1+ x
                                (     )
     f ( f ( x)) =
                        1
                              ∗   1 = 1+ x = x +1
                          1      1+ x 1+1+ x x + 2
                   (1 +      ) (      )
                        1+ x      1

     So    x ≠ 2
              −

                        1         1+x
                    ((     ) +1) (    )
                       1+x         1      1 +1 + x   2 +x
f ( f ( f ( x ))) =             ∗       =          =
                        1         1+x     2 +1 +2 x 3 +2 x
                    ((     ) +2) (    )
                      1+x          1
          So       −3
                x≠
                   2

 And from original problem,   x ≠ −1

Jordan's solution

  • 1.
    1+ x ( ) f ( f ( x)) = 1 ∗ 1 = 1+ x = x +1 1 1+ x 1+1+ x x + 2 (1 + ) ( ) 1+ x 1 So x ≠ 2 − 1 1+x (( ) +1) ( ) 1+x 1 1 +1 + x 2 +x f ( f ( f ( x ))) = ∗ = = 1 1+x 2 +1 +2 x 3 +2 x (( ) +2) ( ) 1+x 1 So −3 x≠ 2 And from original problem, x ≠ −1