SlideShare a Scribd company logo
1 of 41
Chapter 2 – Projectile Motion
Objectives: After completing this
module, you should be able to:
 Describe the motion of a projectile by
treating horizontal and vertical components
of its position and velocity.
• Solve for position, velocity, or time when
given initial velocity and launch angle.
Projectile Motion
A projectile is a particle moving near the
Earth’s surface under the influence of its
weight only (directed downward).
a = g
W
W
W
Vertical and Horizontal Motion
Simultaneously dropping
yellow ball and projecting
red ball horizontally.
Click right to observe
motion of each ball.
Vertical and Horizontal Motion
Simultaneously dropping a
yellow ball and projecting a
red ball horizontally.
Why do they strike the
ground at the same time?
Once motion has begun, the downward
weight is the only force on each ball.
W W
Ball Projected Horizontally and
Another Dropped at Same Time:
0 s
vox
Vertical Motion is the Same for Each Ball
1 s
2 s
3 s
vy
vx
vx
vx
vy
vy
vy
vy
vy
Observe Motion of Each Ball
0 s
vox
Vertical Motion is the Same for Each Ball
3 s
2 s
1 s
Consider Horizontal and
Vertical Motion Separately:
Compare Displacements and Velocities
0 s
0 s
1 s
vox
2 s 3 s
1 s
vy
2 s
vx
vy
3 s
vx
vy
Horizontal velocity
doesn’t change.
Vertical velocity just
like free fall.
vx
Displacement Calculations for
Horizontal Projection:
For any constant acceleration:
Horizontal displacement: ox
x v t

Vertical displacement:
2
1
2
y gt

2
1
2
o
x v t at
 
For the special case of horizontal projection:
0; 0;
x y oy ox o
a a g v v v
   
Velocity Calculations for Horizontal
Projection (cont.):
For any constant acceleration:
Horizontal velocity: x ox
v v

Vertical velocity: y o
v v gt
 
f o
v v at
 
For the special case of a projectile:
0; 0;
x y oy ox o
a a g v v v
   
Example 1: A baseball is hit with a
horizontal speed of 25 m/s. What is its
position and velocity after 2 s?
First find horizontal and vertical displacements:
(25 m/s)(2 s)
ox
x v t
 
2 2 2
1 1
2 2 ( 9.8 m/s )(2 s)
y gt
  
x = 50.0 m
y = -19.6 m
25 m/s
x
y
-19.6 m
+50 m
Example 1 Cont.): What are the velocity
components after 2 s?
25 m/s
Find horizontal and vertical velocity after 2 s:
(25 m/s)
x ox
v v
 
2
0 ( 9.8 m/s )(2 s)
y oy
v v at
    
vx = 25.0 m/s
vy = -19.6 m/s
vx
vy
v0x = 25 m/s
v0y = 0
Consider Projectile at an Angle:
A red ball is projected at an angle q. At the same
time, a yellow ball is thrown vertically upward
and a green ball rolls horizontally (no friction).
Note vertical and horizontal motions of balls
q
voy
vox
vo
vx = vox = constant
y oy
v v at
 
2
9.8 m/s
a  
Displacement Calculations For
General Projection:
The components of displacement at time t are:
2
1
2
ox x
x v t a t
 
For projectiles: 0; ; 0;
x y oy ox o
a a g v v v
   
2
1
2
oy y
y v t a t
 
Thus, the displacement
components x and y for
projectiles are:
2
1
2
ox
oy
x v t
y v t gt

 
Velocity Calculations For
General Projection:
The components of velocity at time t are:
x ox x
v v a t
 
For projectiles: 0; ; 0;
x y oy ox o
a a g v v v
   
y oy y
v v a t
 
Thus, the velocity
components vx and vy
for projectiles are:
constant
x ox
y oy
v v
v v gt

 
Problem-Solving Strategy:
1. Resolve initial velocity vo into components:
vo
vox
voy
q cos ; sin
ox o oy o
v v v v
q q
 
2. Find components of final position and velocity:
2
1
2
ox
oy
x v t
y v t gt

 
Displacement: Velocity:
0
2
x x
y oy
v v
v v gt

 
Problem Strategy (Cont.):
3. The final position and velocity can be found
from the components.
R
x
y
q
4. Use correct signs - remember g is negative or
positive depending on your initial choice.
2 2
; tan
y
R x y
x
q
  
2 2
; tan
y
x y
x
v
v v v
v
q
  
vo
vox
voy
q
Example 2: A ball has an initial velocity of
160 ft/s at an angle of 30o with horizontal.
Find its position and velocity after 2 s and
after 4 s.
voy 160 ft/s
vox
30o
Since vx is constant, the horizontal displacements
after 2 and 4 seconds are:
(139 ft/s)(2 s)
ox
x v t
  x = 277 ft
(139 ft/s)(4 s)
ox
x v t
  x = 554 ft
0
(160 ft/s)cos30 139 ft/s
ox
v  
0
(160 ft/s)sin30 80.0 ft/s
oy
v  
Note: We know ONLY the horizontal location
after 2 and 4 s. We don’t know whether it is on
its way up or on its way down.
x2 = 277 ft x4 = 554 ft
Example 2: (Continued)
voy 160 ft/s
vox
30o
277 ft 554 ft
2 s 4 s
Example 2 (Cont.): Next we find the vertical
components of position after 2 s and after 4 s.
voy= 80 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
y2
y4
2 2 2
1 1
2 2
(80 ft/s) ( 32 ft/s )
oy
y v t gt t t
    
The vertical displacement as function of time:
2
80 16
y t t
  Observe consistent units.
(Cont.) Signs of y will indicate location of
displacement (above + or below – origin).
voy= 80 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
y2
y4
Vertical position:
2
80 16
y t t
 
2
2 80(2 s) 16(2 s)
y   2
4 80(4 s) 16(4 s)
y  
2 96 ft
y  4 16 ft
y 
96 ft
16 ft
Each above origin (+)
(Cont.): Next we find horizontal and vertical
components of velocity after 2 and 4 s.
Since vx is constant, vx = 139 ft/s at all times.
Vertical velocity is same as if vertically projected:
2
; where g 32 ft/s
y oy
v v gt
   
At any
time t:
(32 ft/s)
y oy
v v t
 
139 ft/s
x
v 
voy 160 ft/s
vox
30o
0
(160 ft/s)cos30 139 ft/s
ox
v  
0
(160 ft/s)sin30 80.0 ft/s
oy
v  
v2y = 16.0 ft/s
v4y = -48.0 ft/s
Example 2: (Continued)
vy= 80.0 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
v2
v4
At any
time t:
(32 ft/s)
y oy
v v t
 
139 ft/s
x
v 
80 ft/s (32 ft/s)(2 s)
y
v  
80 ft/s (32 ft/s)(4 s)
y
v  
At 2 s: v2x = 139 ft/s; v2y = + 16.0 ft/s
Example 2: (Continued)
vy= 80.0 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
v2
v4
Moving Up
+16 ft/s
Moving down
-48 ft/s
The signs of vy indicate whether motion is
up (+) or down (-) at any time t.
At 4 s: v4x = 139 ft/s; v4y = - 48.0 ft/s
(Cont.): The displacement R2,q is found from
the x2 and y2 component displacements.
q
0 s 2 s 4 s
y2 = 96 ft
x2= 277 ft
R2
2 2
R x y
  tan
y
x
q 
2 2
(277 ft) (96 ft)
R  
96 ft
tan
277 ft
q 
R2 = 293 ft q2 = 19.10
t = 2 s
(Cont.): Similarly, displacement R4,q is found
from the x4 and y4 component displacements.
2 2
(554 ft) (64 ft)
R  
64 ft
tan
554 ft
q 
R4 = 558 ft q4 = 6.590
q
0 s 4 s
y4 = 64 ft
x4= 554 ft
R4
2 2
R x y
  tan
y
x
q 
t = 4 s
(Cont.): Now we find the velocity after
2 s from the components vx and vy.
2 2
2 (139 ft/s) (16 ft/s)
v  
16 ft
tan
139 ft
q 
v2 = 140 ft/s q2 = 6.560
voy= 80.0 ft/s
160 ft/s
q
0 s 2 s
g = -32 ft/s2
v2
Moving Up
+16 ft/s
v2x = 139 ft/s
v2y = + 16.0 ft/s
(Cont.) Next, we find the velocity after
4 s from the components v4x and v4y.
2 2
4 (139 ft/s) ( 46 ft/s)
v   
16 ft
tan
139 ft
q 
v4 = 146 ft/s q2 = 341.70
voy= 80.0 ft/s
160 ft/s
q
0 s 4 s
g = -32 ft/s2
v4
v4x = 139 ft/s
v4y = - 48.0 ft/s
Example 3: What are maximum height and
range of a projectile if vo = 28 m/s at 300?
ymax occurs when 14 – 9.8t = 0 or t = 1.43 s
Maximum y-coordinate occurs when vy = 0:
voy 28 m/s
vox
30o
ymax
vy = 0
2
14 m/s ( 9.8 m/s ) 0
y oy
v v gt t
     
vox = 24.2 m/s
voy = + 14 m/s
0
(28 m/s)cos30 24.2 m/s
ox
v  
0
(28 m/s)sin30 14 m/s
oy
v  
Example 3(Cont.): What is maximum height
of the projectile if v = 28 m/s at 300?
Maximum y-coordinate occurs when t = 1.43 s:
ymax= 10.0 m
voy 28 m/s
vox
30o
ymax
vy = 0
vox = 24.2 m/s
voy = + 14 m/s
2 2
1 1
2 2
14(1.43) ( 9.8)(1.43)
oy
y v t gt
    
20 m 10 m
y  
Example 3(Cont.): Next, we find the range
of the projectile if v = 28 m/s at 300.
The range xr is defined as horizontal distance
coinciding with the time for vertical return.
voy 28 m/s
vox
30o
vox = 24.2 m/s
voy = + 14 m/s
Range xr
The time of flight is found by setting y = 0:
2
1
2 0
oy
y v t gt
   (continued)
Example 3(Cont.): First we find the time of
flight tr, then the range xr.
voy 28 m/s
vox
30o
vox = 24.2 m/s
voy = + 14 m/s
Range xr
1
2 0;
oy
v gt
 
(Divide by t)
2
1
2 0
oy
y v t gt
  
xr = voxt = (24.2 m/s)(2.86 s); xr = 69.2 m
2
2(14 m/s)
;
-(-9.8 m/
2.86
s )
s
oy
t
v
t
g

 

Example 4: A ball rolls off the top of a
table 1.2 m high and lands on the floor
at a horizontal distance of 2 m. What
was the velocity as it left the table?
1.2 m
2 m
First find t from y equation:
0
½(-9.8)t2 = -(1.2)
t = 0.495 s
Note: x = voxt = 2 m
y = voyt + ½ayt2 = -1.2 m
2
1
2 1.2 m
y gt
  
2( 1.2)
9.8
t



R
Example 4 (Cont.): We now use horizontal
equation to find vox leaving the table top.
Use t = 0.495 s in x equation:
v = 4.04 m/s
1.2 m
2 m
R
Note: x = voxt = 2 m
y = ½gt2 = -1.2 m
2 m
ox
v t 
2 m
(0.495 s) = 2 m;
0.495 s
ox ox
v v 
The ball leaves the
table with a speed:
Example 4 (Cont.): What will be its speed
when it strikes the floor?
vy = 0 + (-9.8 m/s2)(0.495 s)
vy = vy + gt
0
vx = vox = 4.04 m/s
Note:
t = 0.495 s
vy = -4.85 m/s
2 2
(4.04 m/s) ( 4.85 m/s)
v   
4.85 m
tan
4.04 m
q


v4 = 146 ft/s q2 = 309.80
1.2 m
2 m vx
vy
Example 5. Find the “hang time” for the football
whose initial velocity is 25 m/s, 600.
vo =25 m/s
600
y = 0; a = -9.8 m/s2
Time of
flight t
vox = vo cos q
voy = vo sin q
Initial vo:
Vox = (25 m/s) cos 600; vox = 12.5 m/s
Voy = (25 m/s) sin 600; vox = 21.7 m/s
Only vertical parameters affect hang time.
2 2
1 1
2 2
; 0 (21.7) ( 9.8)
oy
y v t at t t
    
vo =25 m/s
600
y = 0; a = -9.8 m/s2
Time of
flight t
vox = vo cos q
voy = vo sin q
Initial vo:
2 2
1 1
2 2
; 0 (21.7) ( 9.8)
oy
y v t at t t
    
4.9 t2 = 21.7 t 4.9 t = 21.7
2
21.7 m/s
4.9 m/s
t  t = 4.42 s
Example 5 (Cont.) Find the “hang time” for the
football whose initial velocity is 25 m/s, 600.
Example 6. A running dog leaps with initial
velocity of 11 m/s at 300. What is the range?
v = 11 m/s
q =300
Draw figure and
find components:
vox = 9.53 m/s
voy = 5.50 m/s vox = 11 cos 300
voy = 11 sin 300
2 2
1 1
2 2
; 0 (5.50) ( 9.8)
oy
y v t at t t
    
To find range, first find t when y = 0; a = -9.8 m/s2
4.9 t2 = 5.50 t
2
5.50 m/s
4.9 m/s
t  t = 1.12 s
4.9 t = 5.50
Example 6 (Cont.) A dog leaps with initial
velocity of 11 m/s at 300. What is the range?
v = 10 m/s
q =310
Range is found
from x-component:
vx = vox = 9.53 m/s
x = vxt; t = 1.12 s vox = 10 cos 310
voy = 10 sin 310
Horizontal velocity is constant: vx = 9.53 m/s
Range: x = 10.7 m
x = (9.53 m/s)(1.12 s) = 10.7 m
Summary for Projectiles:
1. Determine x and y components v0
cos and sin
ox o oy o
v v v v
q q
 
2. The horizontal and vertical components of
displacement at any time t are given by:
2
1
2
ox oy
x v t y v t gt
  
Summary (Continued):
4. Vector displacement or velocity can then
be found from the components if desired:
3. The horizontal and vertical components of
velocity at any time t are given by:
;
x ox y oy
v v v v gt
  
2 2
R x y
  tan
y
x
q 

More Related Content

Similar to Projectile Motion.ppt

Projectile motion
Projectile motionProjectile motion
Projectile motion
gngr0810
 
Physics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion SolutionsPhysics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion Solutions
Darwin Quinsaat
 
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear MotionPhysics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Neil MacIntosh
 
Projectile motion 2
Projectile motion 2Projectile motion 2
Projectile motion 2
mattvijay
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
nur amalina
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptx
AkramMusa5
 

Similar to Projectile Motion.ppt (20)

Projectile motion
Projectile motionProjectile motion
Projectile motion
 
PROJECTILE MOTION
PROJECTILE MOTIONPROJECTILE MOTION
PROJECTILE MOTION
 
Physics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion SolutionsPhysics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion Solutions
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.ppt03 Motion in Two & Three Dimensions.ppt
03 Motion in Two & Three Dimensions.ppt
 
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear MotionPhysics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
 
Kinematics in Two Dimensions.pptx
Kinematics in Two Dimensions.pptxKinematics in Two Dimensions.pptx
Kinematics in Two Dimensions.pptx
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdf
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motion
 
Calc 2.2b
Calc 2.2bCalc 2.2b
Calc 2.2b
 
projectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxprojectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptx
 
Projectile motion 2
Projectile motion 2Projectile motion 2
Projectile motion 2
 
Chapter no. 7 projectile
Chapter no. 7 projectileChapter no. 7 projectile
Chapter no. 7 projectile
 
Ch#4 MOTION IN 2 DIMENSIONS
Ch#4 MOTION IN 2 DIMENSIONSCh#4 MOTION IN 2 DIMENSIONS
Ch#4 MOTION IN 2 DIMENSIONS
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
 
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y  Coordinate.pptxCh 12 (4) Curvilinear Motion X-Y  Coordinate.pptx
Ch 12 (4) Curvilinear Motion X-Y Coordinate.pptx
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptx
 
Kinematics
KinematicsKinematics
Kinematics
 

More from AseelAlhakemy (11)

Thyroid hormones and related drugs..pptx
Thyroid hormones and related drugs..pptxThyroid hormones and related drugs..pptx
Thyroid hormones and related drugs..pptx
 
كيمياء كهربائية.pdf
كيمياء كهربائية.pdfكيمياء كهربائية.pdf
كيمياء كهربائية.pdf
 
قوانين المهن الطبية.pptx
قوانين المهن الطبية.pptxقوانين المهن الطبية.pptx
قوانين المهن الطبية.pptx
 
دستور المهن اطبية.pptx
دستور المهن اطبية.pptxدستور المهن اطبية.pptx
دستور المهن اطبية.pptx
 
التواضع في حياة الطبيب.pptx
التواضع في حياة الطبيب.pptxالتواضع في حياة الطبيب.pptx
التواضع في حياة الطبيب.pptx
 
الأخطاء الطبية.pptx
الأخطاء الطبية.pptxالأخطاء الطبية.pptx
الأخطاء الطبية.pptx
 
Nucleophilic_Aromatic_Substitution_Reaction.pptx
Nucleophilic_Aromatic_Substitution_Reaction.pptxNucleophilic_Aromatic_Substitution_Reaction.pptx
Nucleophilic_Aromatic_Substitution_Reaction.pptx
 
Diarrhea.pptx
Diarrhea.pptxDiarrhea.pptx
Diarrhea.pptx
 
CH2-rev_orig2.pptx
CH2-rev_orig2.pptxCH2-rev_orig2.pptx
CH2-rev_orig2.pptx
 
GIT pharmacology .pptx
GIT pharmacology .pptxGIT pharmacology .pptx
GIT pharmacology .pptx
 
نموذج شرائح .pptx
نموذج شرائح .pptxنموذج شرائح .pptx
نموذج شرائح .pptx
 

Recently uploaded

Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Recently uploaded (20)

Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

Projectile Motion.ppt

  • 1. Chapter 2 – Projectile Motion
  • 2. Objectives: After completing this module, you should be able to:  Describe the motion of a projectile by treating horizontal and vertical components of its position and velocity. • Solve for position, velocity, or time when given initial velocity and launch angle.
  • 3. Projectile Motion A projectile is a particle moving near the Earth’s surface under the influence of its weight only (directed downward). a = g W W W
  • 4. Vertical and Horizontal Motion Simultaneously dropping yellow ball and projecting red ball horizontally. Click right to observe motion of each ball.
  • 5. Vertical and Horizontal Motion Simultaneously dropping a yellow ball and projecting a red ball horizontally. Why do they strike the ground at the same time? Once motion has begun, the downward weight is the only force on each ball. W W
  • 6. Ball Projected Horizontally and Another Dropped at Same Time: 0 s vox Vertical Motion is the Same for Each Ball 1 s 2 s 3 s vy vx vx vx vy vy vy vy vy
  • 7. Observe Motion of Each Ball 0 s vox Vertical Motion is the Same for Each Ball 3 s 2 s 1 s
  • 8. Consider Horizontal and Vertical Motion Separately: Compare Displacements and Velocities 0 s 0 s 1 s vox 2 s 3 s 1 s vy 2 s vx vy 3 s vx vy Horizontal velocity doesn’t change. Vertical velocity just like free fall. vx
  • 9. Displacement Calculations for Horizontal Projection: For any constant acceleration: Horizontal displacement: ox x v t  Vertical displacement: 2 1 2 y gt  2 1 2 o x v t at   For the special case of horizontal projection: 0; 0; x y oy ox o a a g v v v    
  • 10. Velocity Calculations for Horizontal Projection (cont.): For any constant acceleration: Horizontal velocity: x ox v v  Vertical velocity: y o v v gt   f o v v at   For the special case of a projectile: 0; 0; x y oy ox o a a g v v v    
  • 11. Example 1: A baseball is hit with a horizontal speed of 25 m/s. What is its position and velocity after 2 s? First find horizontal and vertical displacements: (25 m/s)(2 s) ox x v t   2 2 2 1 1 2 2 ( 9.8 m/s )(2 s) y gt    x = 50.0 m y = -19.6 m 25 m/s x y -19.6 m +50 m
  • 12. Example 1 Cont.): What are the velocity components after 2 s? 25 m/s Find horizontal and vertical velocity after 2 s: (25 m/s) x ox v v   2 0 ( 9.8 m/s )(2 s) y oy v v at      vx = 25.0 m/s vy = -19.6 m/s vx vy v0x = 25 m/s v0y = 0
  • 13. Consider Projectile at an Angle: A red ball is projected at an angle q. At the same time, a yellow ball is thrown vertically upward and a green ball rolls horizontally (no friction). Note vertical and horizontal motions of balls q voy vox vo vx = vox = constant y oy v v at   2 9.8 m/s a  
  • 14. Displacement Calculations For General Projection: The components of displacement at time t are: 2 1 2 ox x x v t a t   For projectiles: 0; ; 0; x y oy ox o a a g v v v     2 1 2 oy y y v t a t   Thus, the displacement components x and y for projectiles are: 2 1 2 ox oy x v t y v t gt   
  • 15. Velocity Calculations For General Projection: The components of velocity at time t are: x ox x v v a t   For projectiles: 0; ; 0; x y oy ox o a a g v v v     y oy y v v a t   Thus, the velocity components vx and vy for projectiles are: constant x ox y oy v v v v gt   
  • 16. Problem-Solving Strategy: 1. Resolve initial velocity vo into components: vo vox voy q cos ; sin ox o oy o v v v v q q   2. Find components of final position and velocity: 2 1 2 ox oy x v t y v t gt    Displacement: Velocity: 0 2 x x y oy v v v v gt   
  • 17. Problem Strategy (Cont.): 3. The final position and velocity can be found from the components. R x y q 4. Use correct signs - remember g is negative or positive depending on your initial choice. 2 2 ; tan y R x y x q    2 2 ; tan y x y x v v v v v q    vo vox voy q
  • 18. Example 2: A ball has an initial velocity of 160 ft/s at an angle of 30o with horizontal. Find its position and velocity after 2 s and after 4 s. voy 160 ft/s vox 30o Since vx is constant, the horizontal displacements after 2 and 4 seconds are: (139 ft/s)(2 s) ox x v t   x = 277 ft (139 ft/s)(4 s) ox x v t   x = 554 ft 0 (160 ft/s)cos30 139 ft/s ox v   0 (160 ft/s)sin30 80.0 ft/s oy v  
  • 19. Note: We know ONLY the horizontal location after 2 and 4 s. We don’t know whether it is on its way up or on its way down. x2 = 277 ft x4 = 554 ft Example 2: (Continued) voy 160 ft/s vox 30o 277 ft 554 ft 2 s 4 s
  • 20. Example 2 (Cont.): Next we find the vertical components of position after 2 s and after 4 s. voy= 80 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 y2 y4 2 2 2 1 1 2 2 (80 ft/s) ( 32 ft/s ) oy y v t gt t t      The vertical displacement as function of time: 2 80 16 y t t   Observe consistent units.
  • 21. (Cont.) Signs of y will indicate location of displacement (above + or below – origin). voy= 80 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 y2 y4 Vertical position: 2 80 16 y t t   2 2 80(2 s) 16(2 s) y   2 4 80(4 s) 16(4 s) y   2 96 ft y  4 16 ft y  96 ft 16 ft Each above origin (+)
  • 22. (Cont.): Next we find horizontal and vertical components of velocity after 2 and 4 s. Since vx is constant, vx = 139 ft/s at all times. Vertical velocity is same as if vertically projected: 2 ; where g 32 ft/s y oy v v gt     At any time t: (32 ft/s) y oy v v t   139 ft/s x v  voy 160 ft/s vox 30o 0 (160 ft/s)cos30 139 ft/s ox v   0 (160 ft/s)sin30 80.0 ft/s oy v  
  • 23. v2y = 16.0 ft/s v4y = -48.0 ft/s Example 2: (Continued) vy= 80.0 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 v2 v4 At any time t: (32 ft/s) y oy v v t   139 ft/s x v  80 ft/s (32 ft/s)(2 s) y v   80 ft/s (32 ft/s)(4 s) y v  
  • 24. At 2 s: v2x = 139 ft/s; v2y = + 16.0 ft/s Example 2: (Continued) vy= 80.0 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 v2 v4 Moving Up +16 ft/s Moving down -48 ft/s The signs of vy indicate whether motion is up (+) or down (-) at any time t. At 4 s: v4x = 139 ft/s; v4y = - 48.0 ft/s
  • 25. (Cont.): The displacement R2,q is found from the x2 and y2 component displacements. q 0 s 2 s 4 s y2 = 96 ft x2= 277 ft R2 2 2 R x y   tan y x q  2 2 (277 ft) (96 ft) R   96 ft tan 277 ft q  R2 = 293 ft q2 = 19.10 t = 2 s
  • 26. (Cont.): Similarly, displacement R4,q is found from the x4 and y4 component displacements. 2 2 (554 ft) (64 ft) R   64 ft tan 554 ft q  R4 = 558 ft q4 = 6.590 q 0 s 4 s y4 = 64 ft x4= 554 ft R4 2 2 R x y   tan y x q  t = 4 s
  • 27. (Cont.): Now we find the velocity after 2 s from the components vx and vy. 2 2 2 (139 ft/s) (16 ft/s) v   16 ft tan 139 ft q  v2 = 140 ft/s q2 = 6.560 voy= 80.0 ft/s 160 ft/s q 0 s 2 s g = -32 ft/s2 v2 Moving Up +16 ft/s v2x = 139 ft/s v2y = + 16.0 ft/s
  • 28. (Cont.) Next, we find the velocity after 4 s from the components v4x and v4y. 2 2 4 (139 ft/s) ( 46 ft/s) v    16 ft tan 139 ft q  v4 = 146 ft/s q2 = 341.70 voy= 80.0 ft/s 160 ft/s q 0 s 4 s g = -32 ft/s2 v4 v4x = 139 ft/s v4y = - 48.0 ft/s
  • 29. Example 3: What are maximum height and range of a projectile if vo = 28 m/s at 300? ymax occurs when 14 – 9.8t = 0 or t = 1.43 s Maximum y-coordinate occurs when vy = 0: voy 28 m/s vox 30o ymax vy = 0 2 14 m/s ( 9.8 m/s ) 0 y oy v v gt t       vox = 24.2 m/s voy = + 14 m/s 0 (28 m/s)cos30 24.2 m/s ox v   0 (28 m/s)sin30 14 m/s oy v  
  • 30. Example 3(Cont.): What is maximum height of the projectile if v = 28 m/s at 300? Maximum y-coordinate occurs when t = 1.43 s: ymax= 10.0 m voy 28 m/s vox 30o ymax vy = 0 vox = 24.2 m/s voy = + 14 m/s 2 2 1 1 2 2 14(1.43) ( 9.8)(1.43) oy y v t gt      20 m 10 m y  
  • 31. Example 3(Cont.): Next, we find the range of the projectile if v = 28 m/s at 300. The range xr is defined as horizontal distance coinciding with the time for vertical return. voy 28 m/s vox 30o vox = 24.2 m/s voy = + 14 m/s Range xr The time of flight is found by setting y = 0: 2 1 2 0 oy y v t gt    (continued)
  • 32. Example 3(Cont.): First we find the time of flight tr, then the range xr. voy 28 m/s vox 30o vox = 24.2 m/s voy = + 14 m/s Range xr 1 2 0; oy v gt   (Divide by t) 2 1 2 0 oy y v t gt    xr = voxt = (24.2 m/s)(2.86 s); xr = 69.2 m 2 2(14 m/s) ; -(-9.8 m/ 2.86 s ) s oy t v t g    
  • 33. Example 4: A ball rolls off the top of a table 1.2 m high and lands on the floor at a horizontal distance of 2 m. What was the velocity as it left the table? 1.2 m 2 m First find t from y equation: 0 ½(-9.8)t2 = -(1.2) t = 0.495 s Note: x = voxt = 2 m y = voyt + ½ayt2 = -1.2 m 2 1 2 1.2 m y gt    2( 1.2) 9.8 t    R
  • 34. Example 4 (Cont.): We now use horizontal equation to find vox leaving the table top. Use t = 0.495 s in x equation: v = 4.04 m/s 1.2 m 2 m R Note: x = voxt = 2 m y = ½gt2 = -1.2 m 2 m ox v t  2 m (0.495 s) = 2 m; 0.495 s ox ox v v  The ball leaves the table with a speed:
  • 35. Example 4 (Cont.): What will be its speed when it strikes the floor? vy = 0 + (-9.8 m/s2)(0.495 s) vy = vy + gt 0 vx = vox = 4.04 m/s Note: t = 0.495 s vy = -4.85 m/s 2 2 (4.04 m/s) ( 4.85 m/s) v    4.85 m tan 4.04 m q   v4 = 146 ft/s q2 = 309.80 1.2 m 2 m vx vy
  • 36. Example 5. Find the “hang time” for the football whose initial velocity is 25 m/s, 600. vo =25 m/s 600 y = 0; a = -9.8 m/s2 Time of flight t vox = vo cos q voy = vo sin q Initial vo: Vox = (25 m/s) cos 600; vox = 12.5 m/s Voy = (25 m/s) sin 600; vox = 21.7 m/s Only vertical parameters affect hang time. 2 2 1 1 2 2 ; 0 (21.7) ( 9.8) oy y v t at t t     
  • 37. vo =25 m/s 600 y = 0; a = -9.8 m/s2 Time of flight t vox = vo cos q voy = vo sin q Initial vo: 2 2 1 1 2 2 ; 0 (21.7) ( 9.8) oy y v t at t t      4.9 t2 = 21.7 t 4.9 t = 21.7 2 21.7 m/s 4.9 m/s t  t = 4.42 s Example 5 (Cont.) Find the “hang time” for the football whose initial velocity is 25 m/s, 600.
  • 38. Example 6. A running dog leaps with initial velocity of 11 m/s at 300. What is the range? v = 11 m/s q =300 Draw figure and find components: vox = 9.53 m/s voy = 5.50 m/s vox = 11 cos 300 voy = 11 sin 300 2 2 1 1 2 2 ; 0 (5.50) ( 9.8) oy y v t at t t      To find range, first find t when y = 0; a = -9.8 m/s2 4.9 t2 = 5.50 t 2 5.50 m/s 4.9 m/s t  t = 1.12 s 4.9 t = 5.50
  • 39. Example 6 (Cont.) A dog leaps with initial velocity of 11 m/s at 300. What is the range? v = 10 m/s q =310 Range is found from x-component: vx = vox = 9.53 m/s x = vxt; t = 1.12 s vox = 10 cos 310 voy = 10 sin 310 Horizontal velocity is constant: vx = 9.53 m/s Range: x = 10.7 m x = (9.53 m/s)(1.12 s) = 10.7 m
  • 40. Summary for Projectiles: 1. Determine x and y components v0 cos and sin ox o oy o v v v v q q   2. The horizontal and vertical components of displacement at any time t are given by: 2 1 2 ox oy x v t y v t gt   
  • 41. Summary (Continued): 4. Vector displacement or velocity can then be found from the components if desired: 3. The horizontal and vertical components of velocity at any time t are given by: ; x ox y oy v v v v gt    2 2 R x y   tan y x q 