Introduction Phenomenology Model Transport properties Results Conclusion
Gauge approach to pairing and superconductivity
in high Tc cuprates
Autore: Filippo Bovo
Relatore: Prof. Pieralberto Marchetti
UNIVERSIT`A DEGLI STUDI DI PADOVA
FACOLT`A DI SCIENZE MM. FF. NN.
DIPARTIMENTO DI FISICA “GALILEO GALILEI”
13 Luglio 2011
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
1 Introduction
2 Phenomenology
3 Model
4 Transport properties
5 Results
6 Conclusion
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Crystal structure
Typical structure: Copper-Oxygen planes
↓
+ Charge reservoir
(doping)
O, 2px
O, 2pyCu, 3dx -y2 2
Hole, 3dx -y2 2
Hole-doping removes
this electron allowing
holes to move
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram
Phases:
FL: Fermi Liquid;
SM: Strange Metal;
PG: Pseudogap;
AF: Antiferromagnetic;
SC: Superconducting.
δ: doping;
T: temperature [K].
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy model
Anderson’s idea of ”doping a Mott insulator” (1987)
↓
t-J model: low-energy physics of CuO2-planes
+
Gutzwiller projector PG
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy model
Anderson’s idea of ”doping a Mott insulator” (1987)
↓
t-J model: low-energy physics of CuO2-planes
+
Gutzwiller projector PG
↓
Ht−J = PG
<ij>
[−t(ˆc†
iαˆcjα + H.c) + JˆSi · ˆSj ]PG
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
⇓
PG → ˆni = ˆc†
iαˆciα = 0, 1 →
ˆh†
i
ˆhi = 0, 1 Automatic
α ˆs†
iαˆsiα = 1 Constraint
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Spin-charge decomposition
electron −→ spinon(boson) + holon(fermion):
ˆciα ≡ ˆsiα
ˆh†
i
⇓
PG → ˆni = ˆc†
iαˆciα = 0, 1 →
ˆh†
i
ˆhi = 0, 1 Automatic
α ˆs†
iαˆsiα = 1 Constraint
+
Invariance under:
ˆhi → ˆhi eiϕ
ˆsiα → ˆsiαeiϕ
,
ϕ
U(1) local phase
⇒
Aµ
U(1) gauge field
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Improved mean-field approximation
Optimization of the spinon configurations and mean-field treatment:
ˆhj eiφh(j), fermion
ˆzj eiφs (j), boson
←−
The product
is still
a fermion
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Improved mean-field approximation
Optimization of the spinon configurations and mean-field treatment:
ˆhj eiφh(j), fermion
ˆzj eiφs (j), boson
←−
The product
is still
a fermion
⇒ φh(j) → Charge vortex φs(j) → Spin vortex
PG SM
↓
π-flux
↓
0-flux
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
+
Holon effective action:
PG: ⇒
(Formally) relativistic spinless fermion with small
half-circle Fermi surface (∼ δ) centered in
(±π/2, ±π/2) in MBZ1
, minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Low-energy effective action
Complete low-energy effective action =
Spinon effective action:
Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ
+
Holon effective action:
PG: ⇒
(Formally) relativistic spinless fermion with small
half-circle Fermi surface (∼ δ) centered in
(±π/2, ±π/2) in MBZ1
, minimally coupled to Aµ
SM: ⇒
Non-relativistic spinless fermion with big circular
Fermi surface (∼ 1 − δ) centered in (±π, ±π) in
MBZ, minimally coupled to Aµ
1
Magnetic Brillouin zone
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Attraction scheme:
h
A
A
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Phase diagram of the model
Underdoped Overdoped
0.150.03 0.04 0.250
MI
SC
PG
SM
400
T (K)
δ
Parent compound
coherence
240
h
s
s
Indirect spinon potential
Attraction scheme:
h
A
A
s
s
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Formation of holon pairs ⇒
energy-dependent (normalized)
holon density of states n(ω)
↓
Starting point: Kubo formula for holon conductivity
σ(ω, T) ∝ 1
Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate:
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Within this model we studied, as original contribution, how the
formation of holon pairs contributes to transport properties.
Formation of holon pairs ⇒
energy-dependent (normalized)
holon density of states n(ω)
↓
Starting point: Kubo formula for holon conductivity
σ(ω, T) ∝ 1
Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate:
ΓTr (Ω, T) ∝
∞
0
dω˜I2
χTr (ω){n(Ω−ω)fem(Ω, ω, T)+n(Ω+ω)fab(Ω, ω, T)}
• ˜I2χTr : interaction spectral density (momentum averaged);
• fem, fab: holon probabilities of emission and absorption of the
gauge field.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Holon conductivity
Dressed holon propagator GR
h (ω, k) → n(ω) ∝ dk
(2π)2 GR
h (ω, k).
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ω0.0
0.5
1.0
1.5
2.0
n
δ
T
↑
The interaction between phase fluctuations of the paired holons
gets stronger as temperature decreases →
→ interpolation between FL and SC behaviours.
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Real part of optical conductivity, SM
Hole re-composition through the Ioffe-Larking rule for complex
conductivities:
1
σ
=
1
σh
+
1
σs
Theory2 vs Experiment:
2
ω in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Real part of optical conductivity, PG
Hole re-composition through the Ioffe-Larking rule for complex
conductivities:
1
σ
=
1
σh
+
1
σs
Theory3 vs Experiment:
3
ω in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Transport scattering rate, SM
Ioffe-Larkin rule ⇒ Γtr = Γtr;h + Γtr;s
Theory4 vs Experiment:
Γ
4
T=300,270,250,230K. ω and Γtr in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Resistivity, SM
Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s
Theory5 vs Experiment:
5
δ = 0.10, 0.15, 0.20. ω and T in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Resistivity, PG
Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s
Theory6 vs Experiment:
6
δ = 0.03, 0.05. ω and T in unities of t 0.4eV
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Conclusions
Good qualitative comparison between theoretical and experimental
results
⇓
The technique used to take into account the formation of holon
pairs is correct
+
Further step toward the validity of the model
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
Introduction Phenomenology Model Transport properties Results Conclusion
Further developments
Mapping of ∂2ρ/∂T2 to be compared with Ando et al. (Phys.
Rev. Lett., 93(26):267001, 2004) experiment:
Computation of the reflectivity to be compared with Giannetti et
al. (Nat Commun, 2:353, 06 2011) experiment:
Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates

Presentazione

  • 1.
    Introduction Phenomenology ModelTransport properties Results Conclusion Gauge approach to pairing and superconductivity in high Tc cuprates Autore: Filippo Bovo Relatore: Prof. Pieralberto Marchetti UNIVERSIT`A DEGLI STUDI DI PADOVA FACOLT`A DI SCIENZE MM. FF. NN. DIPARTIMENTO DI FISICA “GALILEO GALILEI” 13 Luglio 2011 Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 2.
    Introduction Phenomenology ModelTransport properties Results Conclusion 1 Introduction 2 Phenomenology 3 Model 4 Transport properties 5 Results 6 Conclusion Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 3.
    Introduction Phenomenology ModelTransport properties Results Conclusion Crystal structure Typical structure: Copper-Oxygen planes ↓ + Charge reservoir (doping) O, 2px O, 2pyCu, 3dx -y2 2 Hole, 3dx -y2 2 Hole-doping removes this electron allowing holes to move Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 4.
    Introduction Phenomenology ModelTransport properties Results Conclusion Phase diagram Phases: FL: Fermi Liquid; SM: Strange Metal; PG: Pseudogap; AF: Antiferromagnetic; SC: Superconducting. δ: doping; T: temperature [K]. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 5.
    Introduction Phenomenology ModelTransport properties Results Conclusion Low-energy model Anderson’s idea of ”doping a Mott insulator” (1987) ↓ t-J model: low-energy physics of CuO2-planes + Gutzwiller projector PG Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 6.
    Introduction Phenomenology ModelTransport properties Results Conclusion Low-energy model Anderson’s idea of ”doping a Mott insulator” (1987) ↓ t-J model: low-energy physics of CuO2-planes + Gutzwiller projector PG ↓ Ht−J = PG <ij> [−t(ˆc† iαˆcjα + H.c) + JˆSi · ˆSj ]PG Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 7.
    Introduction Phenomenology ModelTransport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 8.
    Introduction Phenomenology ModelTransport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i ⇓ PG → ˆni = ˆc† iαˆciα = 0, 1 → ˆh† i ˆhi = 0, 1 Automatic α ˆs† iαˆsiα = 1 Constraint Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 9.
    Introduction Phenomenology ModelTransport properties Results Conclusion Spin-charge decomposition electron −→ spinon(boson) + holon(fermion): ˆciα ≡ ˆsiα ˆh† i ⇓ PG → ˆni = ˆc† iαˆciα = 0, 1 → ˆh† i ˆhi = 0, 1 Automatic α ˆs† iαˆsiα = 1 Constraint + Invariance under: ˆhi → ˆhi eiϕ ˆsiα → ˆsiαeiϕ , ϕ U(1) local phase ⇒ Aµ U(1) gauge field Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 10.
    Introduction Phenomenology ModelTransport properties Results Conclusion Improved mean-field approximation Optimization of the spinon configurations and mean-field treatment: ˆhj eiφh(j), fermion ˆzj eiφs (j), boson ←− The product is still a fermion Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 11.
    Introduction Phenomenology ModelTransport properties Results Conclusion Improved mean-field approximation Optimization of the spinon configurations and mean-field treatment: ˆhj eiφh(j), fermion ˆzj eiφs (j), boson ←− The product is still a fermion ⇒ φh(j) → Charge vortex φs(j) → Spin vortex PG SM ↓ π-flux ↓ 0-flux Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 12.
    Introduction Phenomenology ModelTransport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 13.
    Introduction Phenomenology ModelTransport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ + Holon effective action: PG: ⇒ (Formally) relativistic spinless fermion with small half-circle Fermi surface (∼ δ) centered in (±π/2, ±π/2) in MBZ1 , minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 14.
    Introduction Phenomenology ModelTransport properties Results Conclusion Low-energy effective action Complete low-energy effective action = Spinon effective action: Non-linear σ-model with mass gap ms ∼ |δ ln δ| minimally coupled to Aµ + Holon effective action: PG: ⇒ (Formally) relativistic spinless fermion with small half-circle Fermi surface (∼ δ) centered in (±π/2, ±π/2) in MBZ1 , minimally coupled to Aµ SM: ⇒ Non-relativistic spinless fermion with big circular Fermi surface (∼ 1 − δ) centered in (±π, ±π) in MBZ, minimally coupled to Aµ 1 Magnetic Brillouin zone Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 15.
    Introduction Phenomenology ModelTransport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 16.
    Introduction Phenomenology ModelTransport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 17.
    Introduction Phenomenology ModelTransport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Attraction scheme: h A A Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 18.
    Introduction Phenomenology ModelTransport properties Results Conclusion Phase diagram of the model Underdoped Overdoped 0.150.03 0.04 0.250 MI SC PG SM 400 T (K) δ Parent compound coherence 240 h s s Indirect spinon potential Attraction scheme: h A A s s Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 19.
    Introduction Phenomenology ModelTransport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 20.
    Introduction Phenomenology ModelTransport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Formation of holon pairs ⇒ energy-dependent (normalized) holon density of states n(ω) ↓ Starting point: Kubo formula for holon conductivity σ(ω, T) ∝ 1 Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate: Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 21.
    Introduction Phenomenology ModelTransport properties Results Conclusion Within this model we studied, as original contribution, how the formation of holon pairs contributes to transport properties. Formation of holon pairs ⇒ energy-dependent (normalized) holon density of states n(ω) ↓ Starting point: Kubo formula for holon conductivity σ(ω, T) ∝ 1 Γtr (ω,T)−iω , Γtr (ω, T) transport scattering rate: ΓTr (Ω, T) ∝ ∞ 0 dω˜I2 χTr (ω){n(Ω−ω)fem(Ω, ω, T)+n(Ω+ω)fab(Ω, ω, T)} • ˜I2χTr : interaction spectral density (momentum averaged); • fem, fab: holon probabilities of emission and absorption of the gauge field. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 22.
    Introduction Phenomenology ModelTransport properties Results Conclusion Holon conductivity Dressed holon propagator GR h (ω, k) → n(ω) ∝ dk (2π)2 GR h (ω, k). 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Ω0.0 0.5 1.0 1.5 2.0 n δ T ↑ The interaction between phase fluctuations of the paired holons gets stronger as temperature decreases → → interpolation between FL and SC behaviours. Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 23.
    Introduction Phenomenology ModelTransport properties Results Conclusion Real part of optical conductivity, SM Hole re-composition through the Ioffe-Larking rule for complex conductivities: 1 σ = 1 σh + 1 σs Theory2 vs Experiment: 2 ω in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 24.
    Introduction Phenomenology ModelTransport properties Results Conclusion Real part of optical conductivity, PG Hole re-composition through the Ioffe-Larking rule for complex conductivities: 1 σ = 1 σh + 1 σs Theory3 vs Experiment: 3 ω in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 25.
    Introduction Phenomenology ModelTransport properties Results Conclusion Transport scattering rate, SM Ioffe-Larkin rule ⇒ Γtr = Γtr;h + Γtr;s Theory4 vs Experiment: Γ 4 T=300,270,250,230K. ω and Γtr in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 26.
    Introduction Phenomenology ModelTransport properties Results Conclusion Resistivity, SM Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s Theory5 vs Experiment: 5 δ = 0.10, 0.15, 0.20. ω and T in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 27.
    Introduction Phenomenology ModelTransport properties Results Conclusion Resistivity, PG Ioffe-Larkin rule ⇒ ρtr ρtr;h + ρtr;s Theory6 vs Experiment: 6 δ = 0.03, 0.05. ω and T in unities of t 0.4eV Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 28.
    Introduction Phenomenology ModelTransport properties Results Conclusion Conclusions Good qualitative comparison between theoretical and experimental results ⇓ The technique used to take into account the formation of holon pairs is correct + Further step toward the validity of the model Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates
  • 29.
    Introduction Phenomenology ModelTransport properties Results Conclusion Further developments Mapping of ∂2ρ/∂T2 to be compared with Ando et al. (Phys. Rev. Lett., 93(26):267001, 2004) experiment: Computation of the reflectivity to be compared with Giannetti et al. (Nat Commun, 2:353, 06 2011) experiment: Autore: Filippo Bovo - Relatore: Prof. Pieralberto Marchetti Gauge approach to superconductivity in high Tc cuprates