SlideShare a Scribd company logo
UNIVERSITA’ DEGLI STUDI DI CATANIA
Dottorato di Ricerca in Scienza dei Materiali
XXI Ciclo
Tutor: Prof. F. Priolo
Supervisor: Dott. M. Miritello
Coordinatore: Prof. A. Terrasi
Roberto Lo Savio
Erbium-rich thin film materials
for optical communications in silicon
Outline
 Importance of optical communications in silicon
 Er-containing rare earth compounds
• Yttrium-Erbium oxide
• Yttrium-Erbium silicates
 Influence of Er content on the structural and optical properties
 Optical amplification at 1.54 μm
 Conclusions
Communication technology
Optical data transmission
across very long distances
Development of communication systems
(World Wide Web)
OPTICAL FIBERS NETWORKS
Wireline technology improves by
following an exponential trend
Billion
Thousand
Million
Bitspersecond
Optical interconnections
 DATA SPEED
 DATA FLOW
 POWER DISPERSION
 SIGNAL LOSSES
OPTICAL COPPER
High
High
Low
Low
Low
Low
High
High
Move this limit
towards lower distances
PHOTONS
BETTER THAN
ELECTRONS
Si-based microphotonics
Integration of photonic
components on Si-chip
ACTIVE COMPONENTS
Optical planar amplifiers
×
Building block research
 Size reduction
 Si-compatible materials
 ULSI Integration
Optical amplification in silicon
L. Pavesi et al., Nature 408, 440 (2000)
Quantum confinement in Si
H.-S. Han et al., Appl. Phys. Lett. 81, 3720 (2002)
Erbium in Si-based materials
Raman amplified emission in bulk Si
H. Rong et al., Nature 433, 725 (2005)
Photonic crystal on bulk Si
S. G. Cloutier et al., Nat. Mater. 4, 887 (2005)
Why erbium?
4I13/2
4I15/2
Widely used in large-scale amplifiers
(≈ tens of meters long)
1.54 μm photon emission
and amplification
Population inversion between
4I13/2 and 4I15/2 states
 Fast depopulation of pumped energy level
 Slow depopulation of 4I13/2 level
Er3+ in solid host
RE in solid hosts → RE3+, [Xe]-4fN
4f electrons shielded by outer shells 5s24p6
Atomic-like levels
Er-doped materials for optical amplifcation
HOST FOR ERBIUM DOPING
 IR transparency
 Ability to dissolve high Er contents
• silicon oxide
• silicon oxide containing Si nanoclusters
• aluminum oxide
• […]
Reduce the sizes of
Er-doped amplifiers?
Increase Er content
Er concentration
optically suitable
1017 ÷ 1020 at/cm3
 Increase solubility
 Avoid Er-Er interactions ?
Limits of Er-Er interactions
Up-conversion
Population of higher-energy levels
at expenses of the lower-energy ones
0
5
10
15
energy(10
3
cm
-1
)
4
I9/24
I11/2
4
I15/2
4
I13/2
High Er3+ concentration
in the excited states
 High Er content
 High pumping powera,b) energy migration;
c) 1.54 μm photon emission;
d) non-radiative energy dissipation.
0
1 1
8 Er Er q ErR C N N
    
Increase of 1.54 μm decay rate
E. Snoeks et al., Opt. Mater. 5, 159 (1996)
c)
-OH
a
a
b
c
b d
Concentration quenching
Erbium-containing rare earths compounds
a
b
c
x
y
z
Er2O3
a
b
c
x
y
z
Y2O3
 lattice mismatch < 1 %
 Same bcc lattice
 Similar lattice parameters
RE oxides (RE2O3)
RE silicates (RE2O3 + SiO2)
 Same phase diagram
 Same stoichiometric composition (RE2SiO5 and RE2Si2O7)
 Same crystalline structures with similar lattice parameters
RE in solid hosts:
 Same trivalent state RE3+
 Similar ionic radius
r(Y3+) = 0.89 Å
r(Er3+) = 0.88 Å
Varying Er content in
mixed Y-Er compounds
La → [Xe]-5d16s2
Y → [Kr]-5d16s2
Same chemical
properties
Thin films synthesis
Y2O3
SiO2
Er2O3
CONFOCAL CO-SPUTTERING
UHV magnetron sputtering
Er2O3
c-Si
RFRFRF
 ULSI compatible
 Planar thin films
Careful control of films composition
 rotating
 heated (400 °C)
 Y-Eroxide
 Y-Er silicate
Y-Er oxide for optical applications
Up-converter material
for visible phosphors
Low phonon energy host
J. A. Capobianco et al.,
J. Phys. Chem. B 106, 1181
(2002)
1.54 μm
emission
J. Hoang et al., J. Appl. Phys. 101, 123116 (2007)
 Er ions are substitutional in Y sites
Low-concentration regime (< 10 at.%)
Y-O-Y or Er-O-Y bonds → dEr-Er ≈ 10 Å
High-concentration regime (> 10 at.%)
Er-O-Y or Er-O-Er bonds → dEr-Er ≈ 5 Å
EXAFS Analysis
J. Hoang et al., J. Appl. Phys. 101, 123116 (2007)
1.5 1.6 1.7 1.8 1.9 2.0
0
10
20
30
40
50
60
ErY
P(Er2
O3
)
0 W
15 W
25 W
40 W
70 W
100 W
150 W
NormalizedYield(a.u.)
Energy (MeV)
Y-Eroxide films composition
RBS spectra Th = 120 ± 10 nm (ellipsometry)
 Total [Y]+[Er] is constant
 Ratio [Y]+[Er] / [O] = 2/3
THIN FILMS DEPOSITION
 Co-sputtering from Y2O3, and Er2O3 targets
 P(Y2O3) = 500 W, constant
P(Er2O3)
(W)
[Er]
(at/cm3)
[Er]
(at.%)
Y2-xErxO3
x
15 1.2×1020 0.2 0.01
25 7.7×1020 1.1 0.06
40 2.45×1021 3.3 0.17
70 5.41×1021 8.2 0.41
100 7.68×1021 11.4 0.57
150 1.030×1022 14.3 0.72
200
P(Y2O3) = 0 W
2.944×1022 40.0 2.00
Crystalline structure
 Same diffraction spectra
 Slight 2θ peaks shift for different [Er]
20 30 40 50 60
0
200
400
600
800
Y1.99
Er0.01
O3
, [Er] = 0.2 at.%
Y1.43
Er0.57
O3
, [Er] = 14.3 at.%
Intensity(cps)
2 (degree)
(622)
(541)
(440)
(431)
(422)
(222)
(211)
0.0 0.5 1.0 1.5 2.0
10.50
10.55
10.60
10.65
10.70
Er2
O3
Latticeparameter(Å)
xY2
O3
Lattice parameter decreases
by increasing the Er content
a(Y2O3)
XRD spectra
a(Er2O3)
No evidence of phase separation
0
5
10
15
20
1535 nm
4
F9/2
4
S3/2
488 nm
4
F7/2
4
I11/2
4
I15/2
4
I13/2
energy(10
3
cm
-1
)
560 nm
660 nm
980 nm
600 800 1000 1200 1400 1600
0.000
0.005
0.010
0.015
0.020
0.025
PLIntensity(a.u.)
Wavelength (nm)
4
I13/2
4
I11/2
4
S3/2
4
F9/2
exc
= 488 nm
Pexc
= 10 mW
PL emission of Y1.95Er0.05O3, [Er] = 1.1 at.%
RT PL spectra
 Low phonon energy (Rn,n-1 ≈ Rn0)
LESS-PROBABLE
NON-RADIATIVE DECAYS
980 nm
10
19
10
20
10
21
10
22
10
23
10
-2
10
-1
10
0
10
1
10
2
10
3
10
4
2.0
exc
= 488 nm
exc
= 980 nm
IntegratedPLintensityat0.56m(a.u.)
Photon flux (cm
-2
sec
-1
)
1.0
4
S3/2
4
I15/2
Up-conversion in Y1.95Er0.05O3, [Er] = 1.1 at.%
 λexc = 488 nm, n = 1 → direct absorption
 λexc = 980 nm, n = 2 → up-conversion
0 100 200 300 400 500
0.01
0.1
1 
exc
= 980 nm

exc
= 1.0 10
22
cm
-2
s
-1

exc
= 488 nm

exc
= 7.5 10
22
cm
-2
s
-1NormalizedPLintensityat0.56m
Time (s)
fast
slow
slow
n
PL excI P
n → number of involved photons
0
5
10
15
20
(4)
(3)
(2)
(1)
980 nm
energy(10
3
cm
-1
)
4
F7/2
4
S3/2
4
F9/2
4
I9/2
4
I11/2
4
I15/2
4
I13/2
560 nm
(1)
UP-CONVERSION
Optical properties for different Er contents
600 800 1000 1200 1400 1600
0
10
20
30
40
50
60
70
80
4
I13/2
4
I11/2
x = 0.05, [Er] = 1.1 at.% ( 1.6)
x = 0.17, [Er] = 3.3 at.%
x = 0.57, [Er] = 11.4 at.% ( 4.2)
PLIntensity(a.u.)
Wavelength (nm)
4
S3/2
4
F9/2

exc
= 488 nm
Pexc
= 10 mW
Visible and near-IR emission decrease
by increasing the Er content
Phononic decay rates increase
at expenses of radiative ones
PHONON ENERGY
INCREASE IN Y2-xErxO3
BY INCREASING x
0.0 0.2 0.4 0.6 0.8
0
20
40
60
80
0 4 8 12 16
[Er] (at.%)
PL
PLIntensity(a.u.)
x
0
2
4
6
8

Lifetime(ms)
Pexc
= 10 mW

exc
= 488 nm
Influence of Er content on 1.54 μm PL emission
 Maximum IPL for [Er] = 3.3 at.%
PL
RAD
I N




0 2 4 6 8 10 12 14 16
0
1
2
3
4
5
R=
-1
(10
4
s
-1
)
[Er] (at.%)
Concentration quenching of 1.54 μm PL decay
Extrapolated τ0 = 8 ± 2 ms
Calculated τradiative = 7.75 ms
M. J. Weber, Phys. Rev. 171, 283 (1968)
0
1 1
8 Er Er q ErR C N N
    
Low-concentration regime → dEr-Er ≈ 10 Å
High-concentration regime → dEr-Er ≈ 5 Å
Slope increase by a factor of 64
 
 
66
6 6
1 10
64
5


 
    
 
Er Er
Er Er
d high
C
d d low
1.54 μm rate increase is explained
by the Er-Er dipole interaction
0 2 4 6 8
0.00
0.05
0.10
0.15
0.20
0.25
R=
-1
(10
4
s
-1
)
[Er] (at.%)
Optical applications of Y2-xErxO3
0.0 4.0x10
21
8.0x10
21
1.2x10
22
0.00
0.02
0.04
0.06
0.08
0.10
0.12 Y1.95
Er0.05
O3
, [Er] = 1.1 at.%
Y1.43
Er0.57
O3
, [Er] = 11.4 at.%
IPL
(visible)/IPL
(1.54m)
Photon flux (cm
-2
s
-1
)
exc
= 980 nm
 Y1.95Er0.05O3, [Er] = 1.1 at.% ↔ Lower phonon energy → Up-converted VIS emission
 Y1.43Er0.57O3, [Er] = 11.4 at.% ↔ Higher phonon energy → Emitter at 1.54 μm
0
5
10
15
20
4
F9/2
4
S3/2
4
F7/2
4
I11/2
4
I15/2
4
I13/2
energy(10
3
cm
-1
)
560 nm
660 nm
980 nm
Up-conversion
0
5
10
15
20
1535 nm
4
F9/2
4
S3/2
4
F7/2
4
I11/2
4
I15/2
4
I13/2
energy(10
3
cm
-1
)
980 nm
Down-conversion
 Y-Er oxide
 Y-Er silicate
mixing two oxides: SiO2 and RE2O3
RE2O3 + SiO2  RE2SiO5
RE2O3 + 2SiO2  RE2Si2O7
RE silicates
RE2SiO5
≈1100 °C ≈1400 °C
amorphous A B
RE2Si2O7 amorphous
≈1450 °C≈1000 °C ≈1200 °C
y α
≈1300 °C
β γ
POLYMORPHISM
Varying Er content in
mixed Y-Er silicate
Er silicate for optical applications
Er2SiO5 +
1250 °C, 30 min
structures not suitable for
planar active devices:
thin films required
X. X. Wang et al., J. Cryst. Growth. 289, 178 (2006)
Poor stability under
high temperature
thermal treatments
H. Isshiki et al., Appl. Phys. Lett. 85, 4343 (2004)
Er-Si-O islands
J.H. Shin et al., Nano Lett. 5, 2432 (2005)
Si / Er2Si2O7 nanowires
Non-resonant Er excitation through Si-NW
Y-Er silicate for optical applications
[Er] = 1.5 at.%
Cup= 1.710-18 cm3/s,
LOW UP-CONVERSION
K. Suh et al., Appl. Phys. Lett. 92, 121910 (2008)
A-Y2-xErxSiO5 nanoaggregates
THIN FILMS
?
 Influence of Y-Er silicate composition
on the structural and optical properties
 Optimization of Er content in Y-Er silicate
Y-Er silicate thin films
 Influence of Y-Er silicate composition
on the structural and optical properties
 Optimization of Er content in Y-Er silicate
Y-Er silicate thin films
0.6 0.8 1.0 1.6 1.8
0
20
40
60
80
100
ErSi
Er2
SiO5
intermediate
Er2
Si2
O7
NormalizedYield(a.u.)
Energy (MeV)
O
Films composition
[Er] ≈ 1 – 2 × 1022 cm-3
Thickness = 150 – 160 nm
THIN FILMS DEPOSITION
 Co-sputtering from SiO2, and Er2O3 targets
 P(Er2O3) = 200 W, constant; P(SiO2) = 150 – 350 W
Three different atomic compositions
 stoichiometric (mono-, di-silicate)
 non-stoichiometric (intermediate)
Post-deposition annealing
RTA 1200 °C, 30 s
O2 (reactive)
Thermal stability
Er2SiO5 Er2Si2O7intermediate
1.6 1.7 1.8 1.9
0
20
40
60
80
100
Er Er
NormalizedYield(a.u.)
Energy (MeV)
1.6 1.7 1.8 1.9
as deposited
1200 °C, 30 s, O2
Energy (MeV)
1.6 1.7 1.8 1.9
Er
Energy (MeV)
no compositional change
formation of
interfacial Er2Si2O7
evolution in
Er2Si2O7 composition
Er2SiO5 + SiO2  Er2Si2O7
R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
Stoichiometric films are chemically
stable after reactive annealing
20 30 40 50 60
0
100
200
300
400
500
A-Er2
SiO5
Intensity(cps)
2 (degree)
JCPDS 70-2379
20 30 40 50 60
0
200
400
600
800
1000
1200
1400
Intensity(cps)
2 (degree)
-Tm2
Si2
O7
JCPDS 31-1391
y-Y2
Si2
O7
JCPDS 74-1994
Film crystallization
Er2SiO5
Er2Si2O7
Er2Si1.6O5
Same crystalline structure
mixture y-Er2Si2O7 + α-Er2Si2O7
Composition
evolution
in Er2Si2O7
1200 °C, 30 s, O2 annealing
0
2
4
6
8
10
12
14
16
0
40
80
120
160
200
240
280
Er2
Si2
O7
non
stoichiometric
1200 °C, 30 s, O2
IPL
IntegratedPLIntensity(a.u.)
Er2
SiO5
Pexc
= 1 mW

exc
= 488 nm

PLlifetimeat1.5m(s)
Influence of stoichiometry
 Higher PL signals
 Longer lifetimes
y and α phases of Er2Si2O7
Er2SiO5
Defects cannot be recoveredwith
the same annealing conditions
R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
1450 1500 1550 1600 1650
0
500
1000
1500
2000
2500
PLintensity(a.u.)
Wavelength (nm)
1500 1520 1540 1560 1580 1600
0
2000
4000
6000
PLIntensity(a.u.)
Wavelength (nm)
T = 12 K
10
PL from y + α mixture due
mainly to Er ions in the α phase
Optical and structural properties correlation
y-Er2Si2O7
y-Er2Si2O7 +
α-Er2Si2O7
Maximum efficiency
associated to Er in
α-RE2Si2O7 structure
High resolution PL spectra
Pure y-Er2Si2O7
Annealing 1200 °C, 30 s, N2
of Er2Si2O7 film
 Influence of Y-Er silicate composition
on the structural and optical properties
 Optimization of Er content in Y-Er disilicate
Yttrium-Erbium disilicate thin films
0.6 0.7 0.8 0.9 1.0 1.1 1.6 1.7 1.8 1.9
0
10
20
30
40
50
ErYSi
x = 0.03, [Er] = 0.3 at.%
x = 0.20, [Er] = 1.8 at.%
x = 0.46, [Er] = 4.2 at.%
x = 0.69, [Er] = 6.3 at.%
x = 1.33, [Er] = 12.1 at.%
NormalizedYield(a.u.)
Energy (MeV)
O
Y-Erdisilicate films composition
THIN FILMS DEPOSITION
 Co-sputtering from SiO2, Y2O3, and Er2O3 targets
 P(SiO2) = 300 W, constant
 Total [Y]+[Er] is constant
 Disilicate-like composition
RTA 1200 °C, 30 s, O2
[Er]
(at/cm3)
[Er]
(at.%)
Y2-xErxSi2O7
x
2×1020
0.3 0.03
1.2×1021
1.8 0.20
2.9×1021
4.2 0.46
5.0×1021
6.3 0.69
8.7×1021
12.1 1.33
1.5×1022 18.0 2.00
15 20 25 30 35 40 45 50 55 60
0
200
400
600
800
1000
 phase
Intensity(cps)
2 (degree)
x = 0.03
x = 1.33
x = 2
 phase
y phase
Y2-xErxSi2O7 crystallization
 Different relative intensities
 Slight shift of peaks position
 Mixture of y, α, β phases
 High-T phases increase by reducing
Er content
RE2Si2O7 amorphous y α β γ
Influence of Er content on 1.54 μm emission
 PL associated to Er ions in α phase
 Maximum IPL for Er2Si2O7
0.0 0.5 1.0 1.5 2.0
0
2
4
6
8
10
12
14
0
2
4
6
PL Intensity
PLIntensity(a.u.)
x
Pexc
= 10 mW

exc
= 488 nm

det
= 1.54 m
Lifetime
Lifetime(ms)
0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8
PLIntensity/(a.u.)
x
Pexc
= 10 mW

exc
= 488 nm

det
= 1.54 m
 Higher “emitting power” for
lower-Er containing films
Up-conversion in α-Y2-xErxSi2O7
Higher influence of up-conversion
for higher Er content
900 1000 1100 1400 1500 1600 1700
0
2
4
6
8
10
12
14
x = 0.03 - [Er] = 0.3 at.%
x = 0.69 - [Er] = 6.3 at.%
x = 2.00 - [Er] = 18.0 at.%
4
I11/2

4
I15/2
PLIntensity(a.u.)
Wavelength (nm)
Pexc
= 200 mW

exc
= 488 nm
4
I13/2

4
I15/2
PL signal related to
up-conversion phenomena
0
5
10
15
energy(10
3
cm
-1
)
4
I9/24
I11/2
4
I15/2
4
I13/2
1.54 m
0.98 m
Up-conversion coefficient in α-Y2-xErxSi2O7 (i)
0 200 400 600
0.1
1
Pump power
0.1 mW
1 mW
10 mW
100 mW
600 mW
NormalizedPLIntensityat1.54m
Time (s)
Er2
Si2
O7
M. Miritello et al., Mater. Sci. Eng. B 146, 29 (2008)
 τ1 = 230 μs;
 N1(0)Cup for different
pump power
 
 
 
      1
1 1
t
1 1 1 up 1 1 up 1
N t I t 1
N 0 I 0 1 N 0 C e N 0 C
 
   
21 1
1 up 1
1
dN N
(N N ) 2C N
dt
    

Rate equation for the
4I13/2 level (φ = 0)
0 100 200 300 400 500 600
0.0
0.5
1.0
1.5
2.0

det
= 1.54 m
Er2
Si2
O7
Y1.31
Er0.69
Si2
O7
Y1.97
Er0.03
Si2
O7
PLIntensity(a.u.)
Power (mW)
Up-conversion coefficient in α-Y2-xErxSi2O7 (ii)
Rate equation for the 4I13/2 level
 
 1 up 1 1 1
PL 1
up 1
1 2 8C N (1 )
I N
4C
        
  

21 1
1 up 1
1
dN N
(N N ) 2C N 0
dt
     

M. Miritello et al., Adv. Mater. 19, 1582 (2007)
α-Y1.31Er0.69Si2O7, [Er] = 6.3 at.%
 Cup = (4 ± 2) × 10-17 cm3/s
α-Y1.97Er0.03Si2O7 , [Er] = 0.3 at.%
 Cup = (1.0 ± 0.2) × 10-18 cm3/s
α-Er2Si2O7, [Er] = 18.0 at.%
 Cup = (9 ± 2) × 10-17 cm3/s
Up-conversion coefficient in α-Y2-xErxSi2O7 (ii)
Er-doped hosts ([Er] ≈ 1020 cm-3)
SiO2 → Cup = 2 × 10-17 cm3/s
Al2O3 → Cup = 4 × 10-18 cm3/s
0 100 200 300 400 500 600
0.0
0.5
1.0
1.5
2.0

det
= 1.54 m
Er2
Si2
O7
Y1.31
Er0.69
Si2
O7
Y1.97
Er0.03
Si2
O7
PLIntensity(a.u.)
Power (mW)
M. Miritello et al., Adv. Mater. 19, 1582 (2007)
1 10 100 1000
0.01
0.1
1
10
100
Er2
Si2
O7
Y1.31
Er0.69
Si2
O7
Y1.97
Er0.03
Si2
O7
Erionsinthe
4
I13/2
state(%)
Power (mW)
Optical amplification in α-Y2-xErxSi2O7
Population inversion
threshold
Y1.31Er0.69Si2O7 and Er2Si2O7
Higher pump powers required
Y1.97Er0.03Si2O7
Suitable for optical
amplification at
low pump powers
Conclusions
0.0 4.0x10
21
8.0x10
21
1.2x10
22
0.00
0.02
0.04
0.06
0.08
0.10
0.12 Y1.95
Er0.05
O3
, [Er] = 1.1 at.%
Y1.43
Er0.57
O3
, [Er] = 11.4 at.%
IPL
(visible)/IPL
(1.54m)
Photon flux (cm
-2
s
-1
)
exc
= 980 nm
Two distinct regimes:
 low Er content → good up-converter
 high Er content → good down-converter
Y-Er OXIDE THIN FILMS
1 10 100 1000
0.01
0.1
1
10
100
Y1.97
Er0.03
Si2
O7
Y1.31
Er0.69
Si2
O7
Er2
Si2
O7
Erionsinthe
4
I13/2
state(%) Power (mW)
1500 1520 1540 1560 1580 1600
0
2000
4000
6000
8000
PLIntensity(a.u.)
Wavelength (nm)
T = 12 K
10
 RE2Si2O7 is the
most stable composition
 α-RE2Si2O7 is the most efficient
structure for 1.54 μm emission
 Population inversion at low
pump powers in α-Y1.97Er0.03Si2O7
Y-Er SILICATE THIN FILMS

More Related Content

What's hot

A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
STS FORUM 2016
 
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Alexander Decker
 
8.2. microtech.ion implant.3
8.2. microtech.ion implant.38.2. microtech.ion implant.3
8.2. microtech.ion implant.3
Bhargav Veepuri
 
Thermal annealing influence on spectral responsivity and specific detectivity...
Thermal annealing influence on spectral responsivity and specific detectivity...Thermal annealing influence on spectral responsivity and specific detectivity...
Thermal annealing influence on spectral responsivity and specific detectivity...
Muhammid Al-Baghdadi
 
History of lighting | quantum dots | Phonsi
History of lighting | quantum dots | PhonsiHistory of lighting | quantum dots | Phonsi
History of lighting | quantum dots | Phonsi
Philippe Smet
 
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
Philippe Smet
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
sarmad
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
sarmad
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Pawan Kumar
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Pawan Kumar
 
Mp2521672171
Mp2521672171Mp2521672171
Mp2521672171
IJERA Editor
 
EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)
Philippe Smet
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
IJARIIT
 
Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.
Sociedade Brasileira de Pesquisa em Materiais
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Jeslin Mattam
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
Sociedade Brasileira de Pesquisa em Materiais
 

What's hot (20)

A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
 
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...
 
8.2. microtech.ion implant.3
8.2. microtech.ion implant.38.2. microtech.ion implant.3
8.2. microtech.ion implant.3
 
Thermal annealing influence on spectral responsivity and specific detectivity...
Thermal annealing influence on spectral responsivity and specific detectivity...Thermal annealing influence on spectral responsivity and specific detectivity...
Thermal annealing influence on spectral responsivity and specific detectivity...
 
History of lighting | quantum dots | Phonsi
History of lighting | quantum dots | PhonsiHistory of lighting | quantum dots | Phonsi
History of lighting | quantum dots | Phonsi
 
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
 
Rahman-INFN-LNL
Rahman-INFN-LNLRahman-INFN-LNL
Rahman-INFN-LNL
 
Mp2521672171
Mp2521672171Mp2521672171
Mp2521672171
 
EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
Good blue emission of synthesized zn2 geo4 phosphor doped with eu (0.5%)
 
Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 
G080468 00
G080468 00G080468 00
G080468 00
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
G080468-00
G080468-00G080468-00
G080468-00
 

Viewers also liked

Rare earth element Erbium
Rare earth element ErbiumRare earth element Erbium
Rare earth element Erbium
London Commodity Markets
 
Presentation: Design & fabrication of a low cost Spin Coater
Presentation: Design & fabrication of a low cost Spin CoaterPresentation: Design & fabrication of a low cost Spin Coater
Presentation: Design & fabrication of a low cost Spin Coater
Saurabh Pandey
 
Erbium Doped Fiber Lasers
Erbium Doped Fiber LasersErbium Doped Fiber Lasers
Erbium Doped Fiber Lasers
Shuvan Prashant
 
Spin Coating
Spin CoatingSpin Coating
Spin Coating
krishslide
 
Thin films
Thin filmsThin films
Thin films
Nischith Nbs
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
HHV SOLAR Pvt Ltd
 

Viewers also liked (7)

Rare earth element Erbium
Rare earth element ErbiumRare earth element Erbium
Rare earth element Erbium
 
Presentation: Design & fabrication of a low cost Spin Coater
Presentation: Design & fabrication of a low cost Spin CoaterPresentation: Design & fabrication of a low cost Spin Coater
Presentation: Design & fabrication of a low cost Spin Coater
 
Erbium Doped Fiber Lasers
Erbium Doped Fiber LasersErbium Doped Fiber Lasers
Erbium Doped Fiber Lasers
 
Spin coating
Spin coatingSpin coating
Spin coating
 
Spin Coating
Spin CoatingSpin Coating
Spin Coating
 
Thin films
Thin filmsThin films
Thin films
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
 

Similar to Erbium-rich thin film materials for optical communications in silicon

binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripplebinary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
Dr. Basanta Kumar Parida
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgp
ak21121991
 
Spectral studies of praseodymium doped heavy metal borate glass systems
Spectral studies of praseodymium doped heavy metal borate glass systemsSpectral studies of praseodymium doped heavy metal borate glass systems
Spectral studies of praseodymium doped heavy metal borate glass systems
inventy
 
Lv3520212024
Lv3520212024Lv3520212024
Lv3520212024
IJERA Editor
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
inventionjournals
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
inventionjournals
 
Id3614141421
Id3614141421Id3614141421
Id3614141421
IJERA Editor
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
IRJET Journal
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeChelsey Crosse
 
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin FilmsFTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
MD ABDUL AHAD TALUKDER
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
iosrjce
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
juby5
 
Fq3610331039
Fq3610331039Fq3610331039
Fq3610331039
IJERA Editor
 
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
IJAEMSJORNAL
 
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
IRJET Journal
 
J05226570
J05226570J05226570
J05226570
IOSR-JEN
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
IOSR Journals
 
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn NanoferriteDielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
IOSRJAP
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Finaljihuac
 
Andreiadis PhD Presentation
Andreiadis PhD PresentationAndreiadis PhD Presentation
Andreiadis PhD Presentation
Eugen S. Andreiadis
 

Similar to Erbium-rich thin film materials for optical communications in silicon (20)

binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripplebinary compound surface nanopatterning using ion beam, nano ripple, nanoripple
binary compound surface nanopatterning using ion beam, nano ripple, nanoripple
 
X ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgpX ray photoelectron spectroscopy (xps) iit kgp
X ray photoelectron spectroscopy (xps) iit kgp
 
Spectral studies of praseodymium doped heavy metal borate glass systems
Spectral studies of praseodymium doped heavy metal borate glass systemsSpectral studies of praseodymium doped heavy metal borate glass systems
Spectral studies of praseodymium doped heavy metal borate glass systems
 
Lv3520212024
Lv3520212024Lv3520212024
Lv3520212024
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
 
Id3614141421
Id3614141421Id3614141421
Id3614141421
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
 
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin FilmsFTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
 
Fq3610331039
Fq3610331039Fq3610331039
Fq3610331039
 
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
Optical and Electrical Properties of TiO2 Doped Fe2O3 Thin Film Prepared by S...
 
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
Indium Oxide Nano Particle Preparation and Characterization using Laser Ablat...
 
J05226570
J05226570J05226570
J05226570
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
 
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn NanoferriteDielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
Dielectric, Electric and Thermal Behavior of La3+ doped Co-Zn Nanoferrite
 
Acs 2009 3 22 Final
Acs 2009 3 22 FinalAcs 2009 3 22 Final
Acs 2009 3 22 Final
 
Andreiadis PhD Presentation
Andreiadis PhD PresentationAndreiadis PhD Presentation
Andreiadis PhD Presentation
 

Recently uploaded

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
zeex60
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
University of Maribor
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
IshaGoswami9
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 

Recently uploaded (20)

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 

Erbium-rich thin film materials for optical communications in silicon

  • 1. UNIVERSITA’ DEGLI STUDI DI CATANIA Dottorato di Ricerca in Scienza dei Materiali XXI Ciclo Tutor: Prof. F. Priolo Supervisor: Dott. M. Miritello Coordinatore: Prof. A. Terrasi Roberto Lo Savio Erbium-rich thin film materials for optical communications in silicon
  • 2. Outline  Importance of optical communications in silicon  Er-containing rare earth compounds • Yttrium-Erbium oxide • Yttrium-Erbium silicates  Influence of Er content on the structural and optical properties  Optical amplification at 1.54 μm  Conclusions
  • 3. Communication technology Optical data transmission across very long distances Development of communication systems (World Wide Web) OPTICAL FIBERS NETWORKS Wireline technology improves by following an exponential trend Billion Thousand Million Bitspersecond
  • 4. Optical interconnections  DATA SPEED  DATA FLOW  POWER DISPERSION  SIGNAL LOSSES OPTICAL COPPER High High Low Low Low Low High High Move this limit towards lower distances PHOTONS BETTER THAN ELECTRONS
  • 5. Si-based microphotonics Integration of photonic components on Si-chip ACTIVE COMPONENTS Optical planar amplifiers × Building block research  Size reduction  Si-compatible materials  ULSI Integration
  • 6. Optical amplification in silicon L. Pavesi et al., Nature 408, 440 (2000) Quantum confinement in Si H.-S. Han et al., Appl. Phys. Lett. 81, 3720 (2002) Erbium in Si-based materials Raman amplified emission in bulk Si H. Rong et al., Nature 433, 725 (2005) Photonic crystal on bulk Si S. G. Cloutier et al., Nat. Mater. 4, 887 (2005)
  • 7. Why erbium? 4I13/2 4I15/2 Widely used in large-scale amplifiers (≈ tens of meters long) 1.54 μm photon emission and amplification Population inversion between 4I13/2 and 4I15/2 states  Fast depopulation of pumped energy level  Slow depopulation of 4I13/2 level Er3+ in solid host RE in solid hosts → RE3+, [Xe]-4fN 4f electrons shielded by outer shells 5s24p6 Atomic-like levels
  • 8. Er-doped materials for optical amplifcation HOST FOR ERBIUM DOPING  IR transparency  Ability to dissolve high Er contents • silicon oxide • silicon oxide containing Si nanoclusters • aluminum oxide • […] Reduce the sizes of Er-doped amplifiers? Increase Er content Er concentration optically suitable 1017 ÷ 1020 at/cm3  Increase solubility  Avoid Er-Er interactions ?
  • 9. Limits of Er-Er interactions Up-conversion Population of higher-energy levels at expenses of the lower-energy ones 0 5 10 15 energy(10 3 cm -1 ) 4 I9/24 I11/2 4 I15/2 4 I13/2 High Er3+ concentration in the excited states  High Er content  High pumping powera,b) energy migration; c) 1.54 μm photon emission; d) non-radiative energy dissipation. 0 1 1 8 Er Er q ErR C N N      Increase of 1.54 μm decay rate E. Snoeks et al., Opt. Mater. 5, 159 (1996) c) -OH a a b c b d Concentration quenching
  • 10. Erbium-containing rare earths compounds a b c x y z Er2O3 a b c x y z Y2O3  lattice mismatch < 1 %  Same bcc lattice  Similar lattice parameters RE oxides (RE2O3) RE silicates (RE2O3 + SiO2)  Same phase diagram  Same stoichiometric composition (RE2SiO5 and RE2Si2O7)  Same crystalline structures with similar lattice parameters RE in solid hosts:  Same trivalent state RE3+  Similar ionic radius r(Y3+) = 0.89 Å r(Er3+) = 0.88 Å Varying Er content in mixed Y-Er compounds La → [Xe]-5d16s2 Y → [Kr]-5d16s2 Same chemical properties
  • 11. Thin films synthesis Y2O3 SiO2 Er2O3 CONFOCAL CO-SPUTTERING UHV magnetron sputtering Er2O3 c-Si RFRFRF  ULSI compatible  Planar thin films Careful control of films composition  rotating  heated (400 °C)
  • 13. Y-Er oxide for optical applications Up-converter material for visible phosphors Low phonon energy host J. A. Capobianco et al., J. Phys. Chem. B 106, 1181 (2002) 1.54 μm emission J. Hoang et al., J. Appl. Phys. 101, 123116 (2007)  Er ions are substitutional in Y sites Low-concentration regime (< 10 at.%) Y-O-Y or Er-O-Y bonds → dEr-Er ≈ 10 Å High-concentration regime (> 10 at.%) Er-O-Y or Er-O-Er bonds → dEr-Er ≈ 5 Å EXAFS Analysis J. Hoang et al., J. Appl. Phys. 101, 123116 (2007)
  • 14. 1.5 1.6 1.7 1.8 1.9 2.0 0 10 20 30 40 50 60 ErY P(Er2 O3 ) 0 W 15 W 25 W 40 W 70 W 100 W 150 W NormalizedYield(a.u.) Energy (MeV) Y-Eroxide films composition RBS spectra Th = 120 ± 10 nm (ellipsometry)  Total [Y]+[Er] is constant  Ratio [Y]+[Er] / [O] = 2/3 THIN FILMS DEPOSITION  Co-sputtering from Y2O3, and Er2O3 targets  P(Y2O3) = 500 W, constant P(Er2O3) (W) [Er] (at/cm3) [Er] (at.%) Y2-xErxO3 x 15 1.2×1020 0.2 0.01 25 7.7×1020 1.1 0.06 40 2.45×1021 3.3 0.17 70 5.41×1021 8.2 0.41 100 7.68×1021 11.4 0.57 150 1.030×1022 14.3 0.72 200 P(Y2O3) = 0 W 2.944×1022 40.0 2.00
  • 15. Crystalline structure  Same diffraction spectra  Slight 2θ peaks shift for different [Er] 20 30 40 50 60 0 200 400 600 800 Y1.99 Er0.01 O3 , [Er] = 0.2 at.% Y1.43 Er0.57 O3 , [Er] = 14.3 at.% Intensity(cps) 2 (degree) (622) (541) (440) (431) (422) (222) (211) 0.0 0.5 1.0 1.5 2.0 10.50 10.55 10.60 10.65 10.70 Er2 O3 Latticeparameter(Å) xY2 O3 Lattice parameter decreases by increasing the Er content a(Y2O3) XRD spectra a(Er2O3) No evidence of phase separation
  • 16. 0 5 10 15 20 1535 nm 4 F9/2 4 S3/2 488 nm 4 F7/2 4 I11/2 4 I15/2 4 I13/2 energy(10 3 cm -1 ) 560 nm 660 nm 980 nm 600 800 1000 1200 1400 1600 0.000 0.005 0.010 0.015 0.020 0.025 PLIntensity(a.u.) Wavelength (nm) 4 I13/2 4 I11/2 4 S3/2 4 F9/2 exc = 488 nm Pexc = 10 mW PL emission of Y1.95Er0.05O3, [Er] = 1.1 at.% RT PL spectra  Low phonon energy (Rn,n-1 ≈ Rn0) LESS-PROBABLE NON-RADIATIVE DECAYS 980 nm
  • 17. 10 19 10 20 10 21 10 22 10 23 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 2.0 exc = 488 nm exc = 980 nm IntegratedPLintensityat0.56m(a.u.) Photon flux (cm -2 sec -1 ) 1.0 4 S3/2 4 I15/2 Up-conversion in Y1.95Er0.05O3, [Er] = 1.1 at.%  λexc = 488 nm, n = 1 → direct absorption  λexc = 980 nm, n = 2 → up-conversion 0 100 200 300 400 500 0.01 0.1 1  exc = 980 nm  exc = 1.0 10 22 cm -2 s -1  exc = 488 nm  exc = 7.5 10 22 cm -2 s -1NormalizedPLintensityat0.56m Time (s) fast slow slow n PL excI P n → number of involved photons 0 5 10 15 20 (4) (3) (2) (1) 980 nm energy(10 3 cm -1 ) 4 F7/2 4 S3/2 4 F9/2 4 I9/2 4 I11/2 4 I15/2 4 I13/2 560 nm (1) UP-CONVERSION
  • 18. Optical properties for different Er contents 600 800 1000 1200 1400 1600 0 10 20 30 40 50 60 70 80 4 I13/2 4 I11/2 x = 0.05, [Er] = 1.1 at.% ( 1.6) x = 0.17, [Er] = 3.3 at.% x = 0.57, [Er] = 11.4 at.% ( 4.2) PLIntensity(a.u.) Wavelength (nm) 4 S3/2 4 F9/2  exc = 488 nm Pexc = 10 mW Visible and near-IR emission decrease by increasing the Er content Phononic decay rates increase at expenses of radiative ones PHONON ENERGY INCREASE IN Y2-xErxO3 BY INCREASING x
  • 19. 0.0 0.2 0.4 0.6 0.8 0 20 40 60 80 0 4 8 12 16 [Er] (at.%) PL PLIntensity(a.u.) x 0 2 4 6 8  Lifetime(ms) Pexc = 10 mW  exc = 488 nm Influence of Er content on 1.54 μm PL emission  Maximum IPL for [Er] = 3.3 at.% PL RAD I N    
  • 20. 0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 R= -1 (10 4 s -1 ) [Er] (at.%) Concentration quenching of 1.54 μm PL decay Extrapolated τ0 = 8 ± 2 ms Calculated τradiative = 7.75 ms M. J. Weber, Phys. Rev. 171, 283 (1968) 0 1 1 8 Er Er q ErR C N N      Low-concentration regime → dEr-Er ≈ 10 Å High-concentration regime → dEr-Er ≈ 5 Å Slope increase by a factor of 64     66 6 6 1 10 64 5            Er Er Er Er d high C d d low 1.54 μm rate increase is explained by the Er-Er dipole interaction 0 2 4 6 8 0.00 0.05 0.10 0.15 0.20 0.25 R= -1 (10 4 s -1 ) [Er] (at.%)
  • 21. Optical applications of Y2-xErxO3 0.0 4.0x10 21 8.0x10 21 1.2x10 22 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Y1.95 Er0.05 O3 , [Er] = 1.1 at.% Y1.43 Er0.57 O3 , [Er] = 11.4 at.% IPL (visible)/IPL (1.54m) Photon flux (cm -2 s -1 ) exc = 980 nm  Y1.95Er0.05O3, [Er] = 1.1 at.% ↔ Lower phonon energy → Up-converted VIS emission  Y1.43Er0.57O3, [Er] = 11.4 at.% ↔ Higher phonon energy → Emitter at 1.54 μm 0 5 10 15 20 4 F9/2 4 S3/2 4 F7/2 4 I11/2 4 I15/2 4 I13/2 energy(10 3 cm -1 ) 560 nm 660 nm 980 nm Up-conversion 0 5 10 15 20 1535 nm 4 F9/2 4 S3/2 4 F7/2 4 I11/2 4 I15/2 4 I13/2 energy(10 3 cm -1 ) 980 nm Down-conversion
  • 22.  Y-Er oxide  Y-Er silicate
  • 23. mixing two oxides: SiO2 and RE2O3 RE2O3 + SiO2  RE2SiO5 RE2O3 + 2SiO2  RE2Si2O7 RE silicates RE2SiO5 ≈1100 °C ≈1400 °C amorphous A B RE2Si2O7 amorphous ≈1450 °C≈1000 °C ≈1200 °C y α ≈1300 °C β γ POLYMORPHISM Varying Er content in mixed Y-Er silicate
  • 24. Er silicate for optical applications Er2SiO5 + 1250 °C, 30 min structures not suitable for planar active devices: thin films required X. X. Wang et al., J. Cryst. Growth. 289, 178 (2006) Poor stability under high temperature thermal treatments H. Isshiki et al., Appl. Phys. Lett. 85, 4343 (2004) Er-Si-O islands J.H. Shin et al., Nano Lett. 5, 2432 (2005) Si / Er2Si2O7 nanowires Non-resonant Er excitation through Si-NW
  • 25. Y-Er silicate for optical applications [Er] = 1.5 at.% Cup= 1.710-18 cm3/s, LOW UP-CONVERSION K. Suh et al., Appl. Phys. Lett. 92, 121910 (2008) A-Y2-xErxSiO5 nanoaggregates THIN FILMS ?
  • 26.  Influence of Y-Er silicate composition on the structural and optical properties  Optimization of Er content in Y-Er silicate Y-Er silicate thin films
  • 27.  Influence of Y-Er silicate composition on the structural and optical properties  Optimization of Er content in Y-Er silicate Y-Er silicate thin films
  • 28. 0.6 0.8 1.0 1.6 1.8 0 20 40 60 80 100 ErSi Er2 SiO5 intermediate Er2 Si2 O7 NormalizedYield(a.u.) Energy (MeV) O Films composition [Er] ≈ 1 – 2 × 1022 cm-3 Thickness = 150 – 160 nm THIN FILMS DEPOSITION  Co-sputtering from SiO2, and Er2O3 targets  P(Er2O3) = 200 W, constant; P(SiO2) = 150 – 350 W Three different atomic compositions  stoichiometric (mono-, di-silicate)  non-stoichiometric (intermediate) Post-deposition annealing RTA 1200 °C, 30 s O2 (reactive)
  • 29. Thermal stability Er2SiO5 Er2Si2O7intermediate 1.6 1.7 1.8 1.9 0 20 40 60 80 100 Er Er NormalizedYield(a.u.) Energy (MeV) 1.6 1.7 1.8 1.9 as deposited 1200 °C, 30 s, O2 Energy (MeV) 1.6 1.7 1.8 1.9 Er Energy (MeV) no compositional change formation of interfacial Er2Si2O7 evolution in Er2Si2O7 composition Er2SiO5 + SiO2  Er2Si2O7 R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008) Stoichiometric films are chemically stable after reactive annealing
  • 30. 20 30 40 50 60 0 100 200 300 400 500 A-Er2 SiO5 Intensity(cps) 2 (degree) JCPDS 70-2379 20 30 40 50 60 0 200 400 600 800 1000 1200 1400 Intensity(cps) 2 (degree) -Tm2 Si2 O7 JCPDS 31-1391 y-Y2 Si2 O7 JCPDS 74-1994 Film crystallization Er2SiO5 Er2Si2O7 Er2Si1.6O5 Same crystalline structure mixture y-Er2Si2O7 + α-Er2Si2O7 Composition evolution in Er2Si2O7 1200 °C, 30 s, O2 annealing
  • 31. 0 2 4 6 8 10 12 14 16 0 40 80 120 160 200 240 280 Er2 Si2 O7 non stoichiometric 1200 °C, 30 s, O2 IPL IntegratedPLIntensity(a.u.) Er2 SiO5 Pexc = 1 mW  exc = 488 nm  PLlifetimeat1.5m(s) Influence of stoichiometry  Higher PL signals  Longer lifetimes y and α phases of Er2Si2O7 Er2SiO5 Defects cannot be recoveredwith the same annealing conditions R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008) 1450 1500 1550 1600 1650 0 500 1000 1500 2000 2500 PLintensity(a.u.) Wavelength (nm)
  • 32. 1500 1520 1540 1560 1580 1600 0 2000 4000 6000 PLIntensity(a.u.) Wavelength (nm) T = 12 K 10 PL from y + α mixture due mainly to Er ions in the α phase Optical and structural properties correlation y-Er2Si2O7 y-Er2Si2O7 + α-Er2Si2O7 Maximum efficiency associated to Er in α-RE2Si2O7 structure High resolution PL spectra Pure y-Er2Si2O7 Annealing 1200 °C, 30 s, N2 of Er2Si2O7 film
  • 33.  Influence of Y-Er silicate composition on the structural and optical properties  Optimization of Er content in Y-Er disilicate Yttrium-Erbium disilicate thin films
  • 34. 0.6 0.7 0.8 0.9 1.0 1.1 1.6 1.7 1.8 1.9 0 10 20 30 40 50 ErYSi x = 0.03, [Er] = 0.3 at.% x = 0.20, [Er] = 1.8 at.% x = 0.46, [Er] = 4.2 at.% x = 0.69, [Er] = 6.3 at.% x = 1.33, [Er] = 12.1 at.% NormalizedYield(a.u.) Energy (MeV) O Y-Erdisilicate films composition THIN FILMS DEPOSITION  Co-sputtering from SiO2, Y2O3, and Er2O3 targets  P(SiO2) = 300 W, constant  Total [Y]+[Er] is constant  Disilicate-like composition RTA 1200 °C, 30 s, O2 [Er] (at/cm3) [Er] (at.%) Y2-xErxSi2O7 x 2×1020 0.3 0.03 1.2×1021 1.8 0.20 2.9×1021 4.2 0.46 5.0×1021 6.3 0.69 8.7×1021 12.1 1.33 1.5×1022 18.0 2.00
  • 35. 15 20 25 30 35 40 45 50 55 60 0 200 400 600 800 1000  phase Intensity(cps) 2 (degree) x = 0.03 x = 1.33 x = 2  phase y phase Y2-xErxSi2O7 crystallization  Different relative intensities  Slight shift of peaks position  Mixture of y, α, β phases  High-T phases increase by reducing Er content RE2Si2O7 amorphous y α β γ
  • 36. Influence of Er content on 1.54 μm emission  PL associated to Er ions in α phase  Maximum IPL for Er2Si2O7 0.0 0.5 1.0 1.5 2.0 0 2 4 6 8 10 12 14 0 2 4 6 PL Intensity PLIntensity(a.u.) x Pexc = 10 mW  exc = 488 nm  det = 1.54 m Lifetime Lifetime(ms) 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 PLIntensity/(a.u.) x Pexc = 10 mW  exc = 488 nm  det = 1.54 m  Higher “emitting power” for lower-Er containing films
  • 37. Up-conversion in α-Y2-xErxSi2O7 Higher influence of up-conversion for higher Er content 900 1000 1100 1400 1500 1600 1700 0 2 4 6 8 10 12 14 x = 0.03 - [Er] = 0.3 at.% x = 0.69 - [Er] = 6.3 at.% x = 2.00 - [Er] = 18.0 at.% 4 I11/2  4 I15/2 PLIntensity(a.u.) Wavelength (nm) Pexc = 200 mW  exc = 488 nm 4 I13/2  4 I15/2 PL signal related to up-conversion phenomena 0 5 10 15 energy(10 3 cm -1 ) 4 I9/24 I11/2 4 I15/2 4 I13/2 1.54 m 0.98 m
  • 38. Up-conversion coefficient in α-Y2-xErxSi2O7 (i) 0 200 400 600 0.1 1 Pump power 0.1 mW 1 mW 10 mW 100 mW 600 mW NormalizedPLIntensityat1.54m Time (s) Er2 Si2 O7 M. Miritello et al., Mater. Sci. Eng. B 146, 29 (2008)  τ1 = 230 μs;  N1(0)Cup for different pump power             1 1 1 t 1 1 1 up 1 1 up 1 N t I t 1 N 0 I 0 1 N 0 C e N 0 C       21 1 1 up 1 1 dN N (N N ) 2C N dt       Rate equation for the 4I13/2 level (φ = 0)
  • 39. 0 100 200 300 400 500 600 0.0 0.5 1.0 1.5 2.0  det = 1.54 m Er2 Si2 O7 Y1.31 Er0.69 Si2 O7 Y1.97 Er0.03 Si2 O7 PLIntensity(a.u.) Power (mW) Up-conversion coefficient in α-Y2-xErxSi2O7 (ii) Rate equation for the 4I13/2 level    1 up 1 1 1 PL 1 up 1 1 2 8C N (1 ) I N 4C              21 1 1 up 1 1 dN N (N N ) 2C N 0 dt        M. Miritello et al., Adv. Mater. 19, 1582 (2007)
  • 40. α-Y1.31Er0.69Si2O7, [Er] = 6.3 at.%  Cup = (4 ± 2) × 10-17 cm3/s α-Y1.97Er0.03Si2O7 , [Er] = 0.3 at.%  Cup = (1.0 ± 0.2) × 10-18 cm3/s α-Er2Si2O7, [Er] = 18.0 at.%  Cup = (9 ± 2) × 10-17 cm3/s Up-conversion coefficient in α-Y2-xErxSi2O7 (ii) Er-doped hosts ([Er] ≈ 1020 cm-3) SiO2 → Cup = 2 × 10-17 cm3/s Al2O3 → Cup = 4 × 10-18 cm3/s 0 100 200 300 400 500 600 0.0 0.5 1.0 1.5 2.0  det = 1.54 m Er2 Si2 O7 Y1.31 Er0.69 Si2 O7 Y1.97 Er0.03 Si2 O7 PLIntensity(a.u.) Power (mW) M. Miritello et al., Adv. Mater. 19, 1582 (2007)
  • 41. 1 10 100 1000 0.01 0.1 1 10 100 Er2 Si2 O7 Y1.31 Er0.69 Si2 O7 Y1.97 Er0.03 Si2 O7 Erionsinthe 4 I13/2 state(%) Power (mW) Optical amplification in α-Y2-xErxSi2O7 Population inversion threshold Y1.31Er0.69Si2O7 and Er2Si2O7 Higher pump powers required Y1.97Er0.03Si2O7 Suitable for optical amplification at low pump powers
  • 42. Conclusions 0.0 4.0x10 21 8.0x10 21 1.2x10 22 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Y1.95 Er0.05 O3 , [Er] = 1.1 at.% Y1.43 Er0.57 O3 , [Er] = 11.4 at.% IPL (visible)/IPL (1.54m) Photon flux (cm -2 s -1 ) exc = 980 nm Two distinct regimes:  low Er content → good up-converter  high Er content → good down-converter Y-Er OXIDE THIN FILMS 1 10 100 1000 0.01 0.1 1 10 100 Y1.97 Er0.03 Si2 O7 Y1.31 Er0.69 Si2 O7 Er2 Si2 O7 Erionsinthe 4 I13/2 state(%) Power (mW) 1500 1520 1540 1560 1580 1600 0 2000 4000 6000 8000 PLIntensity(a.u.) Wavelength (nm) T = 12 K 10  RE2Si2O7 is the most stable composition  α-RE2Si2O7 is the most efficient structure for 1.54 μm emission  Population inversion at low pump powers in α-Y1.97Er0.03Si2O7 Y-Er SILICATE THIN FILMS

Editor's Notes

  1. No velocità ma flusso (bit per secondo)
  2. A DISTANZE PIU’ PICCOLE IL NUMERO DI CONNESSIONI PER UNITA’ DI VOLUME CRESCE E PER TRASFERIRE INFORMAZIONI SU SCALA PIU’ PICCOLA, AD ESEMPIO TRA CHIP O TRA DISPOSITIVI IN SINGOLO CHIP, SI UTILIZZANO CONNESSIONI METALLICHE La microelettronica si basa sul silicio
  3. MATERIALI COMPATIBILI CON LE TECNOLOGIE DELLA MICROELETTRONICA Bassa efficienza radiativa nel silicio
  4. 4° approccio -> integrare Si-nc con Er
  5. I GRUPPI –OH SONO COMUNI NEI MATERIALI COMUNEMENTE UTILIZZATI COME MATRICI PER L’ERBIO Non sono difetti...ma è un centro risonante a 1.54 micron
  6. MAGNETRON SPUTTERING IN ULTRA-ALTO VUOTO
  7. TRA I DUE REGIMI CAMBIANO LE SHELL DI COORDINAZIONE
  8. DALL’RBS OTTENGO LA DOSE -> POI MISURO LO SPESSORE CON ELLY -> CALCOLO LE CONCENTRAZIONI ATOMICHE
  9. Spettri uguali -> leggero shift -> no doppio picco -> singola fase -> confermato dalla riduzione di a
  10. A 488 nm eccito solo gli ioni Er; emissione a 0.56, 0.66, 0.98 e 1.54 micron 4 picchi -> 4 livelli -> eccito dall’alto...se eccito dal basso l’emissione nel VIS è solo per interazioni Er-Er (dai livelli inferiori)
  11. NO DETTAGLIO DELL’UP-CONV. MA DIRE CHE 2 FOTONI A 980 nm GENERANO 1 FOTONE A 560 nm
  12. TRA I SILICATI DI TERRE RARE SCELGO QUELLI MISTI Y-Er A CAUSA DELLE SOMIGLIANZE STRUTTURALI
  13. -POCA LETTERATURA SU PROPRIETA’ OTTICHE DI SILICATI MISTI DI Y-Er -STABILITA’ STRUTTURALE SCARSA -> VEDO REATTIVITA’ CON L’RBS
  14. LE PROPRIETA’ DEL MATERIALE SONO INTERESSANTI PER L’AMPLIFICAZIONE OTTICA -> ALLORA FACCIO I FILM!
  15. FARO’ VEDERE come esempio IL CASO ESTREMO più semplice -> SILICATO DI ERBIO (NO Y) I silicati sono sempre silicati
  16. VOGLIO VALUTARE L’EVOLUZIONE COMPOSIZIONALE DOPO IL TRATTAMENTO TERMICO La reazione è termodinamicamente favorita
  17. COMINCIO DAL DISILICATO (GIA’ VISTO) E POI VEDO LE DIFFERENZE DEGLI ALTRI
  18. IL SEGNALE A 1100 nm E’ DOVUTO ALLA RICOMBINAZIONE DI PORTATORI NEL SILICIO