Chapter 2 – Projectile Motion
Objectives: After completing this
module, you should be able to:
 Describe the motion of a projectile by
treating horizontal and vertical components
of its position and velocity.
• Solve for position, velocity, or time when
given initial velocity and launch angle.
Projectile Motion
A projectile is a particle moving near the
Earth’s surface under the influence of its
weight only (directed downward).
a = g
W
W
W
Vertical and Horizontal Motion
Simultaneously dropping
yellow ball and projecting
red ball horizontally.
Click right to observe
motion of each ball.
Vertical and Horizontal Motion
Simultaneously dropping a
yellow ball and projecting a
red ball horizontally.
Why do they strike the
ground at the same time?
Once motion has begun, the downward
weight is the only force on each ball.
W W
Ball Projected Horizontally and
Another Dropped at Same Time:
0 s
vox
Vertical Motion is the Same for Each Ball
1 s
2 s
3 s
vy
vx
vx
vx
vy
vy
vy
vy
vy
Observe Motion of Each Ball
0 s
vox
Vertical Motion is the Same for Each Ball
3 s
2 s
1 s
Consider Horizontal and
Vertical Motion Separately:
Compare Displacements and Velocities
0 s
0 s
1 s
vox
2 s 3 s
1 s
vy
2 s
vx
vy
3 s
vx
vy
Horizontal velocity
doesn’t change.
Vertical velocity just
like free fall.
vx
Displacement Calculations for
Horizontal Projection:
For any constant acceleration:
Horizontal displacement: ox
x v t

Vertical displacement:
2
1
2
y gt

2
1
2
o
x v t at
 
For the special case of horizontal projection:
0; 0;
x y oy ox o
a a g v v v
   
Velocity Calculations for Horizontal
Projection (cont.):
For any constant acceleration:
Horizontal velocity: x ox
v v

Vertical velocity: y o
v v gt
 
f o
v v at
 
For the special case of a projectile:
0; 0;
x y oy ox o
a a g v v v
   
Example 1: A baseball is hit with a
horizontal speed of 25 m/s. What is its
position and velocity after 2 s?
First find horizontal and vertical displacements:
(25 m/s)(2 s)
ox
x v t
 
2 2 2
1 1
2 2 ( 9.8 m/s )(2 s)
y gt
  
x = 50.0 m
y = -19.6 m
25 m/s
x
y
-19.6 m
+50 m
Example 1 Cont.): What are the velocity
components after 2 s?
25 m/s
Find horizontal and vertical velocity after 2 s:
(25 m/s)
x ox
v v
 
2
0 ( 9.8 m/s )(2 s)
y oy
v v at
    
vx = 25.0 m/s
vy = -19.6 m/s
vx
vy
v0x = 25 m/s
v0y = 0
Consider Projectile at an Angle:
A red ball is projected at an angle q. At the same
time, a yellow ball is thrown vertically upward
and a green ball rolls horizontally (no friction).
Note vertical and horizontal motions of balls
q
voy
vox
vo
vx = vox = constant
y oy
v v at
 
2
9.8 m/s
a  
Displacement Calculations For
General Projection:
The components of displacement at time t are:
2
1
2
ox x
x v t a t
 
For projectiles: 0; ; 0;
x y oy ox o
a a g v v v
   
2
1
2
oy y
y v t a t
 
Thus, the displacement
components x and y for
projectiles are:
2
1
2
ox
oy
x v t
y v t gt

 
Velocity Calculations For
General Projection:
The components of velocity at time t are:
x ox x
v v a t
 
For projectiles: 0; ; 0;
x y oy ox o
a a g v v v
   
y oy y
v v a t
 
Thus, the velocity
components vx and vy
for projectiles are:
constant
x ox
y oy
v v
v v gt

 
Problem-Solving Strategy:
1. Resolve initial velocity vo into components:
vo
vox
voy
q cos ; sin
ox o oy o
v v v v
q q
 
2. Find components of final position and velocity:
2
1
2
ox
oy
x v t
y v t gt

 
Displacement: Velocity:
0
2
x x
y oy
v v
v v gt

 
Problem Strategy (Cont.):
3. The final position and velocity can be found
from the components.
R
x
y
q
4. Use correct signs - remember g is negative or
positive depending on your initial choice.
2 2
; tan
y
R x y
x
q
  
2 2
; tan
y
x y
x
v
v v v
v
q
  
vo
vox
voy
q
Example 2: A ball has an initial velocity of
160 ft/s at an angle of 30o with horizontal.
Find its position and velocity after 2 s and
after 4 s.
voy 160 ft/s
vox
30o
Since vx is constant, the horizontal displacements
after 2 and 4 seconds are:
(139 ft/s)(2 s)
ox
x v t
  x = 277 ft
(139 ft/s)(4 s)
ox
x v t
  x = 554 ft
0
(160 ft/s)cos30 139 ft/s
ox
v  
0
(160 ft/s)sin30 80.0 ft/s
oy
v  
Note: We know ONLY the horizontal location
after 2 and 4 s. We don’t know whether it is on
its way up or on its way down.
x2 = 277 ft x4 = 554 ft
Example 2: (Continued)
voy 160 ft/s
vox
30o
277 ft 554 ft
2 s 4 s
Example 2 (Cont.): Next we find the vertical
components of position after 2 s and after 4 s.
voy= 80 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
y2
y4
2 2 2
1 1
2 2
(80 ft/s) ( 32 ft/s )
oy
y v t gt t t
    
The vertical displacement as function of time:
2
80 16
y t t
  Observe consistent units.
(Cont.) Signs of y will indicate location of
displacement (above + or below – origin).
voy= 80 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
y2
y4
Vertical position:
2
80 16
y t t
 
2
2 80(2 s) 16(2 s)
y   2
4 80(4 s) 16(4 s)
y  
2 96 ft
y  4 16 ft
y 
96 ft
16 ft
Each above origin (+)
(Cont.): Next we find horizontal and vertical
components of velocity after 2 and 4 s.
Since vx is constant, vx = 139 ft/s at all times.
Vertical velocity is same as if vertically projected:
2
; where g 32 ft/s
y oy
v v gt
   
At any
time t:
(32 ft/s)
y oy
v v t
 
139 ft/s
x
v 
voy 160 ft/s
vox
30o
0
(160 ft/s)cos30 139 ft/s
ox
v  
0
(160 ft/s)sin30 80.0 ft/s
oy
v  
v2y = 16.0 ft/s
v4y = -48.0 ft/s
Example 2: (Continued)
vy= 80.0 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
v2
v4
At any
time t:
(32 ft/s)
y oy
v v t
 
139 ft/s
x
v 
80 ft/s (32 ft/s)(2 s)
y
v  
80 ft/s (32 ft/s)(4 s)
y
v  
At 2 s: v2x = 139 ft/s; v2y = + 16.0 ft/s
Example 2: (Continued)
vy= 80.0 ft/s
160 ft/s
q
0 s 3 s
2 s
1 s 4 s
g = -32 ft/s2
v2
v4
Moving Up
+16 ft/s
Moving down
-48 ft/s
The signs of vy indicate whether motion is
up (+) or down (-) at any time t.
At 4 s: v4x = 139 ft/s; v4y = - 48.0 ft/s
(Cont.): The displacement R2,q is found from
the x2 and y2 component displacements.
q
0 s 2 s 4 s
y2 = 96 ft
x2= 277 ft
R2
2 2
R x y
  tan
y
x
q 
2 2
(277 ft) (96 ft)
R  
96 ft
tan
277 ft
q 
R2 = 293 ft q2 = 19.10
t = 2 s
(Cont.): Similarly, displacement R4,q is found
from the x4 and y4 component displacements.
2 2
(554 ft) (64 ft)
R  
64 ft
tan
554 ft
q 
R4 = 558 ft q4 = 6.590
q
0 s 4 s
y4 = 64 ft
x4= 554 ft
R4
2 2
R x y
  tan
y
x
q 
t = 4 s
(Cont.): Now we find the velocity after
2 s from the components vx and vy.
2 2
2 (139 ft/s) (16 ft/s)
v  
16 ft
tan
139 ft
q 
v2 = 140 ft/s q2 = 6.560
voy= 80.0 ft/s
160 ft/s
q
0 s 2 s
g = -32 ft/s2
v2
Moving Up
+16 ft/s
v2x = 139 ft/s
v2y = + 16.0 ft/s
(Cont.) Next, we find the velocity after
4 s from the components v4x and v4y.
2 2
4 (139 ft/s) ( 46 ft/s)
v   
16 ft
tan
139 ft
q 
v4 = 146 ft/s q2 = 341.70
voy= 80.0 ft/s
160 ft/s
q
0 s 4 s
g = -32 ft/s2
v4
v4x = 139 ft/s
v4y = - 48.0 ft/s
Example 3: What are maximum height and
range of a projectile if vo = 28 m/s at 300?
ymax occurs when 14 – 9.8t = 0 or t = 1.43 s
Maximum y-coordinate occurs when vy = 0:
voy 28 m/s
vox
30o
ymax
vy = 0
2
14 m/s ( 9.8 m/s ) 0
y oy
v v gt t
     
vox = 24.2 m/s
voy = + 14 m/s
0
(28 m/s)cos30 24.2 m/s
ox
v  
0
(28 m/s)sin30 14 m/s
oy
v  
Example 3(Cont.): What is maximum height
of the projectile if v = 28 m/s at 300?
Maximum y-coordinate occurs when t = 1.43 s:
ymax= 10.0 m
voy 28 m/s
vox
30o
ymax
vy = 0
vox = 24.2 m/s
voy = + 14 m/s
2 2
1 1
2 2
14(1.43) ( 9.8)(1.43)
oy
y v t gt
    
20 m 10 m
y  
Example 3(Cont.): Next, we find the range
of the projectile if v = 28 m/s at 300.
The range xr is defined as horizontal distance
coinciding with the time for vertical return.
voy 28 m/s
vox
30o
vox = 24.2 m/s
voy = + 14 m/s
Range xr
The time of flight is found by setting y = 0:
2
1
2 0
oy
y v t gt
   (continued)
Example 3(Cont.): First we find the time of
flight tr, then the range xr.
voy 28 m/s
vox
30o
vox = 24.2 m/s
voy = + 14 m/s
Range xr
1
2 0;
oy
v gt
 
(Divide by t)
2
1
2 0
oy
y v t gt
  
xr = voxt = (24.2 m/s)(2.86 s); xr = 69.2 m
2
2(14 m/s)
;
-(-9.8 m/
2.86
s )
s
oy
t
v
t
g

 

Example 4: A ball rolls off the top of a
table 1.2 m high and lands on the floor
at a horizontal distance of 2 m. What
was the velocity as it left the table?
1.2 m
2 m
First find t from y equation:
0
½(-9.8)t2 = -(1.2)
t = 0.495 s
Note: x = voxt = 2 m
y = voyt + ½ayt2 = -1.2 m
2
1
2 1.2 m
y gt
  
2( 1.2)
9.8
t



R
Example 4 (Cont.): We now use horizontal
equation to find vox leaving the table top.
Use t = 0.495 s in x equation:
v = 4.04 m/s
1.2 m
2 m
R
Note: x = voxt = 2 m
y = ½gt2 = -1.2 m
2 m
ox
v t 
2 m
(0.495 s) = 2 m;
0.495 s
ox ox
v v 
The ball leaves the
table with a speed:
Example 4 (Cont.): What will be its speed
when it strikes the floor?
vy = 0 + (-9.8 m/s2)(0.495 s)
vy = vy + gt
0
vx = vox = 4.04 m/s
Note:
t = 0.495 s
vy = -4.85 m/s
2 2
(4.04 m/s) ( 4.85 m/s)
v   
4.85 m
tan
4.04 m
q


v4 = 146 ft/s q2 = 309.80
1.2 m
2 m vx
vy
Example 5. Find the “hang time” for the football
whose initial velocity is 25 m/s, 600.
vo =25 m/s
600
y = 0; a = -9.8 m/s2
Time of
flight t
vox = vo cos q
voy = vo sin q
Initial vo:
Vox = (25 m/s) cos 600; vox = 12.5 m/s
Voy = (25 m/s) sin 600; vox = 21.7 m/s
Only vertical parameters affect hang time.
2 2
1 1
2 2
; 0 (21.7) ( 9.8)
oy
y v t at t t
    
vo =25 m/s
600
y = 0; a = -9.8 m/s2
Time of
flight t
vox = vo cos q
voy = vo sin q
Initial vo:
2 2
1 1
2 2
; 0 (21.7) ( 9.8)
oy
y v t at t t
    
4.9 t2 = 21.7 t 4.9 t = 21.7
2
21.7 m/s
4.9 m/s
t  t = 4.42 s
Example 5 (Cont.) Find the “hang time” for the
football whose initial velocity is 25 m/s, 600.
Example 6. A running dog leaps with initial
velocity of 11 m/s at 300. What is the range?
v = 11 m/s
q =300
Draw figure and
find components:
vox = 9.53 m/s
voy = 5.50 m/s vox = 11 cos 300
voy = 11 sin 300
2 2
1 1
2 2
; 0 (5.50) ( 9.8)
oy
y v t at t t
    
To find range, first find t when y = 0; a = -9.8 m/s2
4.9 t2 = 5.50 t
2
5.50 m/s
4.9 m/s
t  t = 1.12 s
4.9 t = 5.50
Example 6 (Cont.) A dog leaps with initial
velocity of 11 m/s at 300. What is the range?
v = 10 m/s
q =310
Range is found
from x-component:
vx = vox = 9.53 m/s
x = vxt; t = 1.12 s vox = 10 cos 310
voy = 10 sin 310
Horizontal velocity is constant: vx = 9.53 m/s
Range: x = 10.7 m
x = (9.53 m/s)(1.12 s) = 10.7 m
Summary for Projectiles:
1. Determine x and y components v0
cos and sin
ox o oy o
v v v v
q q
 
2. The horizontal and vertical components of
displacement at any time t are given by:
2
1
2
ox oy
x v t y v t gt
  
Summary (Continued):
4. Vector displacement or velocity can then
be found from the components if desired:
3. The horizontal and vertical components of
velocity at any time t are given by:
;
x ox y oy
v v v v gt
  
2 2
R x y
  tan
y
x
q 

Projectile Motion.ppt

  • 1.
    Chapter 2 –Projectile Motion
  • 2.
    Objectives: After completingthis module, you should be able to:  Describe the motion of a projectile by treating horizontal and vertical components of its position and velocity. • Solve for position, velocity, or time when given initial velocity and launch angle.
  • 3.
    Projectile Motion A projectileis a particle moving near the Earth’s surface under the influence of its weight only (directed downward). a = g W W W
  • 4.
    Vertical and HorizontalMotion Simultaneously dropping yellow ball and projecting red ball horizontally. Click right to observe motion of each ball.
  • 5.
    Vertical and HorizontalMotion Simultaneously dropping a yellow ball and projecting a red ball horizontally. Why do they strike the ground at the same time? Once motion has begun, the downward weight is the only force on each ball. W W
  • 6.
    Ball Projected Horizontallyand Another Dropped at Same Time: 0 s vox Vertical Motion is the Same for Each Ball 1 s 2 s 3 s vy vx vx vx vy vy vy vy vy
  • 7.
    Observe Motion ofEach Ball 0 s vox Vertical Motion is the Same for Each Ball 3 s 2 s 1 s
  • 8.
    Consider Horizontal and VerticalMotion Separately: Compare Displacements and Velocities 0 s 0 s 1 s vox 2 s 3 s 1 s vy 2 s vx vy 3 s vx vy Horizontal velocity doesn’t change. Vertical velocity just like free fall. vx
  • 9.
    Displacement Calculations for HorizontalProjection: For any constant acceleration: Horizontal displacement: ox x v t  Vertical displacement: 2 1 2 y gt  2 1 2 o x v t at   For the special case of horizontal projection: 0; 0; x y oy ox o a a g v v v    
  • 10.
    Velocity Calculations forHorizontal Projection (cont.): For any constant acceleration: Horizontal velocity: x ox v v  Vertical velocity: y o v v gt   f o v v at   For the special case of a projectile: 0; 0; x y oy ox o a a g v v v    
  • 11.
    Example 1: Abaseball is hit with a horizontal speed of 25 m/s. What is its position and velocity after 2 s? First find horizontal and vertical displacements: (25 m/s)(2 s) ox x v t   2 2 2 1 1 2 2 ( 9.8 m/s )(2 s) y gt    x = 50.0 m y = -19.6 m 25 m/s x y -19.6 m +50 m
  • 12.
    Example 1 Cont.):What are the velocity components after 2 s? 25 m/s Find horizontal and vertical velocity after 2 s: (25 m/s) x ox v v   2 0 ( 9.8 m/s )(2 s) y oy v v at      vx = 25.0 m/s vy = -19.6 m/s vx vy v0x = 25 m/s v0y = 0
  • 13.
    Consider Projectile atan Angle: A red ball is projected at an angle q. At the same time, a yellow ball is thrown vertically upward and a green ball rolls horizontally (no friction). Note vertical and horizontal motions of balls q voy vox vo vx = vox = constant y oy v v at   2 9.8 m/s a  
  • 14.
    Displacement Calculations For GeneralProjection: The components of displacement at time t are: 2 1 2 ox x x v t a t   For projectiles: 0; ; 0; x y oy ox o a a g v v v     2 1 2 oy y y v t a t   Thus, the displacement components x and y for projectiles are: 2 1 2 ox oy x v t y v t gt   
  • 15.
    Velocity Calculations For GeneralProjection: The components of velocity at time t are: x ox x v v a t   For projectiles: 0; ; 0; x y oy ox o a a g v v v     y oy y v v a t   Thus, the velocity components vx and vy for projectiles are: constant x ox y oy v v v v gt   
  • 16.
    Problem-Solving Strategy: 1. Resolveinitial velocity vo into components: vo vox voy q cos ; sin ox o oy o v v v v q q   2. Find components of final position and velocity: 2 1 2 ox oy x v t y v t gt    Displacement: Velocity: 0 2 x x y oy v v v v gt   
  • 17.
    Problem Strategy (Cont.): 3.The final position and velocity can be found from the components. R x y q 4. Use correct signs - remember g is negative or positive depending on your initial choice. 2 2 ; tan y R x y x q    2 2 ; tan y x y x v v v v v q    vo vox voy q
  • 18.
    Example 2: Aball has an initial velocity of 160 ft/s at an angle of 30o with horizontal. Find its position and velocity after 2 s and after 4 s. voy 160 ft/s vox 30o Since vx is constant, the horizontal displacements after 2 and 4 seconds are: (139 ft/s)(2 s) ox x v t   x = 277 ft (139 ft/s)(4 s) ox x v t   x = 554 ft 0 (160 ft/s)cos30 139 ft/s ox v   0 (160 ft/s)sin30 80.0 ft/s oy v  
  • 19.
    Note: We knowONLY the horizontal location after 2 and 4 s. We don’t know whether it is on its way up or on its way down. x2 = 277 ft x4 = 554 ft Example 2: (Continued) voy 160 ft/s vox 30o 277 ft 554 ft 2 s 4 s
  • 20.
    Example 2 (Cont.):Next we find the vertical components of position after 2 s and after 4 s. voy= 80 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 y2 y4 2 2 2 1 1 2 2 (80 ft/s) ( 32 ft/s ) oy y v t gt t t      The vertical displacement as function of time: 2 80 16 y t t   Observe consistent units.
  • 21.
    (Cont.) Signs ofy will indicate location of displacement (above + or below – origin). voy= 80 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 y2 y4 Vertical position: 2 80 16 y t t   2 2 80(2 s) 16(2 s) y   2 4 80(4 s) 16(4 s) y   2 96 ft y  4 16 ft y  96 ft 16 ft Each above origin (+)
  • 22.
    (Cont.): Next wefind horizontal and vertical components of velocity after 2 and 4 s. Since vx is constant, vx = 139 ft/s at all times. Vertical velocity is same as if vertically projected: 2 ; where g 32 ft/s y oy v v gt     At any time t: (32 ft/s) y oy v v t   139 ft/s x v  voy 160 ft/s vox 30o 0 (160 ft/s)cos30 139 ft/s ox v   0 (160 ft/s)sin30 80.0 ft/s oy v  
  • 23.
    v2y = 16.0ft/s v4y = -48.0 ft/s Example 2: (Continued) vy= 80.0 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 v2 v4 At any time t: (32 ft/s) y oy v v t   139 ft/s x v  80 ft/s (32 ft/s)(2 s) y v   80 ft/s (32 ft/s)(4 s) y v  
  • 24.
    At 2 s:v2x = 139 ft/s; v2y = + 16.0 ft/s Example 2: (Continued) vy= 80.0 ft/s 160 ft/s q 0 s 3 s 2 s 1 s 4 s g = -32 ft/s2 v2 v4 Moving Up +16 ft/s Moving down -48 ft/s The signs of vy indicate whether motion is up (+) or down (-) at any time t. At 4 s: v4x = 139 ft/s; v4y = - 48.0 ft/s
  • 25.
    (Cont.): The displacementR2,q is found from the x2 and y2 component displacements. q 0 s 2 s 4 s y2 = 96 ft x2= 277 ft R2 2 2 R x y   tan y x q  2 2 (277 ft) (96 ft) R   96 ft tan 277 ft q  R2 = 293 ft q2 = 19.10 t = 2 s
  • 26.
    (Cont.): Similarly, displacementR4,q is found from the x4 and y4 component displacements. 2 2 (554 ft) (64 ft) R   64 ft tan 554 ft q  R4 = 558 ft q4 = 6.590 q 0 s 4 s y4 = 64 ft x4= 554 ft R4 2 2 R x y   tan y x q  t = 4 s
  • 27.
    (Cont.): Now wefind the velocity after 2 s from the components vx and vy. 2 2 2 (139 ft/s) (16 ft/s) v   16 ft tan 139 ft q  v2 = 140 ft/s q2 = 6.560 voy= 80.0 ft/s 160 ft/s q 0 s 2 s g = -32 ft/s2 v2 Moving Up +16 ft/s v2x = 139 ft/s v2y = + 16.0 ft/s
  • 28.
    (Cont.) Next, wefind the velocity after 4 s from the components v4x and v4y. 2 2 4 (139 ft/s) ( 46 ft/s) v    16 ft tan 139 ft q  v4 = 146 ft/s q2 = 341.70 voy= 80.0 ft/s 160 ft/s q 0 s 4 s g = -32 ft/s2 v4 v4x = 139 ft/s v4y = - 48.0 ft/s
  • 29.
    Example 3: Whatare maximum height and range of a projectile if vo = 28 m/s at 300? ymax occurs when 14 – 9.8t = 0 or t = 1.43 s Maximum y-coordinate occurs when vy = 0: voy 28 m/s vox 30o ymax vy = 0 2 14 m/s ( 9.8 m/s ) 0 y oy v v gt t       vox = 24.2 m/s voy = + 14 m/s 0 (28 m/s)cos30 24.2 m/s ox v   0 (28 m/s)sin30 14 m/s oy v  
  • 30.
    Example 3(Cont.): Whatis maximum height of the projectile if v = 28 m/s at 300? Maximum y-coordinate occurs when t = 1.43 s: ymax= 10.0 m voy 28 m/s vox 30o ymax vy = 0 vox = 24.2 m/s voy = + 14 m/s 2 2 1 1 2 2 14(1.43) ( 9.8)(1.43) oy y v t gt      20 m 10 m y  
  • 31.
    Example 3(Cont.): Next,we find the range of the projectile if v = 28 m/s at 300. The range xr is defined as horizontal distance coinciding with the time for vertical return. voy 28 m/s vox 30o vox = 24.2 m/s voy = + 14 m/s Range xr The time of flight is found by setting y = 0: 2 1 2 0 oy y v t gt    (continued)
  • 32.
    Example 3(Cont.): Firstwe find the time of flight tr, then the range xr. voy 28 m/s vox 30o vox = 24.2 m/s voy = + 14 m/s Range xr 1 2 0; oy v gt   (Divide by t) 2 1 2 0 oy y v t gt    xr = voxt = (24.2 m/s)(2.86 s); xr = 69.2 m 2 2(14 m/s) ; -(-9.8 m/ 2.86 s ) s oy t v t g    
  • 33.
    Example 4: Aball rolls off the top of a table 1.2 m high and lands on the floor at a horizontal distance of 2 m. What was the velocity as it left the table? 1.2 m 2 m First find t from y equation: 0 ½(-9.8)t2 = -(1.2) t = 0.495 s Note: x = voxt = 2 m y = voyt + ½ayt2 = -1.2 m 2 1 2 1.2 m y gt    2( 1.2) 9.8 t    R
  • 34.
    Example 4 (Cont.):We now use horizontal equation to find vox leaving the table top. Use t = 0.495 s in x equation: v = 4.04 m/s 1.2 m 2 m R Note: x = voxt = 2 m y = ½gt2 = -1.2 m 2 m ox v t  2 m (0.495 s) = 2 m; 0.495 s ox ox v v  The ball leaves the table with a speed:
  • 35.
    Example 4 (Cont.):What will be its speed when it strikes the floor? vy = 0 + (-9.8 m/s2)(0.495 s) vy = vy + gt 0 vx = vox = 4.04 m/s Note: t = 0.495 s vy = -4.85 m/s 2 2 (4.04 m/s) ( 4.85 m/s) v    4.85 m tan 4.04 m q   v4 = 146 ft/s q2 = 309.80 1.2 m 2 m vx vy
  • 36.
    Example 5. Findthe “hang time” for the football whose initial velocity is 25 m/s, 600. vo =25 m/s 600 y = 0; a = -9.8 m/s2 Time of flight t vox = vo cos q voy = vo sin q Initial vo: Vox = (25 m/s) cos 600; vox = 12.5 m/s Voy = (25 m/s) sin 600; vox = 21.7 m/s Only vertical parameters affect hang time. 2 2 1 1 2 2 ; 0 (21.7) ( 9.8) oy y v t at t t     
  • 37.
    vo =25 m/s 600 y= 0; a = -9.8 m/s2 Time of flight t vox = vo cos q voy = vo sin q Initial vo: 2 2 1 1 2 2 ; 0 (21.7) ( 9.8) oy y v t at t t      4.9 t2 = 21.7 t 4.9 t = 21.7 2 21.7 m/s 4.9 m/s t  t = 4.42 s Example 5 (Cont.) Find the “hang time” for the football whose initial velocity is 25 m/s, 600.
  • 38.
    Example 6. Arunning dog leaps with initial velocity of 11 m/s at 300. What is the range? v = 11 m/s q =300 Draw figure and find components: vox = 9.53 m/s voy = 5.50 m/s vox = 11 cos 300 voy = 11 sin 300 2 2 1 1 2 2 ; 0 (5.50) ( 9.8) oy y v t at t t      To find range, first find t when y = 0; a = -9.8 m/s2 4.9 t2 = 5.50 t 2 5.50 m/s 4.9 m/s t  t = 1.12 s 4.9 t = 5.50
  • 39.
    Example 6 (Cont.)A dog leaps with initial velocity of 11 m/s at 300. What is the range? v = 10 m/s q =310 Range is found from x-component: vx = vox = 9.53 m/s x = vxt; t = 1.12 s vox = 10 cos 310 voy = 10 sin 310 Horizontal velocity is constant: vx = 9.53 m/s Range: x = 10.7 m x = (9.53 m/s)(1.12 s) = 10.7 m
  • 40.
    Summary for Projectiles: 1.Determine x and y components v0 cos and sin ox o oy o v v v v q q   2. The horizontal and vertical components of displacement at any time t are given by: 2 1 2 ox oy x v t y v t gt   
  • 41.
    Summary (Continued): 4. Vectordisplacement or velocity can then be found from the components if desired: 3. The horizontal and vertical components of velocity at any time t are given by: ; x ox y oy v v v v gt    2 2 R x y   tan y x q 