SlideShare a Scribd company logo
Operational vs. embedded carbon 
 p
            & energy
  With a cameo appearance from the 
  Wi h                      f   h
            functional unit

       Phil Purnell: Director iRI
       Phil Purnell: Director iRI
  Water@Leeds Confluence, 10 March 
                2010
The iRI
                            The iRI
• Institute for Resilient
  Infrastructure
   – to provide the knowledge 
     to ensure that the physical 
     infrastructure systems 
     infrastructure systems         • The iRI has a unique, 
     underpinning our way of          world‐class combination 
     life can adapt to change,        of Engineering Science 
     both in the way we use 
     b th i th                        research with 
     them and in the social and 
                                      Management expertise, 
     p y
     physical environment in 
     which they are designed,         applied through industrial 
                                          li d h     hi d     i l
     built and operated.              collaboration
The Poetry of D.H. Rumsfeld
        The Poetry of D H Rumsfeld
The Unknown
Th U k
As we know,
There are known knowns.
There are known knowns
There are things we know we know.
We also know
There are known unknowns.
That is to say
                                       —Feb. 12, 2002, 
We know there are some things
We know there are some things
                                       Department of Defense 
We do not know.                        news briefing. 
But there are also unknown unknowns,   http://www.slate.com/
                                          p //             /
The ones we don't know                 id/2081042/
We don't know. 
iRI Research & Strategy
         iRI Research & Strategy
• 20+ academic staff         • finance, safety and 
• structural behaviour of      management in complex 
  masonry and composite        infrastructure projects
                               i f t t            j t
  structures                 • numerical optimisation
• cement chemistry and       • carbon accounting and 
  microstructure               whole life cycle costing
• geotechnical structures    • digital information 
• construction materials       standards
  including recycled and     • flood risk management 
  waste materials              and resilience
A disclaimer
                                                                 A disclaimer




http://clovisonline
                  eschool.files.wo
                                 ordpress.com/
                                             /2010/01/yoda
                                                         a.jpg
Operational : Embedded
        Operational : Embedded
• O
  Operational carbon or energy
        i   l b
  – heating, lighting, a/c, pumping, decommissioning and 
    disposal etc; site to grave; ‘running costs’
    di     l t it t              ‘    i      t’
• Embedded carbon or energy
  – materials, manufacture etc; cradle to site ; ‘capital 
    cost’
• Ratio O:E determines where eco‐£££ should be 
  spent
  – E.g. occupied buildings O >> E: spend on insulation etc
  – infrastructure O ≈ E: need to analyse more carefully
Structural materials: CO
  Structural materials: CO2 headlines
 • “1 m3 of wood replacing steel or concrete  
   saves 1.1 tonne of CO2” [1]
                             [ ]
 • “Concrete's carbon footprint is fairly large…” 
   [2]
 • “Steel construction has no equal in 
   sustainability. The recycling and reuse rate… in 
   the UK is 94% [3]
   the UK is 94% [3]”
[1] Wood in Green Building:  Sylvain Labbé, Q‐WEB. Canada Wood Group  (2007). http://www.unece.org/timber/docs/tc‐
sessions/tc‐65/md/presentations/12Labbe.pdf
[2] A concrete solution to climate change?: Hayley Birch, Royal Society of Chemistry (2009). 
http://www.rsc.org/chemistryworld/News/2009/May/26050901.asp
h //                / h i          ld/N    /2009/M /26050901
[3] Sustainable construction ‐ The bigger picture. Steel Construction Institute/Corus. 
http://www.corusconstruction.com/en/reference/publications/sustainability_and_environment/
Structural materials: the facts
   Structural materials: the facts
Material                   eCO2 eE (MJ/kg) ±
Timber (Glulam)
       (      )             0.7     12     40%
Steel: virgin              2.8             37                    30%
Steel: recycled            0.4             10                    30%
Concrete (RC50, CEM1)
Concrete (RC50, CEM1)      0.2             1.4                   30%
Concrete (RC50, 50% PFA)   0.1             0.9                   30%
                                 Hammond, Geoffrey P. and Craig I. 
                                 Jones, 2008. 'Embodied energy and 

• So who’s right?                carbon in construction materials', Proc. 
                                 Instn Civil Engrs: Energy, 161 (2): 87‐98. 
                                 [DOI:10.1680/ener.2008.161.2.87]
                                 [DOI:10 1680/ener 2008 161 2 87]
The functional unit
                          The functional unit
• Cannot directly compare 
            p p     p
  china vs. paper cups
     – supply, lifespan, 
       maintenance, disposal…
       maintenance, disposal…
• Compare functional units
     – e.g. energy/CO2 per 1000 
       cups of coffee
     – e.g. coffee consumption per 
       employee p.a.
http://www.faqs.org/photo‐dict/phrase/382/cup.html; http://www.javapackaging.ca/media/ccp0/cat/biodegradable_paper_cup.JPG
Functional unit: example
                      Functional unit: example
   • Beam to span a 9m gap
          – Max depth = 700 mm
                   p
          – 6 kN/m dead load
          – 8 kN/m live load
            8 kN/m live load
          – Ultimate limit state
          – 50 year life
   • RC v Steel v Timber…
     RC v Steel v Timber…

http://www.tgp.co.uk/services/projects/king.html; http://www.mainroads.qld.gov.au/~/media/files/business‐and‐industry/technical‐
publications/queensland‐roads‐technical‐journal/march‐2006/qr_mar06_taromeocreek.pdf
Functional unit: example
          Functional unit: example
• RC                         • Ti b
                               Timber
   – b = 0.225 m               – UK pine glulam grade 
   – 40 mm cover
     40                          C24, ρ ≈ 600 kg m 3
                                 C24 ρ ≈ 600 kg m‐3
   – steel ratio 0.029         – b = 0.14 m
   – assume 90% recycled 
     assume 90% recycled          • NB in real life would
                                    NB in real life would 
                                    probably need to be 
     high‐yield steel               wider: LTB
   – 50% PFA replacement
     50% PFA replacement       – rectangular section
                                 rectangular section
• Steel                      • Part 1: How do 
   – char. yield = 270 MPa
     char. yield  270 MPa      embodied energy and 
                               embodied energy and
   – UB 385 x 165, 54 kg/m     CO2 compare?
   – assume 60% recycled
                      y
Beam: eCO & eE…
                    Beam: eCO2 & eE
            1000            eCO2 / kg
                            eCO2 / kg   eE / GJ
                                        eE / GJ           14
                                                          12
            800
                                                          10
     / kg




            600




                                                                    GJ
                                                          8




                                                               eE / G
eCO2 /




            400                                           6
                                                          4
            200
                                                          2
              0                                           0
                   RC   Steel Timber RC    Steel Timber
…cf Materials: eCO2 & eE
           cf Materials: eCO & eE…
         2               eCO2 
                         eCO2    eE / MJ/kg
                                 eE / MJ/kg           30
                                                      25
        1.5
                                                      20




                                                                 J/kg
  O2 




                                                           eE / MJ
eCO




         1                                            15
                                                      10




                                                           e
        0.5
                                                      5
         0                                            0
              Conc. Steel Timber Conc. Steel Timber
Other embodied considerations
          Other embodied considerations
   • Lifetime of beam
      if i     fb
          – e.g. if timber beam only lasts 
            25 years, will need 2  double 
            the embodied energy/CO2
   • Transport to site
          – RC: 2100 kg, Steel: 500 kg, 
                      g              g
            Timber: 530 kg
   • On‐site operations
     O s te ope at o s
          – in‐situ casting, welding etc.
http://www.telegraph.co.uk/news/uknews/6004724/Lorry‐stuck‐on‐bridge‐for‐two‐days‐after‐diversion.html; 
http://www.okladot.state.ok.us/newsmedia/i40bridge/gifs/pics‐020717/Welding_on_steel_beams_b.gif
Part 2: Operational energy
         Part 2: Operational energy
• Maintenance
    i
   – Steel: painting, Timber: preservative
   – RC: hopefully none if QC ok, else CP etc.
• Disposal
   –   Steel: recycled with high energy cost, or reused
   –   Timber: possible recycled if OK else landfill
   –   RC: partly recycled or landfill
   –   Note: landfill = zero energy/CO2 cost!
                  f              gy    2 
        • importance of ‘weighting’ different impacts: LCA
• All fairly small (?) so O:E prob <1
           y       ( )        p
Case study: domestic housing
    Case study: domestic housing
• H
  Heavyweight concrete (HC) vs. 
            i ht       t (HC)
  lightweight timber frame (LTF)
• eCO2 (ton) HC 37 LTF 32
        (ton): HC = 37, LTF = 32
   – carpets ≈ 6 !
• Total CO2: HC 180 LTF 220
  Total CO : HC = 180, LTF = 220
• ‘spending’ +5 t during 
  building saves 40 t over 100y
  building saves 40 t over 100y    2‐bed, SE England. 65m2 
   – thermal inertia reduces       100 year lifespan: climate 
     heating/cooling load 
     heating/cooling load          change factored in
                                   change factored in
• O:E = 4 – 5                      Hacker et al, Embodied and operational 
                                   carbon dioxide emissions from housing:
                                   A case study on the effects of thermal 
                                             d      h ff        f h     l
                                   mass and climate change. Energy & 
                                   Buildings 40 (‘08) 375‐384
Case study: rooftop wind turbine
     Case study: rooftop wind turbine
• >80% of E  from materials esp. 
   80% f f             i l
  Al, CFRP
• Payback time: time when
  E + ∫O(t) = 0 
       – 8%: 4.2y (energy), 3.3y (CO2)
       – 30%: 1.1y (energy), 0.8y (CO2)
       – i.e. 20 year O:E –ve, ‐5 > O:E > ‐18
• Intensity (kgCO2/MWh): 27‐41
          y( g    /   )                                                                 max 1.5 kW 
                                                                                        (13 MWh/year)
                                                                                        (13 MWh/       )
       – cf inland, coastal wind ≈ 25, 9                                                eCO2 = 2400 kg
         coal ≈ 900, PV ≈ 100, nuclear ≈ 5                                              eE = 23000 MJ
                                                                                        20 year lifespan
R K Rankine, J P Chick, and G P Harrison , Energy and carbon audit of a rooftop wind 
turbine. Proc. IMechE Vol. 220 Part A: J. Power and Energy pp643‐654.
The Water context
                                 The Water context
   • UK water industry: total 5 Mt CO2 equiv pa
          – ⅔ waste water, ⅓ potable
                          , p
          – 0.29 tCO2 / Ml potable water
                 • 1:1 pumping:treatment
                   1:1 pumping:treatment
          – 0.74 tCO2 / Ml waste water
                 • 12
                   1:2 pumping:treatment
                           i
          – 80% gas & electricity, 20% direct emissions from 
            sludge and other waste: CH4 ‘GWP’

Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”; Scottish Water 
Carbon Footprint Report  2007‐2008. 
The Water context
            The Water context
• Water Framework Directive (WFD) likely to 
  increase emissions by ≈100 kt CO2 pa
                      y             p
  – Addition of end‐of‐pipe processes to achieve 
    required water quality can double operational and 
    required water quality can double operational and
    embodied CO2 of individual plant
  – Against background of Carbon Reduction
    Against background of Carbon Reduction 
    Committment (‐26% by 2020)
• Multiple strategy approach: no silver bullet…
    li l                   h      il    b ll
The Water context
                                 The Water context
   • Source control
          – avoid substance contact with water in first place
   • Increased operational efficiency
          – SUDS: divert runoff to avoid pumping storm water 
                                         p p g
            (‐100 kt CO2)
   • Switch existing treatment to low‐Energy processes
                   g                      gy p
   • Renewable energy generation
          – CHP from anaerobic sludge digestion (‐100 kt CO2)
            CHP from anaerobic sludge digestion (‐100 kt CO
   • Least carbon end‐of‐pipe strategy…
Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”; Scottish Water 
Carbon Footprint Report  2007‐2008. 
E:O – Treatment processes
                   E:O Treatment processes
   20‐year                         Embodied CO2 k Operational CO2
                                     b d d      kg            l                                   O:E
   treatment type                  equiv/Ml         kg equiv/Ml
   Trickling filters
   Trickling filters               10 – 21                        224                             >10
   Reed beds                       16                             ? (low)                         <1
   Activated carbon                62                             66 – 78*                        ≈1
   Reverse osmosis                 2‐31                           370 – 470                       >10
   Biological filters              22                             224                             >10
   Activated sludge                10                             224                             >10

   Process level: operationally intensive – focus on O‐CO2, 
                   p          y                           ,
   not E‐CO2 in mitigation strategies

Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”. * does not include 
regeneration of carbon
Case study: treatment plant
     Case study: treatment plant
• Water treatment works Isle of
  Water treatment works, Isle of 
  Man, 37 Ml/day
  – Floc DAF/Mn contactors
    Floc‐DAF/Mn
• LCA: 40 year life O:E ≈ 7:1
  – Embodied: 13 kt CO2
     • 80% materials, 20% M&E
  – Operational: 85 kt CO2
     • 70% electricity & sludge, 30% 
       embodied in chemicals
          b d d       h      l
                                    Calculating the carbon footprint of a water treatment 
     • Treated water pumping:       plant. Paul Hunt et al. Northern Water Conference and 
        >30 kt
        >30 kt CO2                  Exhibition November 2008, Manchester. 
                                                                ,
                                    http://www.envirolinknorthwest.co.uk/Envirolink/Events0
                                                 .nsf/0/8025739B003AADE3802574AA002778CF?OpenDo
                                                 cument
Conclusions
• Simple comparisons based on materials’ 
              y         y        y
  ‘renewability’ or ‘recyclability’ are not valid –
  define a functional unit
• Cannot generalise about O:E ratio
  Cannot generalise about O:E ratio
   – ‘Spend’ E to reduce O
• Embodied carbon ≈ 2:1 waste:potable water
• Most treatment processes & plant O >> E
  Most treatment processes & plant O >> E
   – Operational focus give greater CO2 benefit

More Related Content

Viewers also liked

Chinese culture compressed file
Chinese culture compressed fileChinese culture compressed file
Chinese culture compressed filesunlee111
 
Fallacies week7
Fallacies week7Fallacies week7
Fallacies week7
stanbridge
 
China group project 2014
China group project 2014China group project 2014
China group project 2014leannepeoples
 
Eco-Concrete : Opportunities and Challenges
Eco-Concrete : Opportunities and ChallengesEco-Concrete : Opportunities and Challenges
Eco-Concrete : Opportunities and Challenges
Abhishek Suman
 
Culture Assessment: Chinese
Culture Assessment: ChineseCulture Assessment: Chinese
Culture Assessment: ChineseStingray67
 
Week12 eng1060
Week12 eng1060Week12 eng1060
Week12 eng1060
stanbridge
 
Santrock essentials4e ppt_ch16
Santrock essentials4e ppt_ch16Santrock essentials4e ppt_ch16
Santrock essentials4e ppt_ch16
stanbridge
 
Week5 tonepurpose
Week5 tonepurposeWeek5 tonepurpose
Week5 tonepurpose
stanbridge
 
Amish A-Z
Amish A-ZAmish A-Z
Amish A-Z
Chelli Sudbrock
 
The Informal Reading Inventory
The Informal Reading InventoryThe Informal Reading Inventory
The Informal Reading Inventory
Leah Balkaran
 
Week11 eng1060.ppt
Week11 eng1060.pptWeek11 eng1060.ppt
Week11 eng1060.ppt
stanbridge
 
Santrock essentials4e ppt_ch17
Santrock essentials4e ppt_ch17Santrock essentials4e ppt_ch17
Santrock essentials4e ppt_ch17
stanbridge
 
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01Philippineinformalreadinginventoryphil iri-120503083435-phpapp01
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01Indanan South
 
Math3010 week 5
Math3010 week 5Math3010 week 5
Math3010 week 5
stanbridge
 
Math3010 week 6
Math3010 week 6Math3010 week 6
Math3010 week 6
stanbridge
 
Math3010 week 3
Math3010 week 3Math3010 week 3
Math3010 week 3
stanbridge
 
Phil iri
Phil iriPhil iri
Phil iri
Michaela Muyano
 

Viewers also liked (20)

Chinese culture compressed file
Chinese culture compressed fileChinese culture compressed file
Chinese culture compressed file
 
Fallacies week7
Fallacies week7Fallacies week7
Fallacies week7
 
China group project 2014
China group project 2014China group project 2014
China group project 2014
 
Ch07
Ch07Ch07
Ch07
 
Eco-Concrete : Opportunities and Challenges
Eco-Concrete : Opportunities and ChallengesEco-Concrete : Opportunities and Challenges
Eco-Concrete : Opportunities and Challenges
 
Culture Assessment: Chinese
Culture Assessment: ChineseCulture Assessment: Chinese
Culture Assessment: Chinese
 
Week12 eng1060
Week12 eng1060Week12 eng1060
Week12 eng1060
 
Santrock essentials4e ppt_ch16
Santrock essentials4e ppt_ch16Santrock essentials4e ppt_ch16
Santrock essentials4e ppt_ch16
 
Week5 tonepurpose
Week5 tonepurposeWeek5 tonepurpose
Week5 tonepurpose
 
Amish A-Z
Amish A-ZAmish A-Z
Amish A-Z
 
Phil iri pre test 2012
Phil iri  pre test 2012Phil iri  pre test 2012
Phil iri pre test 2012
 
The amish
The amishThe amish
The amish
 
The Informal Reading Inventory
The Informal Reading InventoryThe Informal Reading Inventory
The Informal Reading Inventory
 
Week11 eng1060.ppt
Week11 eng1060.pptWeek11 eng1060.ppt
Week11 eng1060.ppt
 
Santrock essentials4e ppt_ch17
Santrock essentials4e ppt_ch17Santrock essentials4e ppt_ch17
Santrock essentials4e ppt_ch17
 
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01Philippineinformalreadinginventoryphil iri-120503083435-phpapp01
Philippineinformalreadinginventoryphil iri-120503083435-phpapp01
 
Math3010 week 5
Math3010 week 5Math3010 week 5
Math3010 week 5
 
Math3010 week 6
Math3010 week 6Math3010 week 6
Math3010 week 6
 
Math3010 week 3
Math3010 week 3Math3010 week 3
Math3010 week 3
 
Phil iri
Phil iriPhil iri
Phil iri
 

Similar to Purnell

Steel & CCS - Jean-Pierre Birat, ESTEP
Steel & CCS - Jean-Pierre Birat, ESTEPSteel & CCS - Jean-Pierre Birat, ESTEP
Steel & CCS - Jean-Pierre Birat, ESTEP
Global CCS Institute
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
Sociedade Brasileira de Pesquisa em Materiais
 
Research plan 3
Research plan 3Research plan 3
Research plan 3
Toru Hara
 
Embedded Energies, SDIs and Sustainability Quantification
Embedded Energies, SDIs  and Sustainability Quantification Embedded Energies, SDIs  and Sustainability Quantification
Embedded Energies, SDIs and Sustainability Quantification
Ajit Sabnis
 
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Energy Network marcus evans
 
21st Century Coal Power Plants
21st Century Coal Power Plants21st Century Coal Power Plants
21st Century Coal Power PlantsJeffrey Phillips
 
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
IRJET Journal
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
Anubhav Jain
 
Can the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon NeutralityCan the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon Neutrality
Subodh Das
 
Developing Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C HawleyDeveloping Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C Hawley
Graphite Graphite
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
UK Carbon Capture and Storage Research Centre
 
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
Sustainable Strategies for the Exploitation of End-of-Life Permanent MagnetsSustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
NOMADPOWER
 
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
IRJET Journal
 
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel BarsIRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
IRJET Journal
 
The Post-2020 Cost- Competitiveness of CCS
The Post-2020 Cost- Competitiveness of CCSThe Post-2020 Cost- Competitiveness of CCS
The Post-2020 Cost- Competitiveness of CCScanaleenergia
 
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
IRJET Journal
 
2010 12-16 kurnitski-synergia
2010 12-16 kurnitski-synergia2010 12-16 kurnitski-synergia
2010 12-16 kurnitski-synergia
Sitra Energia
 
Effect of steel fiber and poly propylene fiber on the strength properties of ...
Effect of steel fiber and poly propylene fiber on the strength properties of ...Effect of steel fiber and poly propylene fiber on the strength properties of ...
Effect of steel fiber and poly propylene fiber on the strength properties of ...
IRJET Journal
 

Similar to Purnell (20)

Steel & CCS - Jean-Pierre Birat, ESTEP
Steel & CCS - Jean-Pierre Birat, ESTEPSteel & CCS - Jean-Pierre Birat, ESTEP
Steel & CCS - Jean-Pierre Birat, ESTEP
 
Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.Materials for the Optimization of Solar Energy Harvesting.
Materials for the Optimization of Solar Energy Harvesting.
 
Research plan 3
Research plan 3Research plan 3
Research plan 3
 
Embedded Energies, SDIs and Sustainability Quantification
Embedded Energies, SDIs  and Sustainability Quantification Embedded Energies, SDIs  and Sustainability Quantification
Embedded Energies, SDIs and Sustainability Quantification
 
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
Technological Challenges and Opportunities for CO2 Capture and Sequestration ...
 
CO2 - EOR and its role in CCS
CO2 - EOR and its role in CCSCO2 - EOR and its role in CCS
CO2 - EOR and its role in CCS
 
21st Century Coal Power Plants
21st Century Coal Power Plants21st Century Coal Power Plants
21st Century Coal Power Plants
 
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
IRJET-Comparative Study of Strength & Cost of Fibre Reinforced Geopolymer Con...
 
99 sakshi
99 sakshi99 sakshi
99 sakshi
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Can the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon NeutralityCan the Global Aluminium Industry Achieve Carbon Neutrality
Can the Global Aluminium Industry Achieve Carbon Neutrality
 
Developing Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C HawleyDeveloping Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C Hawley
 
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
An Update on Gas CCS Project: Effective Adsorbents for Establishing Solids Lo...
 
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
Sustainable Strategies for the Exploitation of End-of-Life Permanent MagnetsSustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
Sustainable Strategies for the Exploitation of End-of-Life Permanent Magnets
 
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
OPTIMUM DOSAGE OF GGBFS, BROKEN CERAMIC TILES AND COPPER SLAG IN THE PRODUCTI...
 
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel BarsIRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
IRJET - A Study on Replacement of Steel Dowel Bars by Bamboo Dowel Bars
 
The Post-2020 Cost- Competitiveness of CCS
The Post-2020 Cost- Competitiveness of CCSThe Post-2020 Cost- Competitiveness of CCS
The Post-2020 Cost- Competitiveness of CCS
 
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
IRJET- Partial Replacement of Cement Clinker with Limestone and Low Quality C...
 
2010 12-16 kurnitski-synergia
2010 12-16 kurnitski-synergia2010 12-16 kurnitski-synergia
2010 12-16 kurnitski-synergia
 
Effect of steel fiber and poly propylene fiber on the strength properties of ...
Effect of steel fiber and poly propylene fiber on the strength properties of ...Effect of steel fiber and poly propylene fiber on the strength properties of ...
Effect of steel fiber and poly propylene fiber on the strength properties of ...
 

More from evzngw

Blue-Green Cities at ICFM6
Blue-Green Cities at ICFM6Blue-Green Cities at ICFM6
Blue-Green Cities at ICFM6evzngw
 
Beulah Keane
Beulah KeaneBeulah Keane
Beulah Keaneevzngw
 
Beulah Keane
Beulah KeaneBeulah Keane
Beulah Keaneevzngw
 
Stephen Palmer, MWH
Stephen Palmer, MWHStephen Palmer, MWH
Stephen Palmer, MWHevzngw
 
Peter Coddington, Yorkshire Water
Peter Coddington, Yorkshire WaterPeter Coddington, Yorkshire Water
Peter Coddington, Yorkshire Waterevzngw
 
Mike Barker, Arup
Mike Barker, ArupMike Barker, Arup
Mike Barker, Arupevzngw
 
Zevenbergen Inaugural
Zevenbergen InauguralZevenbergen Inaugural
Zevenbergen Inaugural
evzngw
 
Inaugural NG Wright
Inaugural NG WrightInaugural NG Wright
Inaugural NG Wrightevzngw
 

More from evzngw (9)

Blue-Green Cities at ICFM6
Blue-Green Cities at ICFM6Blue-Green Cities at ICFM6
Blue-Green Cities at ICFM6
 
Beulah Keane
Beulah KeaneBeulah Keane
Beulah Keane
 
Beulah Keane
Beulah KeaneBeulah Keane
Beulah Keane
 
Stephen Palmer, MWH
Stephen Palmer, MWHStephen Palmer, MWH
Stephen Palmer, MWH
 
Keane
KeaneKeane
Keane
 
Peter Coddington, Yorkshire Water
Peter Coddington, Yorkshire WaterPeter Coddington, Yorkshire Water
Peter Coddington, Yorkshire Water
 
Mike Barker, Arup
Mike Barker, ArupMike Barker, Arup
Mike Barker, Arup
 
Zevenbergen Inaugural
Zevenbergen InauguralZevenbergen Inaugural
Zevenbergen Inaugural
 
Inaugural NG Wright
Inaugural NG WrightInaugural NG Wright
Inaugural NG Wright
 

Purnell

  • 1. Operational vs. embedded carbon  p & energy With a cameo appearance from the  Wi h f h functional unit Phil Purnell: Director iRI Phil Purnell: Director iRI Water@Leeds Confluence, 10 March  2010
  • 2. The iRI The iRI • Institute for Resilient Infrastructure – to provide the knowledge  to ensure that the physical  infrastructure systems  infrastructure systems • The iRI has a unique,  underpinning our way of  world‐class combination  life can adapt to change,  of Engineering Science  both in the way we use  b th i th research with  them and in the social and  Management expertise,  p y physical environment in  which they are designed,  applied through industrial  li d h hi d i l built and operated. collaboration
  • 3. The Poetry of D.H. Rumsfeld The Poetry of D H Rumsfeld The Unknown Th U k As we know, There are known knowns. There are known knowns There are things we know we know. We also know There are known unknowns. That is to say —Feb. 12, 2002,  We know there are some things We know there are some things Department of Defense  We do not know. news briefing.  But there are also unknown unknowns, http://www.slate.com/ p // / The ones we don't know id/2081042/ We don't know. 
  • 4. iRI Research & Strategy iRI Research & Strategy • 20+ academic staff • finance, safety and  • structural behaviour of  management in complex  masonry and composite  infrastructure projects i f t t j t structures • numerical optimisation • cement chemistry and  • carbon accounting and  microstructure whole life cycle costing • geotechnical structures  • digital information  • construction materials  standards including recycled and  • flood risk management  waste materials and resilience
  • 5. A disclaimer A disclaimer http://clovisonline eschool.files.wo ordpress.com/ /2010/01/yoda a.jpg
  • 6. Operational : Embedded Operational : Embedded • O Operational carbon or energy i l b – heating, lighting, a/c, pumping, decommissioning and  disposal etc; site to grave; ‘running costs’ di l t it t ‘ i t’ • Embedded carbon or energy – materials, manufacture etc; cradle to site ; ‘capital  cost’ • Ratio O:E determines where eco‐£££ should be  spent – E.g. occupied buildings O >> E: spend on insulation etc – infrastructure O ≈ E: need to analyse more carefully
  • 7. Structural materials: CO Structural materials: CO2 headlines • “1 m3 of wood replacing steel or concrete   saves 1.1 tonne of CO2” [1] [ ] • “Concrete's carbon footprint is fairly large…”  [2] • “Steel construction has no equal in  sustainability. The recycling and reuse rate… in  the UK is 94% [3] the UK is 94% [3]” [1] Wood in Green Building:  Sylvain Labbé, Q‐WEB. Canada Wood Group  (2007). http://www.unece.org/timber/docs/tc‐ sessions/tc‐65/md/presentations/12Labbe.pdf [2] A concrete solution to climate change?: Hayley Birch, Royal Society of Chemistry (2009).  http://www.rsc.org/chemistryworld/News/2009/May/26050901.asp h // / h i ld/N /2009/M /26050901 [3] Sustainable construction ‐ The bigger picture. Steel Construction Institute/Corus.  http://www.corusconstruction.com/en/reference/publications/sustainability_and_environment/
  • 8. Structural materials: the facts Structural materials: the facts Material eCO2 eE (MJ/kg) ± Timber (Glulam) ( ) 0.7 12 40% Steel: virgin 2.8 37 30% Steel: recycled 0.4 10 30% Concrete (RC50, CEM1) Concrete (RC50, CEM1) 0.2 1.4 30% Concrete (RC50, 50% PFA) 0.1 0.9 30% Hammond, Geoffrey P. and Craig I.  Jones, 2008. 'Embodied energy and  • So who’s right? carbon in construction materials', Proc.  Instn Civil Engrs: Energy, 161 (2): 87‐98.  [DOI:10.1680/ener.2008.161.2.87] [DOI:10 1680/ener 2008 161 2 87]
  • 9. The functional unit The functional unit • Cannot directly compare  p p p china vs. paper cups – supply, lifespan,  maintenance, disposal… maintenance, disposal… • Compare functional units – e.g. energy/CO2 per 1000  cups of coffee – e.g. coffee consumption per  employee p.a. http://www.faqs.org/photo‐dict/phrase/382/cup.html; http://www.javapackaging.ca/media/ccp0/cat/biodegradable_paper_cup.JPG
  • 10. Functional unit: example Functional unit: example • Beam to span a 9m gap – Max depth = 700 mm p – 6 kN/m dead load – 8 kN/m live load 8 kN/m live load – Ultimate limit state – 50 year life • RC v Steel v Timber… RC v Steel v Timber… http://www.tgp.co.uk/services/projects/king.html; http://www.mainroads.qld.gov.au/~/media/files/business‐and‐industry/technical‐ publications/queensland‐roads‐technical‐journal/march‐2006/qr_mar06_taromeocreek.pdf
  • 11. Functional unit: example Functional unit: example • RC • Ti b Timber – b = 0.225 m – UK pine glulam grade  – 40 mm cover 40 C24, ρ ≈ 600 kg m 3 C24 ρ ≈ 600 kg m‐3 – steel ratio 0.029 – b = 0.14 m – assume 90% recycled  assume 90% recycled • NB in real life would NB in real life would  probably need to be  high‐yield steel wider: LTB – 50% PFA replacement 50% PFA replacement – rectangular section rectangular section • Steel • Part 1: How do  – char. yield = 270 MPa char. yield  270 MPa embodied energy and  embodied energy and – UB 385 x 165, 54 kg/m CO2 compare? – assume 60% recycled y
  • 12. Beam: eCO & eE… Beam: eCO2 & eE 1000 eCO2 / kg eCO2 / kg eE / GJ eE / GJ 14 12 800 10 / kg 600 GJ 8 eE / G eCO2 / 400 6 4 200 2 0 0 RC Steel Timber RC Steel Timber
  • 13. …cf Materials: eCO2 & eE cf Materials: eCO & eE… 2 eCO2  eCO2 eE / MJ/kg eE / MJ/kg 30 25 1.5 20 J/kg O2  eE / MJ eCO 1 15 10 e 0.5 5 0 0 Conc. Steel Timber Conc. Steel Timber
  • 14. Other embodied considerations Other embodied considerations • Lifetime of beam if i fb – e.g. if timber beam only lasts  25 years, will need 2  double  the embodied energy/CO2 • Transport to site – RC: 2100 kg, Steel: 500 kg,  g g Timber: 530 kg • On‐site operations O s te ope at o s – in‐situ casting, welding etc. http://www.telegraph.co.uk/news/uknews/6004724/Lorry‐stuck‐on‐bridge‐for‐two‐days‐after‐diversion.html;  http://www.okladot.state.ok.us/newsmedia/i40bridge/gifs/pics‐020717/Welding_on_steel_beams_b.gif
  • 15. Part 2: Operational energy Part 2: Operational energy • Maintenance i – Steel: painting, Timber: preservative – RC: hopefully none if QC ok, else CP etc. • Disposal – Steel: recycled with high energy cost, or reused – Timber: possible recycled if OK else landfill – RC: partly recycled or landfill – Note: landfill = zero energy/CO2 cost! f gy 2  • importance of ‘weighting’ different impacts: LCA • All fairly small (?) so O:E prob <1 y ( ) p
  • 16. Case study: domestic housing Case study: domestic housing • H Heavyweight concrete (HC) vs.  i ht t (HC) lightweight timber frame (LTF) • eCO2 (ton) HC 37 LTF 32 (ton): HC = 37, LTF = 32 – carpets ≈ 6 ! • Total CO2: HC 180 LTF 220 Total CO : HC = 180, LTF = 220 • ‘spending’ +5 t during  building saves 40 t over 100y building saves 40 t over 100y 2‐bed, SE England. 65m2  – thermal inertia reduces  100 year lifespan: climate  heating/cooling load  heating/cooling load change factored in change factored in • O:E = 4 – 5  Hacker et al, Embodied and operational  carbon dioxide emissions from housing: A case study on the effects of thermal  d h ff f h l mass and climate change. Energy &  Buildings 40 (‘08) 375‐384
  • 17. Case study: rooftop wind turbine Case study: rooftop wind turbine • >80% of E  from materials esp.  80% f f i l Al, CFRP • Payback time: time when E + ∫O(t) = 0  – 8%: 4.2y (energy), 3.3y (CO2) – 30%: 1.1y (energy), 0.8y (CO2) – i.e. 20 year O:E –ve, ‐5 > O:E > ‐18 • Intensity (kgCO2/MWh): 27‐41 y( g / ) max 1.5 kW  (13 MWh/year) (13 MWh/ ) – cf inland, coastal wind ≈ 25, 9 eCO2 = 2400 kg coal ≈ 900, PV ≈ 100, nuclear ≈ 5 eE = 23000 MJ 20 year lifespan R K Rankine, J P Chick, and G P Harrison , Energy and carbon audit of a rooftop wind  turbine. Proc. IMechE Vol. 220 Part A: J. Power and Energy pp643‐654.
  • 18. The Water context The Water context • UK water industry: total 5 Mt CO2 equiv pa – ⅔ waste water, ⅓ potable , p – 0.29 tCO2 / Ml potable water • 1:1 pumping:treatment 1:1 pumping:treatment – 0.74 tCO2 / Ml waste water • 12 1:2 pumping:treatment i – 80% gas & electricity, 20% direct emissions from  sludge and other waste: CH4 ‘GWP’ Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”; Scottish Water  Carbon Footprint Report  2007‐2008. 
  • 19. The Water context The Water context • Water Framework Directive (WFD) likely to  increase emissions by ≈100 kt CO2 pa y p – Addition of end‐of‐pipe processes to achieve  required water quality can double operational and  required water quality can double operational and embodied CO2 of individual plant – Against background of Carbon Reduction Against background of Carbon Reduction  Committment (‐26% by 2020) • Multiple strategy approach: no silver bullet… li l h il b ll
  • 20. The Water context The Water context • Source control – avoid substance contact with water in first place • Increased operational efficiency – SUDS: divert runoff to avoid pumping storm water  p p g (‐100 kt CO2) • Switch existing treatment to low‐Energy processes g gy p • Renewable energy generation – CHP from anaerobic sludge digestion (‐100 kt CO2) CHP from anaerobic sludge digestion (‐100 kt CO • Least carbon end‐of‐pipe strategy… Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”; Scottish Water  Carbon Footprint Report  2007‐2008. 
  • 21. E:O – Treatment processes E:O Treatment processes 20‐year Embodied CO2 k Operational CO2 b d d kg  l O:E treatment type equiv/Ml kg equiv/Ml Trickling filters Trickling filters 10 – 21 224 >10 Reed beds 16 ? (low) <1 Activated carbon 62 66 – 78* ≈1 Reverse osmosis 2‐31 370 – 470 >10 Biological filters 22 224 >10 Activated sludge 10 224 >10 Process level: operationally intensive – focus on O‐CO2,  p y , not E‐CO2 in mitigation strategies Environment Agency (2009) report SC070010/R2 “Transforming wastewater treatment to reduce carbon emissions”. * does not include  regeneration of carbon
  • 22. Case study: treatment plant Case study: treatment plant • Water treatment works Isle of Water treatment works, Isle of  Man, 37 Ml/day – Floc DAF/Mn contactors Floc‐DAF/Mn • LCA: 40 year life O:E ≈ 7:1 – Embodied: 13 kt CO2 • 80% materials, 20% M&E – Operational: 85 kt CO2 • 70% electricity & sludge, 30%  embodied in chemicals b d d h l Calculating the carbon footprint of a water treatment  • Treated water pumping: plant. Paul Hunt et al. Northern Water Conference and  >30 kt >30 kt CO2 Exhibition November 2008, Manchester.  , http://www.envirolinknorthwest.co.uk/Envirolink/Events0 .nsf/0/8025739B003AADE3802574AA002778CF?OpenDo cument
  • 23. Conclusions • Simple comparisons based on materials’  y y y ‘renewability’ or ‘recyclability’ are not valid – define a functional unit • Cannot generalise about O:E ratio Cannot generalise about O:E ratio – ‘Spend’ E to reduce O • Embodied carbon ≈ 2:1 waste:potable water • Most treatment processes & plant O >> E Most treatment processes & plant O >> E – Operational focus give greater CO2 benefit