SlideShare a Scribd company logo
So we can analyze projectile motion as the combination of horizontal motion with constant velocity and vertical motion with constant acceleration. The faster the object falls, the greater the distance covered in each successive second. Or, if the object is projected upward, the vertical distances of travel decrease with time on the way up. When air resistance is small enough to ignore, the horizontal and vertical components of a projectile’s velocity are completely independent of one another. Their combined effect produces the trajectories of projectiles.
Doing Physics: Hands-on Dangling Beads       Make your own model of projectile paths. Divide a ruler or a stick into five equal spaces. At position 1, hang a bead from a string that is 1 cm long. At position 2, hang a bead from a string that is 4 cm long. At position 3, do the same with a 9-cm length of string. At position 4, use 16 cm of string, and for position 5, use 25 cm of string. Hold the ruler horizontally, at a slight upward angle and downward angle, then draw the path taken by the projectile if a stone is dropped or thrown from rest.
Problems: 1. A ball of mass 1.0 kg rolls off of a 1.25-m high lab table and hits the floor 3.0 m from the base of the table. a.) Show that the ball takes 5.0 s to hit the floor. b.) Show that the ball leaves the table at 6.0 m/s. 2. A horizontally moving tennis ball barely clears the net, a distance y above the surface of the court. To land within the tennis court the ball must not be moving too fast.
a.) To remain within the court’s border, a horizontal distance d from the bottom of the net, ignoring air resistance and any spin effects of the ball, show that the ball’s maximum speed over the net is             v = d/√2y/g b.) Suppose the height of the net is 1.00 m, and the court’s border is 12.0 m from the bottom of the net. Use g = 10 m/s2 and show that the maximum speed of the horizontally moving ball clearing the net is about 27 m/s (about 60 mi/h). c.) Does the mass of the ball make a difference? Defend your answer.
Solutions: #1. a.) We want the time of the ball in the air. First, some physics. The time t it takes for any ball to hit the floor would be the same as if it were dropped from rest a vertical distance y. We say from rest because initially it moves horizontally off the desk, with zero velocity in the vertical direction.          From y = ½ gt2   t2 = 2y/g         Then t = √2y/g = √2(1.25m)/10 m/s2                    t = 0.5 s             b.) The horizontal speed of the ball as it leaves the table, using time 0.5 s, is                  vx = d/t = x/t = 3.0 m/0.5 s = 6.0 m/s
#2. a.)As with Sample problem 1, the physics concepts here involves projectile motion in the absence of air resistance, where horizontal and vertical components of velocity are independent. We’re asked for horizontal speed, so we write vx = d/t where d is horizontal distance traveled in time t. As with Sample problem 1, the time t of the ball flight is the same as if we had just dropped it from rest a vertical distance y from the top of the net. As the ball clears the net, its highest point in its path, its vertical component of velocity is zero.       From y = ½ gt2    t2 = 2y/g    t = √2y/g        So v = d/t = d/√2y/g
b.) v = d/√2y/g = 12.0 m/√2(1.00 m)/10 m/s2              = 26.8 m/s c.) We can see that the mass of the ball (in both problems) doesn’t show up in the equations for motion, which tells us that mass is irrelevant. ( Mass has no effect on a freely falling object- and the tennis ball is a freely falling object, as is every projectile when air resistance can be neglected).

More Related Content

What's hot

Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsmstf mstf
 
Projectile motion (2)
Projectile motion (2)Projectile motion (2)
Projectile motion (2)
mohammed aslam
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
Poonam Singh
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
Younes Sina
 
Physics 6
Physics 6Physics 6
Physics 6
M.T.H Group
 
Kinematic equations of motion
Kinematic equations of motionKinematic equations of motion
Kinematic equations of motionmantlfin
 
Free fall
Free fallFree fall
Free fall
KhanSaif2
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
WAYNE FERNANDES
 
Projectile motion
Projectile motionProjectile motion
Projectile motionTekZeno
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
Younes Sina
 
Kinematics powerpoint
Kinematics powerpointKinematics powerpoint
Kinematics powerpointDavid Hsieh
 
Pp104 freefall
Pp104 freefallPp104 freefall
Pp104 freefallmantlfin
 
Lec gp05 rigidbody2d
Lec gp05 rigidbody2dLec gp05 rigidbody2d
Lec gp05 rigidbody2d
Young-Min kang
 
Physics 1
Physics 1Physics 1
Physics 1
DhenzMarzan
 
AP Physics - Chapter 3 Powerpoint
AP Physics - Chapter 3 PowerpointAP Physics - Chapter 3 Powerpoint
AP Physics - Chapter 3 Powerpoint
Mrreynon
 

What's hot (19)

Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Projectile motion (2)
Projectile motion (2)Projectile motion (2)
Projectile motion (2)
 
PROJECTILE MOTION
PROJECTILE MOTIONPROJECTILE MOTION
PROJECTILE MOTION
 
chapter-1
chapter-1chapter-1
chapter-1
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Physics 6
Physics 6Physics 6
Physics 6
 
Kinematic equations of motion
Kinematic equations of motionKinematic equations of motion
Kinematic equations of motion
 
Free fall
Free fallFree fall
Free fall
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Kinematics powerpoint
Kinematics powerpointKinematics powerpoint
Kinematics powerpoint
 
Free fall
Free fallFree fall
Free fall
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Pp104 freefall
Pp104 freefallPp104 freefall
Pp104 freefall
 
Lec gp05 rigidbody2d
Lec gp05 rigidbody2dLec gp05 rigidbody2d
Lec gp05 rigidbody2d
 
Physics 1
Physics 1Physics 1
Physics 1
 
AP Physics - Chapter 3 Powerpoint
AP Physics - Chapter 3 PowerpointAP Physics - Chapter 3 Powerpoint
AP Physics - Chapter 3 Powerpoint
 

Similar to Projectile Motion

chapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdfchapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdf
hend49
 
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear MotionPhysics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear MotionNeil MacIntosh
 
projectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxprojectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptx
PrincessRegunton
 
Projectile
ProjectileProjectile
Projectile
UdayKhanal
 
Kinematics
KinematicsKinematics
Kinematics
Dr. Prakash M N
 
Chapter no. 7 projectile
Chapter no. 7 projectileChapter no. 7 projectile
Chapter no. 7 projectile
Pralhad Kore
 
Vertical Straight Line Motion
Vertical Straight Line Motion Vertical Straight Line Motion
Vertical Straight Line Motion
UdayKhanal
 
Introduction to linear kinematics
Introduction to linear kinematicsIntroduction to linear kinematics
Introduction to linear kinematicsPontsho Mahlatsi
 
Gravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmeGravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programme
rafigabdurahmanli2
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motion
Pralhad Kore
 
18 dynamics applications of derivative -
18   dynamics   applications of derivative -18   dynamics   applications of derivative -
18 dynamics applications of derivative -
vivieksunder
 
Motion under gravity By ghumare s m
Motion under gravity By ghumare s mMotion under gravity By ghumare s m
Motion under gravity By ghumare s m
smghumare
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
MAESTRELLAMesa2
 
Projektielbeweging e
Projektielbeweging eProjektielbeweging e
Projektielbeweging e
Natasia Gouws
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
MaAnnFuriscal3
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
MaAnnFuriscal3
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptx
AkramMusa5
 
Physics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion SolutionsPhysics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion SolutionsDarwin Quinsaat
 
Kinematics questions
Kinematics questionsKinematics questions
Kinematics questions
Deepanshu Lulla
 
Uniformly Accelerated Motion and Free Fall Motion_NOTES.pptx
Uniformly Accelerated Motion  and Free Fall Motion_NOTES.pptxUniformly Accelerated Motion  and Free Fall Motion_NOTES.pptx
Uniformly Accelerated Motion and Free Fall Motion_NOTES.pptx
ALVINMARCDANCEL2
 

Similar to Projectile Motion (20)

chapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdfchapter 2_Projectile_Motion final (1) (1).pdf
chapter 2_Projectile_Motion final (1) (1).pdf
 
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear MotionPhysics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
Physics 504 Chapter 10 Uniformly Accelerated Rectilinear Motion
 
projectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptxprojectile motion grade 9-170213175803.pptx
projectile motion grade 9-170213175803.pptx
 
Projectile
ProjectileProjectile
Projectile
 
Kinematics
KinematicsKinematics
Kinematics
 
Chapter no. 7 projectile
Chapter no. 7 projectileChapter no. 7 projectile
Chapter no. 7 projectile
 
Vertical Straight Line Motion
Vertical Straight Line Motion Vertical Straight Line Motion
Vertical Straight Line Motion
 
Introduction to linear kinematics
Introduction to linear kinematicsIntroduction to linear kinematics
Introduction to linear kinematics
 
Gravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmeGravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programme
 
Projectile Motion
Projectile MotionProjectile Motion
Projectile Motion
 
18 dynamics applications of derivative -
18   dynamics   applications of derivative -18   dynamics   applications of derivative -
18 dynamics applications of derivative -
 
Motion under gravity By ghumare s m
Motion under gravity By ghumare s mMotion under gravity By ghumare s m
Motion under gravity By ghumare s m
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
 
Projektielbeweging e
Projektielbeweging eProjektielbeweging e
Projektielbeweging e
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
projectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdfprojectile motion horizontal vertical -170213175803 (1).pdf
projectile motion horizontal vertical -170213175803 (1).pdf
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptx
 
Physics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion SolutionsPhysics 2 LT3: Projectile Motion Solutions
Physics 2 LT3: Projectile Motion Solutions
 
Kinematics questions
Kinematics questionsKinematics questions
Kinematics questions
 
Uniformly Accelerated Motion and Free Fall Motion_NOTES.pptx
Uniformly Accelerated Motion  and Free Fall Motion_NOTES.pptxUniformly Accelerated Motion  and Free Fall Motion_NOTES.pptx
Uniformly Accelerated Motion and Free Fall Motion_NOTES.pptx
 

Recently uploaded

GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
Matthew Sinclair
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
ThomasParaiso2
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
Matthew Sinclair
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
DianaGray10
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
DianaGray10
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
Rohit Gautam
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Vladimir Iglovikov, Ph.D.
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
Neo4j
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 

Recently uploaded (20)

GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 
20240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 202420240609 QFM020 Irresponsible AI Reading List May 2024
20240609 QFM020 Irresponsible AI Reading List May 2024
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...GridMate - End to end testing is a critical piece to ensure quality and avoid...
GridMate - End to end testing is a critical piece to ensure quality and avoid...
 
20240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 202420240607 QFM018 Elixir Reading List May 2024
20240607 QFM018 Elixir Reading List May 2024
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
 
UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5UiPath Test Automation using UiPath Test Suite series, part 5
UiPath Test Automation using UiPath Test Suite series, part 5
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Large Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial ApplicationsLarge Language Model (LLM) and it’s Geospatial Applications
Large Language Model (LLM) and it’s Geospatial Applications
 
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AIEnchancing adoption of Open Source Libraries. A case study on Albumentations.AI
Enchancing adoption of Open Source Libraries. A case study on Albumentations.AI
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
GraphSummit Singapore | Graphing Success: Revolutionising Organisational Stru...
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 

Projectile Motion

  • 1.
  • 2.
  • 3. So we can analyze projectile motion as the combination of horizontal motion with constant velocity and vertical motion with constant acceleration. The faster the object falls, the greater the distance covered in each successive second. Or, if the object is projected upward, the vertical distances of travel decrease with time on the way up. When air resistance is small enough to ignore, the horizontal and vertical components of a projectile’s velocity are completely independent of one another. Their combined effect produces the trajectories of projectiles.
  • 4. Doing Physics: Hands-on Dangling Beads Make your own model of projectile paths. Divide a ruler or a stick into five equal spaces. At position 1, hang a bead from a string that is 1 cm long. At position 2, hang a bead from a string that is 4 cm long. At position 3, do the same with a 9-cm length of string. At position 4, use 16 cm of string, and for position 5, use 25 cm of string. Hold the ruler horizontally, at a slight upward angle and downward angle, then draw the path taken by the projectile if a stone is dropped or thrown from rest.
  • 5. Problems: 1. A ball of mass 1.0 kg rolls off of a 1.25-m high lab table and hits the floor 3.0 m from the base of the table. a.) Show that the ball takes 5.0 s to hit the floor. b.) Show that the ball leaves the table at 6.0 m/s. 2. A horizontally moving tennis ball barely clears the net, a distance y above the surface of the court. To land within the tennis court the ball must not be moving too fast.
  • 6. a.) To remain within the court’s border, a horizontal distance d from the bottom of the net, ignoring air resistance and any spin effects of the ball, show that the ball’s maximum speed over the net is v = d/√2y/g b.) Suppose the height of the net is 1.00 m, and the court’s border is 12.0 m from the bottom of the net. Use g = 10 m/s2 and show that the maximum speed of the horizontally moving ball clearing the net is about 27 m/s (about 60 mi/h). c.) Does the mass of the ball make a difference? Defend your answer.
  • 7. Solutions: #1. a.) We want the time of the ball in the air. First, some physics. The time t it takes for any ball to hit the floor would be the same as if it were dropped from rest a vertical distance y. We say from rest because initially it moves horizontally off the desk, with zero velocity in the vertical direction. From y = ½ gt2 t2 = 2y/g Then t = √2y/g = √2(1.25m)/10 m/s2 t = 0.5 s b.) The horizontal speed of the ball as it leaves the table, using time 0.5 s, is vx = d/t = x/t = 3.0 m/0.5 s = 6.0 m/s
  • 8. #2. a.)As with Sample problem 1, the physics concepts here involves projectile motion in the absence of air resistance, where horizontal and vertical components of velocity are independent. We’re asked for horizontal speed, so we write vx = d/t where d is horizontal distance traveled in time t. As with Sample problem 1, the time t of the ball flight is the same as if we had just dropped it from rest a vertical distance y from the top of the net. As the ball clears the net, its highest point in its path, its vertical component of velocity is zero. From y = ½ gt2 t2 = 2y/g t = √2y/g So v = d/t = d/√2y/g
  • 9. b.) v = d/√2y/g = 12.0 m/√2(1.00 m)/10 m/s2 = 26.8 m/s c.) We can see that the mass of the ball (in both problems) doesn’t show up in the equations for motion, which tells us that mass is irrelevant. ( Mass has no effect on a freely falling object- and the tennis ball is a freely falling object, as is every projectile when air resistance can be neglected).