 1.02
B11-B12




  Membe
          Mz.i [T-m]   Mz.pos [T-m]   Mz.j [T-m]   Fy.i [Ton]   Fy.j [Ton]
    r
    1         0           39.03        -53.42        33.04       -50.84
    2      -53.42         17.36        -37.97        44.52       -39.36
    3      -37.97         20.75        -46.35        40.54       -43.34
    4      -46.35         25.88        -28.26        44.96       -38.92
    5      -28.26          6.59        -92.25        31.27       -52.61
    6      -92.25         81.47         0.00         69.70       -47.73
Analysis of RC Beam
 Given: Section As , b, d   Materials fc , fs
 Find: Mallow = Moment capacity of section

  STEP 1 : Locate Neutral Axis (kd)

              k = 2 ρn + (ρn ) − ρn
                               2




               j =1−k / 3

                  As
       where ρ =     = Reinforcem ent ratio
                  bd
                  Es   2.04 ×106   134
               n=    =           ≈
                  Ec 15,100 f c′     f c′
STEP 2 : Resisting Moment
                      1
      Concrete:   Mc = f c k j b d   2

                      2
      Steel:      M s = As f s j d

  If Mc > Ms , Over reinforcement        Mallow = Ms

  If Mc < Ms , Under reinforcement       Mallow = Mc

Under reinforcement is preferable because steel is weaker
than concrete. The RC beam would fail in ductile mode.
Example 3.3 Determine the moment strength of beam
           40 cm         fc = 65 ksc, fs = 1,700 ksc,
                         n = 10, d = 75 cm
                            As   12 . 57
80 cm                    ρ=    =         = 0 . 00419 , ρ n = 0 . 0419
                            bd   40 × 75
                         k = 2 × 0 . 0419 + ( 0 . 0419 ) 2 − 0 . 0419
           4 DB 20
                           = 0 . 251 → j = 1 − 0 . 251 / 3 = 0 . 916
        As = 12.57 cm2

   Mc = 0.5(65)(0.251)(0.916)(40)(75)2/105 = 16.81 t-m

   Ms = (12.57)(1,700)(0.916)(75)/105 = 14.68 t-m (control)
Double Reinforcement
                               - Increase steel area
                               - Enlarge section
  When Mreq’d > Mallow
                               - Double RC
                                 only when no choice

       A’s               εc                  T’ = A’s f’s
                   d’         ε’s                1
 M                                          C = 2 fc k b d



       As                                                   As1 fs
                                            T = As fs
                   εs                                       As2 fs
F F              F
    T’ = A’s f’s
                                       1                      T’ = A’s f’s
    C=
           1
             f kbd                C = 2 fckbd
           2 c

                     jd                                   d-d’


    T = As fs                     T1 = As1 fs                 T2 = As2 fs
                                         1          M2 = M − Mc
Moment strength           M 1 = M c = f c kjbd 2
                                         2
 M = M1 + M2                                            = As 2 f s (d − d ′)
                              = As1 f s jd
                                                        = As′ f s′(d − d ′)
                                   Mc                       M − Mc
Steel area       As =        As1 =              +   As 2 =
                                   f s jd                  f s (d − d ′)
Compatibility Condition
         d’   εc
                                    εs     d − kd
                                         =
    kd             ε’s              ε s′   kd − d ′
d                        From Hook’s law: εs = Es fs, ε’s = Es f’s

                                  Es f s    fs     d − kd
                                          =      =
                                  Es f s′   f s′   kd − d ′
     εs
                                                k − d′ d
                                     f s′ = f s
                                                  1− k

          . . .             F F                   k − d′ d
                                     f s′ = 2 f s
                                                    1− k
( A’s )
   T’ = A’s f’s      Force equilibrium [ ΣFx=0 ]
                                   T’ = T2
d-d’
                              A’s f’s = As2 fs

  T2 = As2 fs                                   k − d′ d
                     Substitute    f s′ = 2 f s
                                                  1− k


                       1       1− k
                  As′ = As 2
                       2     k − d′ d
F                       (k )          Compression = Tension

              d’    εc                             Cc + Cs′ = T
                                        1
                                          f c b kd + As′ f s′ = As f s
        kd               ε’ s           2
d                                                     k − d′ d        As′
                           Substitute    f s′ = 2 f s          , ρ′ =
                                                        1− k          bd

                                                    1− k      As
         εs                              f s = n fc      , ρ=
                                                     k        bd


                                d′  2
                                ′  + n ( ρ + 2 ρ ′) − n ( ρ + 2 ρ ′)
                                                    2
    k =            2n  ρ + 2 ρ
                                d
Example 3.4 Design 40x80 cm beam using double RC
              w = 6 t/m        fc = 65 ksc, fs = 1,700 ksc,
                               n = 10, d = 75 cm
         5.0 m                 k = 0.277, j = 0.908, R = 8.161 ksc

 Beam weight wbm = 0.4 × 0.8 × 2.4(t/m3) = 0.768 t/m

 Required M = (6.768) (5)2 / 8 = 21.15 t-m

 Mc = Rbd2 = 8.161(40)(75)2/105 = 18.36 t-m < req’d M         Double RC

              Mc         18.36 × 105
        As1 =       =                    = 15.86 cm 2
              f s jd 1, 700 × 0.908 × 75

                M − Mc         (21.15 − 18.36) ×105
        As 2 =               =                      = 2.34 cm 2
               f s (d − d ′)     1, 700 × (75 − 5)
Tension steel As = As1 + As2 = 15.86 + 2.34 = 18.20 cm2

USE 6DB20 (As = 18.85 cm2)

Compression steel
           1        1− k   1           1 − 0.277
   As′ =     As 2         = × 2.34 ×                = 4.02 cm 2
           2      k − d′ d 2         0.277 − 5 / 75
USE 2DB20 (As = 6.28 cm2)



                                           2DB20
                         0.80 m




                                           6DB20

                                  0.40 m
F    175
3 F       3 F

More Related Content

What's hot

Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
neikrof
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
Zeinab Awada
 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcement
MuskanDeura
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and Torsion
VVIETCIVIL
 
5_6271537827171795662.pdf
5_6271537827171795662.pdf5_6271537827171795662.pdf
5_6271537827171795662.pdf
ssuserd8a85b
 
ETABS Modelling
ETABS ModellingETABS Modelling
Beam design
Beam designBeam design
Two way slab
Two way slabTwo way slab
Two way slab
Priodeep Chowdhury
 
Steel Structural Design Manual for Engineers
Steel Structural Design Manual for EngineersSteel Structural Design Manual for Engineers
Steel Structural Design Manual for Engineers
Prem Chand Sharma
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
Malika khalil
 
DESIGN OF FLAT SLABS
DESIGN OF FLAT SLABSDESIGN OF FLAT SLABS
DESIGN OF FLAT SLABS
sharda university
 
T-Beam Design by WSD Method
T-Beam Design by WSD MethodT-Beam Design by WSD Method
T-Beam Design by WSD Method
Md Tanvir Alam
 
Bs procedure
Bs procedureBs procedure
Bs procedure
hlksd
 
Designing a Cold-Formed Steel Beam Using AISI S100-16
Designing a Cold-Formed Steel Beam Using AISI S100-16Designing a Cold-Formed Steel Beam Using AISI S100-16
Designing a Cold-Formed Steel Beam Using AISI S100-16
ClearCalcs
 
Ch 7 design of rcc footing
Ch 7 design of rcc footingCh 7 design of rcc footing
Ch 7 design of rcc footing
MD.MAHBUB UL ALAM
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Hossam Shafiq II
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
guest00bb06
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beam
Sopheak Thap
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
Sadia Mahjabeen
 
Sasoli1
Sasoli1Sasoli1
Sasoli1
buetk khuzdar
 

What's hot (20)

Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
 
Design of torsion reinforcement
 Design of torsion reinforcement Design of torsion reinforcement
Design of torsion reinforcement
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and Torsion
 
5_6271537827171795662.pdf
5_6271537827171795662.pdf5_6271537827171795662.pdf
5_6271537827171795662.pdf
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 
Beam design
Beam designBeam design
Beam design
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Steel Structural Design Manual for Engineers
Steel Structural Design Manual for EngineersSteel Structural Design Manual for Engineers
Steel Structural Design Manual for Engineers
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
DESIGN OF FLAT SLABS
DESIGN OF FLAT SLABSDESIGN OF FLAT SLABS
DESIGN OF FLAT SLABS
 
T-Beam Design by WSD Method
T-Beam Design by WSD MethodT-Beam Design by WSD Method
T-Beam Design by WSD Method
 
Bs procedure
Bs procedureBs procedure
Bs procedure
 
Designing a Cold-Formed Steel Beam Using AISI S100-16
Designing a Cold-Formed Steel Beam Using AISI S100-16Designing a Cold-Formed Steel Beam Using AISI S100-16
Designing a Cold-Formed Steel Beam Using AISI S100-16
 
Ch 7 design of rcc footing
Ch 7 design of rcc footingCh 7 design of rcc footing
Ch 7 design of rcc footing
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beam
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Sasoli1
Sasoli1Sasoli1
Sasoli1
 

Viewers also liked

Reinforcement detailing
Reinforcement  detailingReinforcement  detailing
Reinforcement detailing
Ali Ishaqi
 
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
Bing Kimpo Media | Communications
 
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
mamta barmola
 
L- beams or flanged beams
L- beams or flanged beamsL- beams or flanged beams
L- beams or flanged beams
honeysid
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2
Muthanna Abbu
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_ed
Thomas Britto
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
Nik M Farid
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
Ivan Ferrer
 
Steel structures
Steel structuresSteel structures
Steel structures
Sukhdarshan Singh
 
Mix design-ppt
Mix design-pptMix design-ppt
Mix design-ppt
narasimha reddy
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
mbrsalman
 
Building Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structuresBuilding Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structures
Rithika Ravishankar
 

Viewers also liked (12)

Reinforcement detailing
Reinforcement  detailingReinforcement  detailing
Reinforcement detailing
 
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
Department of Public Works and Highways (DPWH) Additional Rules and Regulatio...
 
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SF...
 
L- beams or flanged beams
L- beams or flanged beamsL- beams or flanged beams
L- beams or flanged beams
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_ed
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
 
Steel structures
Steel structuresSteel structures
Steel structures
 
Mix design-ppt
Mix design-pptMix design-ppt
Mix design-ppt
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
 
Building Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structuresBuilding Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structures
 

Similar to Rc04 bending2

Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
Teja Ande
 
Lec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamnsLec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamns
MUST,Mirpur AJK,Pakistan
 
Lec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamnsLec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamns
Civil Zone
 
Lec 6
Lec 6Lec 6
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用
vinie99
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
Irfan Malik
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
Irfan Malik
 
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Erdi Karaçal
 
Afzal_Suleman_1.pdf
Afzal_Suleman_1.pdfAfzal_Suleman_1.pdf
Afzal_Suleman_1.pdf
ebookslist1
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
MUST,Mirpur AJK,Pakistan
 
RCC BMD
RCC BMDRCC BMD
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
Eddy Ching
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Erdi Karaçal
 
Lec 9
Lec 9Lec 9
Lec 8-9-flexural analysis and design of beamns
Lec 8-9-flexural analysis and design of beamnsLec 8-9-flexural analysis and design of beamns
Lec 8-9-flexural analysis and design of beamns
Civil Zone
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
Civil Zone
 
Lec 10
Lec 10Lec 10
10.01.03.043
10.01.03.04310.01.03.043
10.01.03.043
Muurad
 
Lec 9-flexural analysis and design of beamns
Lec 9-flexural analysis and design of beamnsLec 9-flexural analysis and design of beamns
Lec 9-flexural analysis and design of beamns
MUST,Mirpur AJK,Pakistan
 
Rcc Beams
Rcc BeamsRcc Beams

Similar to Rc04 bending2 (20)

Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Lec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamnsLec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamns
 
Lec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamnsLec 6-flexural analysis and design of beamns
Lec 6-flexural analysis and design of beamns
 
Lec 6
Lec 6Lec 6
Lec 6
 
fm全国大会用
fm全国大会用 fm全国大会用
fm全国大会用
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
 
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
 
Afzal_Suleman_1.pdf
Afzal_Suleman_1.pdfAfzal_Suleman_1.pdf
Afzal_Suleman_1.pdf
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
10346 07 08 examination paper
10346 07 08 examination paper10346 07 08 examination paper
10346 07 08 examination paper
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Lec 9
Lec 9Lec 9
Lec 9
 
Lec 8-9-flexural analysis and design of beamns
Lec 8-9-flexural analysis and design of beamnsLec 8-9-flexural analysis and design of beamns
Lec 8-9-flexural analysis and design of beamns
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
Lec 10
Lec 10Lec 10
Lec 10
 
10.01.03.043
10.01.03.04310.01.03.043
10.01.03.043
 
Lec 9-flexural analysis and design of beamns
Lec 9-flexural analysis and design of beamnsLec 9-flexural analysis and design of beamns
Lec 9-flexural analysis and design of beamns
 
Rcc Beams
Rcc BeamsRcc Beams
Rcc Beams
 

Recently uploaded

一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
3vgr39kx
 
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
yufen5
 
Introduction to User experience design for beginner
Introduction to User experience design for beginnerIntroduction to User experience design for beginner
Introduction to User experience design for beginner
ellemjani
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
qo1as76n
 
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Designforuminternational
 
CocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdfCocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdf
PabloMartelLpez
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
k7nm6tk
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
Jaime Brown
 
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
9lq7ultg
 
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
hw2xf1m
 
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
qo1as76n
 
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
kuapy
 
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
bo44ban1
 
一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样
tobbk6s8
 
Getting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by NeontribeGetting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by Neontribe
Harry Harrold
 
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
67n7f53
 
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
jafiradnan336
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
wkip62b
 
一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样
k4krdgxx
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
Virtual Real Design
 

Recently uploaded (20)

一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
一比一原版南安普顿索伦特大学毕业证Southampton成绩单一模一样
 
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
一比一原版(soton毕业证书)英国南安普顿大学毕业证在读证明如何办理
 
Introduction to User experience design for beginner
Introduction to User experience design for beginnerIntroduction to User experience design for beginner
Introduction to User experience design for beginner
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
 
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
Discovering the Best Indian Architects A Spotlight on Design Forum Internatio...
 
CocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdfCocaCola_Brand_equity_package_2012__.pdf
CocaCola_Brand_equity_package_2012__.pdf
 
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
一比一原版(LSBU毕业证书)伦敦南岸大学毕业证如何办理
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
 
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
一比一原版马里兰大学毕业证(UMD毕业证书)如何办理
 
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
原版制作(MDIS毕业证书)新加坡管理发展学院毕业证学位证一模一样
 
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
哪里办理美国中央华盛顿大学毕业证双学位证书原版一模一样
 
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
按照学校原版(UIUC文凭证书)伊利诺伊大学|厄巴纳-香槟分校毕业证快速办理
 
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
一比一原版阿肯色大学毕业证(UCSF毕业证书)如何办理
 
一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样一比一原版肯特大学毕业证UKC成绩单一模一样
一比一原版肯特大学毕业证UKC成绩单一模一样
 
Getting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by NeontribeGetting Data Ready for Culture Hack by Neontribe
Getting Data Ready for Culture Hack by Neontribe
 
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
一比一原版(CSU毕业证书)查尔斯特大学毕业证如何办理
 
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
欧洲杯买球-欧洲杯买球买球网好的网站-欧洲杯买球哪里有正规的买球网站|【​网址​🎉ac123.net🎉​】
 
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理一比一原版布兰登大学毕业证(BU毕业证书)如何办理
一比一原版布兰登大学毕业证(BU毕业证书)如何办理
 
一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样一比一原版马来西亚世纪大学毕业证成绩单一模一样
一比一原版马来西亚世纪大学毕业证成绩单一模一样
 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
 

Rc04 bending2

  • 1. 4 Reinforced Concrete Design Strength of Rectangular Section in Bending Location of Reinforcement Behavior of Beam under Load Beam Design Requirements Working Stress Design (WSD) Practical Design of RC Beam Asst.Prof.Dr.Mongkol JIRAVACHARADET SURANAREE INSTITUTE OF ENGINEERING UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING
  • 2. Location of Reinforcement Concrete cracks due to tension, and as a result, reinforcement is required where flexure, axial loads, or shrinkage effects cause tensile stresses. • Simply supported beam tensile stresses and cracks are developed along bottom of the beam Positive Moment BMD longitudinal reinforcement is placed closed to the bottom side of the beam
  • 3. Location of Reinforcement • Cantilever beam - Top bars - Ties and anchorage to support
  • 5. Location of Reinforcement • Continuous beam with 2 spans
  • 6. Figure B-13 : Reinforcement Arrangement for Suspended Beams
  • 7. Figure B-14 : Reinforcement Arrangement for Suspended Cantilever Beams
  • 8. Behavior of Beam under Load w L εc f < f c′ Elastic Bending (Plain Concrete) εc f < f r = 2.0 f c′ εc f < f c′ Working Stress Condition C T = As fs εs
  • 9. Brittle failure mode εcu= 0.003 Crushing C T = As fs εs <εy fs < fy Ductile failure mode εc < 0.003 C T = As fs εs ≥εy fs = fy
  • 10. Beam Design Requirements 1) Minimum Depth (for deflection control) oneway L/20 L/24 L/28 L/10 slab BEAM L/16 L/18.5 L/21 L/8 2) Temperature Steel (for slab) SR24: As = 0.0025 bt b SD30: As = 0.0020 bt t SD40: As = 0.0018 bt As fy > 4,000 ksc: As = 0.0018 4,000 bt fy
  • 11. 3) Minimum Steel (for beam) As min = 14 / fy As To ensure that steel not fail before first crack 4) Concrete Covering stirrup Durability and Fire protection > 4/3 max. aggregate size 5) Bar Spacing
  • 12. WSD of Beam for Moment Assumptions: 1) Section remains plane 2) Stress proportioned to Strain 3) Concrete not take tension 4) No concrete-steel slip Modular ratio (n): Es 2.04 × 106 134 n= = ≈ Ec 15,100 f c′ f c′
  • 13. Effective Depth (d) : Distance from compression face to centroid of steel d Cracked transformed section strain condition force equilibrium compression face εc f c = Ecε c C kd d N.A. jd εs T = As f s b f s = Es ε s
  • 14. f c = Ecε c 1 Compression in concrete: C = f c b kd kd C 2 N.A. jd Tension in steel: T = As f s T = As f s f s = Es ε s Equilibrium ΣFx= 0 : Compression = Tension 1 f c b kd = As f s 2 Reinforcement ratio: ρ = As / bd fc 2 ρ = 1 fs k
  • 15. Strain compatibility: εc εc kd k = = ε s d − kd 1 − k kd d f c / Ec k = f s / Es 1 − k fc k εs n = 2 fs 1 − k k = 2n ρ + ( n ρ ) − n ρ 2 Analysis: know ρ find k 1 2 n fc 1 Design: know fc , fs find k 2 k= = n fc + fs 1 + fs n fc
  • 16. Allowable Stresses Plain concrete: Steel: f c = 0.33 f c′ ≤ 60 kg/cm 2 SR24: fs = 0.5(2,400) = 1,200 ksc Reinforced concrete: SD30: fs = 0.5(3,000) = 1,500 ksc f c = 0.375 f c′ ≤ 65 kg/cm 2 SD40, SD50: fs = 1,700 ksc Example 3.1: f c′ = 150 ksc , fs = 1,500 ksc 134 n= = 10.94 ⇒ 10 (nearest integer) 150 f c = 0.375(150) = 56 ksc 1 k= = 0.2515 1,500 1+ 9(56)
  • 17. Resisting Moment kd/3 Moment arm distance : j d 1 kd C= fc k b d jd = d − M 2 3 jd k j = 1− T = As fs 3 Steel: M = T × jd = As f s jd 1 Concrete: M = C × jd = f c k j b d 2 = R b d 2 2 1 R = fc k j 2
  • 18. Design Step: known M, fc, fs, n 1) Compute parameters 1 1 k= j = 1− k / 3 R= fc k j 1 + fs n fc 2 R (kg/cm2) fc n (kg/cm2) fs=1,200 fs=1,500 fs=1,700 (kg/cm2) (kg/cm2) (kg/cm2) 45 12 6.260 5.430 4.988 50 12 7.407 6.463 5.955 55 11 8.188 7.147 6.587 60 11 9.386 8.233 7.608 65 10 10.082 8.835 8.161
  • 19. Design Parameter k and j fs=1,200 fs=1,500 fs=1,700 fc (kg/cm2) (kg/cm2) (kg/cm2) n (kg/cm2) k j k j k j 45 12 0.310 0.897 0.265 0.912 0.241 0.920 50 12 0.333 0.889 0.286 0.905 0.261 0.913 55 11 0.335 0.888 0.287 0.904 0.262 0.913 60 11 0.355 0.882 0.306 0.898 0.280 0.907 65 10 0.351 0.883 0.302 0.899 0.277 0.908 1) For greater fs , k becomes smaller → smaller compression area 2) j ≈ 0.9 → moment arm j d ≈ 0.9d can be used in approximation design.
  • 20. 2) Determine size of section bd2 Such that resisting moment of concrete Mc = R b d 2 ≥ Required M Usually b ≈ d / 2 : b = 10 cm, 20 cm, 30 cm, 40 cm, . . . d = 20 cm, 30 cm, 40 cm, 50 cm, . . . 3) Determine steel area M From M = As f s jd → As = fs j d 4) Select steel bars and Detailing
  • 21. .1 F F , .2 Number of Bars Bar Dia. 1 2 3 4 5 6 RB6 0.283 0.565 0.848 1.13 1.41 1.70 RB9 0.636 1.27 1.91 2.54 3.18 3.82 DB10 0.785 1.57 2.36 3.14 3.93 4.71 DB12 1.13 2.26 3.53 4.52 5.65 6.79 DB16 2.01 4.02 6.03 8.04 10.05 12.06 DB20 3.14 6.28 9.42 12.57 15.71 18.85 DB25 4.91 9.82 14.73 19.63 24.54 29.45
  • 22. .3 F ACI Simple One-end Both-ends Member Cantilever supported continuous continuous One-way slab L/20 L/24 L/28 L/10 Beam L/16 L/18.5 L/21 L/8 L = span length For steel with fy not equal 4,000 kg/cm2 multiply with 0.4 + fy/7,000
  • 23. Example 3.2: Working Stress Design of Beam w = 4 t/m Concrete: fc = 65 kg/cm2 Steel: fs = 1,700 kg/cm2 5.0 m From table: n = 10, R = 8.161 kg/cm2 Required moment strength M = (4) (5)2 / 8 = 12.5 t-m Recommended depth for simple supported beam: d = L/16 = 500/16 = 31.25 cm USE section 30 x 50 cm with steel bar DB20 d = 50 - 4(covering) - 2.0/2(bar) = 45 cm
  • 24. Moment strength of concrete: Mc = R b d2 = 8.161 (30) (45)2 = 495,781 kg-cm = 4.96 t-m < 12.5 t-m NG TRY section 40 x 80 cm d = 75 cm Mc = R b d2 = 8.161 (40) (75)2 = 1,836,225 kg-cm = 18.36 t-m > 12.5 t-m OK M 12 . 5 × 10 5 Steel area: As = = = 10 . 8 cm 2 f s jd 1,700 × 0 . 908 × 75 Select steel bar 4DB20 (As = 12.57 cm2)
  • 25. Alternative Solution: From Mc = R b d2 = required moment M M M bd 2 = ⇒ d = R Rb For example M = 12.5 t-m, R = 8.161 ksc, b = 40 cm 12 . 5 × 10 5 d = = 61 . 88 cm 8 . 161 × 40 USE section 40 x 80 cm d = 75 cm
  • 26. Revised Design due to Self Weight From selected section 40 x 80 cm Beam weight wbm = 0.4 × 0.8 × 2.4(t/m3) = 0.768 t/m Required moment M = (4 + 0.768) (5)2 / 8 = 14.90 < 18.36 t-m OK Revised Design due to Support width Column width 30 cm 30 cm 30 cm Required moment: M = (4.768) (4.7)2 / 8 = 13.17 t-m 4.7 m clear span 5.0 m span
  • 27. Practical Design of RC Beam B1 30x60 Mc = 8.02 t-m, Vc = 6.29 t. fc = 65 ksc, fs = 1,500 ksc, n = 10 Load w = 2.30 t/m dl 0.43 k = 0.302, j = 0.899, R = 8.835 ksc wall 0.63 slab 1.24 b = 30 cm, d = 60 - 5 = 55 cm 5.00 w 2.30 Mc = 8.835(30)(55)2/105 = 8.02 t-m M± = (1/9)(2.3)(5.0)2 = 6.39 t-m Vc = 0.29(173)1/2(30)(55)/103 As± = 8.62 cm2 (2DB25) = 6.29 t V = 5.75 t (RB9@0.20 St.) As± = 6.39×105/(1,500×0.899×55) = 8.62 cm2
  • 28. B2 40x80 Mc = 19.88 t-m, Vc = 11.44 t. w = 2.64 t/m w = 2.64 t/m 8.00 5.00 8.54 9.83 SFD 12.58 3.37 +13.81 +2.15 BMD -16.17 13.65 15.99 2.13 As 3DB25 4DB25 2DB25
  • 29. GRASP Version 1.02 B11-B12 Membe Mz.i [T-m] Mz.pos [T-m] Mz.j [T-m] Fy.i [Ton] Fy.j [Ton] r 1 0 39.03 -53.42 33.04 -50.84 2 -53.42 17.36 -37.97 44.52 -39.36 3 -37.97 20.75 -46.35 40.54 -43.34 4 -46.35 25.88 -28.26 44.96 -38.92 5 -28.26 6.59 -92.25 31.27 -52.61 6 -92.25 81.47 0.00 69.70 -47.73
  • 30. Analysis of RC Beam Given: Section As , b, d Materials fc , fs Find: Mallow = Moment capacity of section STEP 1 : Locate Neutral Axis (kd) k = 2 ρn + (ρn ) − ρn 2 j =1−k / 3 As where ρ = = Reinforcem ent ratio bd Es 2.04 ×106 134 n= = ≈ Ec 15,100 f c′ f c′
  • 31. STEP 2 : Resisting Moment 1 Concrete: Mc = f c k j b d 2 2 Steel: M s = As f s j d If Mc > Ms , Over reinforcement Mallow = Ms If Mc < Ms , Under reinforcement Mallow = Mc Under reinforcement is preferable because steel is weaker than concrete. The RC beam would fail in ductile mode.
  • 32. Example 3.3 Determine the moment strength of beam 40 cm fc = 65 ksc, fs = 1,700 ksc, n = 10, d = 75 cm As 12 . 57 80 cm ρ= = = 0 . 00419 , ρ n = 0 . 0419 bd 40 × 75 k = 2 × 0 . 0419 + ( 0 . 0419 ) 2 − 0 . 0419 4 DB 20 = 0 . 251 → j = 1 − 0 . 251 / 3 = 0 . 916 As = 12.57 cm2 Mc = 0.5(65)(0.251)(0.916)(40)(75)2/105 = 16.81 t-m Ms = (12.57)(1,700)(0.916)(75)/105 = 14.68 t-m (control)
  • 33. Double Reinforcement - Increase steel area - Enlarge section When Mreq’d > Mallow - Double RC only when no choice A’s εc T’ = A’s f’s d’ ε’s 1 M C = 2 fc k b d As As1 fs T = As fs εs As2 fs
  • 34. F F F T’ = A’s f’s 1 T’ = A’s f’s C= 1 f kbd C = 2 fckbd 2 c jd d-d’ T = As fs T1 = As1 fs T2 = As2 fs 1 M2 = M − Mc Moment strength M 1 = M c = f c kjbd 2 2 M = M1 + M2 = As 2 f s (d − d ′) = As1 f s jd = As′ f s′(d − d ′) Mc M − Mc Steel area As = As1 = + As 2 = f s jd f s (d − d ′)
  • 35. Compatibility Condition d’ εc εs d − kd = kd ε’s ε s′ kd − d ′ d From Hook’s law: εs = Es fs, ε’s = Es f’s Es f s fs d − kd = = Es f s′ f s′ kd − d ′ εs k − d′ d f s′ = f s 1− k . . . F F k − d′ d f s′ = 2 f s 1− k
  • 36. ( A’s ) T’ = A’s f’s Force equilibrium [ ΣFx=0 ] T’ = T2 d-d’ A’s f’s = As2 fs T2 = As2 fs k − d′ d Substitute f s′ = 2 f s 1− k 1 1− k As′ = As 2 2 k − d′ d
  • 37. F (k ) Compression = Tension d’ εc Cc + Cs′ = T 1 f c b kd + As′ f s′ = As f s kd ε’ s 2 d k − d′ d As′ Substitute f s′ = 2 f s , ρ′ = 1− k bd 1− k As εs f s = n fc , ρ= k bd  d′  2 ′  + n ( ρ + 2 ρ ′) − n ( ρ + 2 ρ ′) 2 k = 2n  ρ + 2 ρ  d
  • 38. Example 3.4 Design 40x80 cm beam using double RC w = 6 t/m fc = 65 ksc, fs = 1,700 ksc, n = 10, d = 75 cm 5.0 m k = 0.277, j = 0.908, R = 8.161 ksc Beam weight wbm = 0.4 × 0.8 × 2.4(t/m3) = 0.768 t/m Required M = (6.768) (5)2 / 8 = 21.15 t-m Mc = Rbd2 = 8.161(40)(75)2/105 = 18.36 t-m < req’d M Double RC Mc 18.36 × 105 As1 = = = 15.86 cm 2 f s jd 1, 700 × 0.908 × 75 M − Mc (21.15 − 18.36) ×105 As 2 = = = 2.34 cm 2 f s (d − d ′) 1, 700 × (75 − 5)
  • 39. Tension steel As = As1 + As2 = 15.86 + 2.34 = 18.20 cm2 USE 6DB20 (As = 18.85 cm2) Compression steel 1 1− k 1 1 − 0.277 As′ = As 2 = × 2.34 × = 4.02 cm 2 2 k − d′ d 2 0.277 − 5 / 75 USE 2DB20 (As = 6.28 cm2) 2DB20 0.80 m 6DB20 0.40 m
  • 40. F 175 3 F 3 F