SlideShare a Scribd company logo
1 of 35
R. Lo Savio, M. Miritello, P. Cardile, F. Priolo
Er-Er interactions in
yttrium-erbium compounds
thin films
MATIS CNR-INFM, Catania, Italy
Università di Catania, Catania, Italy
Scuola Superiore di Catania, Catania, Italy
Outline
 Optical applications of Er-based materials:
• Si-based optical communications
• Photovoltaics
 Role of Er-Er interactions
 Mixed Y-Er compounds:
• Oxide, Y2-xErxO3
• Disilicate, Y2-xErxSi2O7
 Thin films synthesis
 Structural and optical properties
 Influence of Er-Er interactions on the Er3+ optical emission
 Optical amplification and quantum cutting
 Conclusions
Erbium for optical applications
4
I9/2
4
F9/2
4
S3/2
4
F7/2
4
I11/2
4
I15/2
4
I13/2
0.56 mm
0.66 mm
0.98 mm
1.54 mm
0.49 mm
0.80 mm
Optical amplifiers
Optoelectronic devices
Visible phosphors
Photovoltaic
VISIBLE
EMISSION
INFRARED
EMISSION
4I13/2
4I15/2
1.54 μm photon emission
and amplification
Population inversion between
4I13/2 and 4I15/2 states
 High-phonon energy materials
 Er ions excited to 4I13/2 level
 Reduce decay rate of 4I13/2 level
Erbium in optical communications
Fast non-radiative
phononic decays
Erbium in photovoltaics (i)
Semiconductor
solar cell
Modify the solar spectrum
Si band gap
Absorption of photons with hn < EG
Transform infrared photons
into visible photons
Erbium in photovoltaics (ii)
Ge band gap
Semiconductor solar cell
Carriers thermalization
Transform visible photons
into infrared photons
Modify the solar spectrum
Er-Er interactions
Dipole-dipole interactions Strongly depends on the Er content
Cross-relaxation
0
5
10
15
energy(10
3
cm
-1
)
4
I9/24
I11/2
4
I15/2
4
I13/2
 High Er content
Up-conversion
0
5
10
15
energy(10
3
cm
-1
)
4
I9/24
I11/2
4
I15/2
4
I13/2
 High Er content
 High external pumping
Er-doping and Er compounds
A. Polman et al., J. Appl. Phys. 70, 3778 (1991)
Er-doping
Er:SiO2
Low solubility
in solid hosts
Er compounds
a-Er2Si2O7 crystalline structure
Fixed [Er]
Erbium content
1020 at/cm3
1022 at/cm3
 Same chemical composition
 Same crystalline structures
Y and Er in solid hosts:
 Same trivalent state 3+
 Similar ionic radius
Varying Er content in
mixed Y-Er compounds
[Er] = 1020 – 1022 cm-3
Mixed Y-Er compounds
Er ions are substitutional in Y sites
J. Hoang et al., J. Appl. Phys. 101, 123116 (2007)
RE oxides (RE2O3)
and silicates (RE2O3 + SiO2)
Y2O3
SiO2
Er2O3
CONFOCAL CO-SPUTTERING
UHV magnetron sputtering
Er2O3
c-Si
RFRFRF
 ULSI compatible
 Planar thin films
Careful control of films composition
rotating
heated
(400 °C)
Thin films synthesis
 Y-Er oxide
 Y-Er disilicate
20 30 40 50 60
0
200
400
600
800
x = 0.01
x = 0.57
Intensity(cps)
2 (degree)
(622)
(541)
(440)
(431)
(422)
(222)
(211)
1.5 1.6 1.7 1.8 1.9
0
10
20
30
40
50
60
Y Er
x = 0.05
x = 0.17
x = 0.57
NormalizedCounts
Energy (MeV)
RBS spectra
th ≈ 120 nm
 [Y]+[Er] is constant
 Sesquioxide composition
 [Er] = 1.2×1020 - 1.03×1022 at/cm3
Y-Er oxide films composition
R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009)
0.0 0.4 0.8 1.2 1.6 2.0
10.56
10.59
10.62
10.65
10.68
a(Å)
x
a(Y2O3)
a(Er2O3)
 Lattice parameter
linearly decreases
XRD analysis
Y2-xErxO3
x = 0.01 - 0.72
 bcc structure
of RE oxides
0.5 0.6 0.7 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
x = 0.05
4
I11/2
PLIntensity(a.u.)
4
F9/2
4
S3/2

exc
= 488 nm
 = 5 10
20
/cm
2
s
1.0 1.4 1.5 1.6
Wavelength (mm)
4
I13/2
RT PL spectra
PL emission in Y2-xErxO3
4
F9/2
4
S3/2
4
F7/2
4
I11/2
4
I15/2
4
I13/2
488 nm
0.56 mm
0.66 mm
0.98 mm
1.54 mm
Low phonon energy
LESS-PROBABLE
NON-RADIATIVE DECAYS
0.5 0.6 0.7 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
x = 0.05
4
I11/2
PLIntensity(a.u.)
4
F9/2
4
S3/2

exc
= 488 nm
 = 5 10
20
/cm
2
s
1.0 1.4 1.5 1.6
Wavelength (mm)
4
I13/2
RT PL spectra
PL emission in Y2-xErxO3
10
19
10
20
10
21
10
22
10
23
10
0
10
1
10
2
10
3
 (cm
-2
s
-1
)
0.56 mm
0.66 mm
0.98 mm
1.54 mm
IPL
(a.u.)
slope 1
Linear pumping regime
n
PL excI P
n → number of involved photons
0.5 0.6 0.7 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
x = 0.05
x = 0.17
4
I11/2
PLIntensity(a.u.)
4
F9/2
4
S3/2
exc
= 488 nm,  = 5 10
20
/cm
2
s
1.0 1.4 1.5 1.6
Wavelength (mm)
4
I13/2
Er-Er interactions at low fluxes
4S3/2depletion4
I9/2
4
I15/2
4
I13/2
4
S3/2
 Depends only on the Er content
 Occurs also in the linear regime
Er excited + Er in the ground state
Cross-relaxation
CR1
RT PL spectra
0.5 0.6 0.7 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
x = 0.05
x = 0.17
x = 0.57 
4
I11/2
PLIntensity(a.u.)
4
F9/2
4
S3/2
exc
= 488 nm,  = 5 10
20
/cm
2
s
1.0 1.4 1.5 1.6
Wavelength (mm)
4
I13/2
Visible PL
is quenched
4
I9/2
4
I15/2
4
I13/2
4
S3/2
4
I11/2
4
I15/2
4
I13/2
4
F9/2
CR1 CR2
Er-Er interactions at low fluxes
 Refilling of low-energy levels
at expenses of high-energy ones
most of
excited Er3+
R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009)
RT PL spectra
0.0 0.2 0.4 0.6 0.8
0
2
4
6
0 4 8 12 16
Er (at.%)
x
det
= 0.98 mm
det
= 1.54 mm
(ms) Energy migration and quenching
4
I11/2
4
I15/2
4
I13/2
2
1
0
Er3+ -OH
Increase of 4I11/2 and 4I13/2 decay rates
a,b) energy migration;
c) IR photon emission;
d) non-radiative
energy dissipation.
-OH
a
a
b
c
b d
Concentration quenching
c)
0.0 0.2 0.4 0.6 0.8
0
1
2
3
4
5
R=
-1
(10
4
s
-1
)
x
 
 
6
6
6 6
1
2 64Er Er
Er Er
d high
C
d d low


   
1
  Er Er q ErR C N N

E. Snoeks et al., Opt. Mater. 5, 159 (1996)
Er-concentration regimes
Slope increase
by a factor of 64
Er-doping (x < 0.5) → Er-O-Y units
Er compound (x > 0.5) → Er-O-Er units
det = 1.54 mm
Same environment
of Er2O3
Infrared PL
Max IPL at 0.98 mmEr-doping
Population inversion
N(4I11/2) > N(4I13/2)
Er compound Max IPL at 1.54 mm
4
I9/2
4
I15/2
4
I13/2
CR3
PLANAR OPTICAL
AMPLIFIERS AT 2.7 mm
4
I11/2
4
I15/2
4
I13/2
0.0 0.2 0.4 0.6 0.8
0
30
60
90
0 4 8 12 16
Er (at.%)
x
det
= 0.98 mm PL
det
= 1.54 mm PL
IPL
(a.u.)
R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009)
0.50 0.55 0.60 0.65 0.70 0.75
0.00
0.05
0.10
0.15
4
F9/2
exc
= 980 nm
PLIntensity(a.u.)
Wavelength (mm)
x = 0.05
x = 0.17
x = 0.41
x = 0.57
4
S3/2
Visible up-conversion
High up-converted PL
for x < 0.57
0
5
10
15
20
(4)
(3)
(2)
(1)
980 nm
energy(10
3
cm
-1
)
4
F7/2
4
S3/2
4
F9/2
4
I9/2
4
I11/2
4
I15/2
4
I13/2
560 nm
(1)
UP-CONVERSION
exc > emission
 Y-Er oxide
 Y-Er disilicate
0.6 0.7 0.8 0.9 1.0 1.1 1.6 1.7 1.8 1.9
0
10
20
30
40
50
ErYSi
x = 0.17
x = 0.65
x = 1.15
NormalizedYield(a.u.)
Energy (MeV)
O
 Total [Y]+[Er] is constant
 Disilicate-like composition
 [Er] = 2×1020 - 1.5×1022 at/cm3
RTA 1200 °C, 30 s, O2
Y-Er disilicate
Y2-xErxSi2O7
x between 0.03 and 2.00
 Stable composition under reactive annealing
 Higher optical emission at 1.54 mm
R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
15 20 25 30 35 40 45 50 55 60
0
200
400
600
800
1000
Intensity(cps)
2 (degree)
x = 0.03
x = 1.15
x = 2
a phase
y phase
RE2Si2O7 amorphous y α β γ
Y-Er disilicate
R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
1450 1500 1550 1600 1650
0
2
4
6
8
10
12
14
x = 0.03
x = 0.65
x = 2.00

exc
= 488 nm
 = 10
19
cm
-2
s
-1
PLIntensity(a.u.)
Wavelength (nm)
PL emission in a-Y2-xErxSi2O7
Highest PL intensity
for Er disilicate
 PL emission only at 1.54 mm
 Peak shape characteristic of a-phase
 Maximum efficiency is associated to Er in a-Er2Si2O7 structure
10
18
10
19
10
20
10
21
10
22
10
-1
10
0
10
1
10
2
10
3
10
4
IPL
at1.54mm(a.u.)
x = 0.03
x = 0.65
x = 2.00
 (cm
-2
s
-1
)
Up-conversion in a-Y2-xErxSi2O7
Sublinear IPL increase
Rate equation for the 4I13/2 level
 
 1 1 1 1
PL 1
1
1 2 8 N (1 )
I N
4
        
  

up
up
C
C
  
21 1
1 up 1
1
dN N
(N N ) 2C N 0
dt
     

4I15/2
4I13/2
 excitation
 de-excitation
 up-conversion, up = (CupN1)-1
  
Cup
Cup
10
18
10
19
10
20
10
21
10
22
10
-1
10
0
10
1
10
2
10
3
10
4
10
15
10
16
10
17
10
18
10
19
10
20
IPL
at1.54mm(a.u.)
x = 0.03
x = 0.65
x = 2.00
 (cm
-2
s
-1
) N1
(at/cm
3
)
Up-conversion in a-Y2-xErxSi2O7
  = 0 = 2.2 × 10-21 cm2
Cup = (2.3±0.6)×10-17 cm3/s
 Low Cup (similar to Er:SiO2)
 High excited Er fraction (≈ 10%)
PLANAR OPTICAL
AMPLIFIERS AT 1.54 mm
Absorption cross section
at 488 nm for Er:SiO2
4I15/2
4I13/2
10
18
10
19
10
20
10
21
10
22
10
-1
10
0
10
1
10
2
10
3
10
4
10
15
10
16
10
17
10
18
10
19
10
20
IPL
at1.54mm(a.u.)
x = 0.03
x = 0.65
x = 2.00
 (cm
-2
s
-1
) N1
(at/cm
3
)
Cup = (2 ± 1)×10-17 cm3/s
Cup = (6 ± 1)×10-16 cm3/s
Cup = (1.1 ± 0.1)×10-15 cm3/s
Er-Er interactions in the linear regime
  0 = 2.2 × 10-21 cm2
  0 = 4.4 × 10-21 cm2
  30 = 6.6 × 10-21 cm2
Excitation cross section
depends on Er content!!!
Cup and  increase
implies a common root?
4I15/2
4I13/2
0.0 0.4 0.8 1.2 1.6 2.0
0 4 8 12 16
1
2
3
4
NEr
( 10
21
at/cm
3
)
exc
= 488 nm
/0
x
Excitation cross section
Linear pumping regime
PL Er
RAD
I N

 

RAD → independent on NEr
PL
Er RAD
I
N

  
 
x = 0.03  = 0
0.0 0.4 0.8 1.2 1.6 2.0
0 4 8 12 16
1
2
3
4
NEr
( 10
21
at/cm
3
)
exc
= 488 nm
/0
x
Quantum cutting
0.0
0.5
1.0
1.5
2.0
2.5
Energy(eV)
4
F7/2
4
I15/2
4
I13/2
Low NEr(x < 0.65)
1 excitation per photon
pump
Quantum cutting
Medium NEr(0.65 ≤ x < 2)
2 excitations per photon
0.0 0.4 0.8 1.2 1.6 2.0
0 4 8 12 16
1
2
3
4
NEr
( 10
21
at/cm
3
)
exc
= 488 nm
/0
x
pump
int <  Cross-relaxations
 = 5 ms
int = 0.5 ms
int = (NErCup)-1
 = 0.2 ms
Quantum cutting
4
I15/2
4
I13/2
4
I15/2
4
I13/2
High NEr (x = 2)
3 excitations per photon
2 cross-relaxations
0.0 0.4 0.8 1.2 1.6 2.0
0 4 8 12 16
1
2
3
4
NEr
( 10
21
at/cm
3
)
exc
= 488 nm
/0
x
pump
 = 5 ms
 = 0.2 ms
int = 0.05 ms
Maximum excitation
efficiency of 300 %
0 4 8 12 16
1
2
3
4
0.0 0.4 0.8 1.2 1.6 2.0
/0
NEr
(×10
21
cm
-3
)

exc
= 380 nm
x
Quantum cutting
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Energy(eV)
4
F7/2
4
I9/2
4
I11/2
4
I15/2
4
I13/2
2
G11/2
2
H9/2
4
F5/2
4
S3/2
pump
380 nm
4
I15/2
4
I13/2
4
I15/2
4
I13/2
4
I15/2
4
I13/2
Maximum excitation
efficiency of 400 %
0 4 8 12 16
1
2
3
4
0.0 0.4 0.8 1.2 1.6 2.0
/0
NEr
(×10
21
cm
-3
)

exc
= 380 nm
x
Quantum cutting
Ge
Conclusions
Y-Er OXIDE
 Two distinct regimes exist: Er-doping and Er compound.
 In the Er compound regime cross-relaxations deplete the high-energy levels.
Optical amplification at 2.7 mm
0.0 0.2 0.4 0.6 0.8
0
30
60
90
0 4 8 12 16
Er (at.%)
x
det
= 0.98 mm PL
det
= 1.54 mm PL
IPL
(a.u.)
0.5 0.6 0.7 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
x = 0.05
x = 0.17
x = 0.57 
4
I11/2
PLIntensity(a.u.)
4
F9/2
4
S3/2

exc
= 488 nm,  = 5 10
20
/cm
2
s
1.0 1.4 1.5 1.6
Wavelength (mm)
4
I13/2
Visible emitter for x < 0.57
Conclusions
Y-Er DISILICATE
 Two distinct regimes exist: Er-doping and Er compound.
 In the Er compound regime cross-relaxations deplete the high-energy levels.
Quantum cutting effect with an
excitation efficiency up to 400 %
Correlation between  and Cup increase
10
18
10
19
10
20
10
21
10
22
10
-1
10
0
10
1
10
2
10
3
10
4
10
15
10
16
10
17
10
18
10
19
10
20
IPL
at1.54mm(a.u.)
x = 0.03
x = 0.65
x = 2.00
 (cm
-2
s
-1
)
N1
(at/cm
3
)
0 4 8 12 16
1
2
3
4
/0
NEr
(×10
21
cm
-3
)

exc
= 380 nm

More Related Content

What's hot

A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
STS FORUM 2016
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Pawan Kumar
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Pawan Kumar
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process
? ??
 
EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)
Philippe Smet
 

What's hot (20)

Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
 
Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...Preparation and study of optical properties of (polymer nickel nitrate) compo...
Preparation and study of optical properties of (polymer nickel nitrate) compo...
 
How gallium nitride can save energy, purify water, be used in cancer therapy ...
How gallium nitride can save energy, purify water, be used in cancer therapy ...How gallium nitride can save energy, purify water, be used in cancer therapy ...
How gallium nitride can save energy, purify water, be used in cancer therapy ...
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
 
EFFECT OF DEPOSITION PERIOD AND pH
EFFECT OF DEPOSITION PERIOD AND pHEFFECT OF DEPOSITION PERIOD AND pH
EFFECT OF DEPOSITION PERIOD AND pH
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
 
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
 
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)Defects in energy storage phosphors:  friends or enemies? (PRE19 workshop)
Defects in energy storage phosphors: friends or enemies? (PRE19 workshop)
 
History of lighting | quantum dots | Phonsi
History of lighting | quantum dots | PhonsiHistory of lighting | quantum dots | Phonsi
History of lighting | quantum dots | Phonsi
 
Mp2521672171
Mp2521672171Mp2521672171
Mp2521672171
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
 
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfacesLow energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
Low energy ion beam nanopatterning of Co_(x)Si_(1-x) surfaces
 
2012 TPCA presentation _New process
2012 TPCA presentation _New process2012 TPCA presentation _New process
2012 TPCA presentation _New process
 
EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)EMRS 2018 Replacing rare earth ions in LEDs (?)
EMRS 2018 Replacing rare earth ions in LEDs (?)
 
Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...Luminescent materials for biomedical applications: the example of nanothermom...
Luminescent materials for biomedical applications: the example of nanothermom...
 
Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.Models for Heterogeneous Catalysts: complex materials at the atomic level.
Models for Heterogeneous Catalysts: complex materials at the atomic level.
 
Tomás Palacios-Redefining electronics
Tomás Palacios-Redefining electronicsTomás Palacios-Redefining electronics
Tomás Palacios-Redefining electronics
 
Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.Green electronics: a technology for a sustainable future.
Green electronics: a technology for a sustainable future.
 
ML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressureML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under Pressure
 

Similar to Er-Er interactions in yttrium-erbium compounds thin films

mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
juby5
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
theijes
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...
IAEME Publication
 
PEO-SiO2 nanocomposites: Tuning of crystallinity
PEO-SiO2 nanocomposites:  Tuning of crystallinityPEO-SiO2 nanocomposites:  Tuning of crystallinity
PEO-SiO2 nanocomposites: Tuning of crystallinity
Eleni 'Hellen' Papananou
 
Department of chemistry institute of basic sciences
Department of chemistry institute of basic sciencesDepartment of chemistry institute of basic sciences
Department of chemistry institute of basic sciences
Raaj Mathur
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
Chelsey Crosse
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
saromemarzadeh
 

Similar to Er-Er interactions in yttrium-erbium compounds thin films (20)

Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
 
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
Dielectric behaviour of Ni+2 substituted Cu Co Nanocrystalline Spinel Ferrite...
 
03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf03-GenXrays-PPT.pdf
03-GenXrays-PPT.pdf
 
Ayida8thnov
Ayida8thnovAyida8thnov
Ayida8thnov
 
mems module-4.pdf
mems module-4.pdfmems module-4.pdf
mems module-4.pdf
 
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
 
17 session 2 fey - example sensitivity analysis
17 session 2   fey - example sensitivity analysis17 session 2   fey - example sensitivity analysis
17 session 2 fey - example sensitivity analysis
 
Analyzing ecofriendly perovskite solar cells
Analyzing ecofriendly perovskite solar cellsAnalyzing ecofriendly perovskite solar cells
Analyzing ecofriendly perovskite solar cells
 
The International Journal of Engineering and Science
The International Journal of Engineering and ScienceThe International Journal of Engineering and Science
The International Journal of Engineering and Science
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
 
Tehmina kousar final
Tehmina kousar final Tehmina kousar final
Tehmina kousar final
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
PEO-SiO2 nanocomposites: Tuning of crystallinity
PEO-SiO2 nanocomposites:  Tuning of crystallinityPEO-SiO2 nanocomposites:  Tuning of crystallinity
PEO-SiO2 nanocomposites: Tuning of crystallinity
 
Department of chemistry institute of basic sciences
Department of chemistry institute of basic sciencesDepartment of chemistry institute of basic sciences
Department of chemistry institute of basic sciences
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
Mid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSeMid-IR Pulse Generation Using Cr2+:ZnSe
Mid-IR Pulse Generation Using Cr2+:ZnSe
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction
 

Recently uploaded

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 

Recently uploaded (20)

Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 

Er-Er interactions in yttrium-erbium compounds thin films

  • 1. R. Lo Savio, M. Miritello, P. Cardile, F. Priolo Er-Er interactions in yttrium-erbium compounds thin films MATIS CNR-INFM, Catania, Italy Università di Catania, Catania, Italy Scuola Superiore di Catania, Catania, Italy
  • 2. Outline  Optical applications of Er-based materials: • Si-based optical communications • Photovoltaics  Role of Er-Er interactions  Mixed Y-Er compounds: • Oxide, Y2-xErxO3 • Disilicate, Y2-xErxSi2O7  Thin films synthesis  Structural and optical properties  Influence of Er-Er interactions on the Er3+ optical emission  Optical amplification and quantum cutting  Conclusions
  • 3. Erbium for optical applications 4 I9/2 4 F9/2 4 S3/2 4 F7/2 4 I11/2 4 I15/2 4 I13/2 0.56 mm 0.66 mm 0.98 mm 1.54 mm 0.49 mm 0.80 mm Optical amplifiers Optoelectronic devices Visible phosphors Photovoltaic VISIBLE EMISSION INFRARED EMISSION
  • 4. 4I13/2 4I15/2 1.54 μm photon emission and amplification Population inversion between 4I13/2 and 4I15/2 states  High-phonon energy materials  Er ions excited to 4I13/2 level  Reduce decay rate of 4I13/2 level Erbium in optical communications Fast non-radiative phononic decays
  • 5. Erbium in photovoltaics (i) Semiconductor solar cell Modify the solar spectrum Si band gap Absorption of photons with hn < EG Transform infrared photons into visible photons
  • 6. Erbium in photovoltaics (ii) Ge band gap Semiconductor solar cell Carriers thermalization Transform visible photons into infrared photons Modify the solar spectrum
  • 7. Er-Er interactions Dipole-dipole interactions Strongly depends on the Er content Cross-relaxation 0 5 10 15 energy(10 3 cm -1 ) 4 I9/24 I11/2 4 I15/2 4 I13/2  High Er content Up-conversion 0 5 10 15 energy(10 3 cm -1 ) 4 I9/24 I11/2 4 I15/2 4 I13/2  High Er content  High external pumping
  • 8. Er-doping and Er compounds A. Polman et al., J. Appl. Phys. 70, 3778 (1991) Er-doping Er:SiO2 Low solubility in solid hosts Er compounds a-Er2Si2O7 crystalline structure Fixed [Er] Erbium content 1020 at/cm3 1022 at/cm3
  • 9.  Same chemical composition  Same crystalline structures Y and Er in solid hosts:  Same trivalent state 3+  Similar ionic radius Varying Er content in mixed Y-Er compounds [Er] = 1020 – 1022 cm-3 Mixed Y-Er compounds Er ions are substitutional in Y sites J. Hoang et al., J. Appl. Phys. 101, 123116 (2007) RE oxides (RE2O3) and silicates (RE2O3 + SiO2)
  • 10. Y2O3 SiO2 Er2O3 CONFOCAL CO-SPUTTERING UHV magnetron sputtering Er2O3 c-Si RFRFRF  ULSI compatible  Planar thin films Careful control of films composition rotating heated (400 °C) Thin films synthesis
  • 11.  Y-Er oxide  Y-Er disilicate
  • 12. 20 30 40 50 60 0 200 400 600 800 x = 0.01 x = 0.57 Intensity(cps) 2 (degree) (622) (541) (440) (431) (422) (222) (211) 1.5 1.6 1.7 1.8 1.9 0 10 20 30 40 50 60 Y Er x = 0.05 x = 0.17 x = 0.57 NormalizedCounts Energy (MeV) RBS spectra th ≈ 120 nm  [Y]+[Er] is constant  Sesquioxide composition  [Er] = 1.2×1020 - 1.03×1022 at/cm3 Y-Er oxide films composition R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009) 0.0 0.4 0.8 1.2 1.6 2.0 10.56 10.59 10.62 10.65 10.68 a(Å) x a(Y2O3) a(Er2O3)  Lattice parameter linearly decreases XRD analysis Y2-xErxO3 x = 0.01 - 0.72  bcc structure of RE oxides
  • 13. 0.5 0.6 0.7 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x = 0.05 4 I11/2 PLIntensity(a.u.) 4 F9/2 4 S3/2  exc = 488 nm  = 5 10 20 /cm 2 s 1.0 1.4 1.5 1.6 Wavelength (mm) 4 I13/2 RT PL spectra PL emission in Y2-xErxO3 4 F9/2 4 S3/2 4 F7/2 4 I11/2 4 I15/2 4 I13/2 488 nm 0.56 mm 0.66 mm 0.98 mm 1.54 mm Low phonon energy LESS-PROBABLE NON-RADIATIVE DECAYS
  • 14. 0.5 0.6 0.7 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x = 0.05 4 I11/2 PLIntensity(a.u.) 4 F9/2 4 S3/2  exc = 488 nm  = 5 10 20 /cm 2 s 1.0 1.4 1.5 1.6 Wavelength (mm) 4 I13/2 RT PL spectra PL emission in Y2-xErxO3 10 19 10 20 10 21 10 22 10 23 10 0 10 1 10 2 10 3  (cm -2 s -1 ) 0.56 mm 0.66 mm 0.98 mm 1.54 mm IPL (a.u.) slope 1 Linear pumping regime n PL excI P n → number of involved photons
  • 15. 0.5 0.6 0.7 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x = 0.05 x = 0.17 4 I11/2 PLIntensity(a.u.) 4 F9/2 4 S3/2 exc = 488 nm,  = 5 10 20 /cm 2 s 1.0 1.4 1.5 1.6 Wavelength (mm) 4 I13/2 Er-Er interactions at low fluxes 4S3/2depletion4 I9/2 4 I15/2 4 I13/2 4 S3/2  Depends only on the Er content  Occurs also in the linear regime Er excited + Er in the ground state Cross-relaxation CR1 RT PL spectra
  • 16. 0.5 0.6 0.7 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x = 0.05 x = 0.17 x = 0.57  4 I11/2 PLIntensity(a.u.) 4 F9/2 4 S3/2 exc = 488 nm,  = 5 10 20 /cm 2 s 1.0 1.4 1.5 1.6 Wavelength (mm) 4 I13/2 Visible PL is quenched 4 I9/2 4 I15/2 4 I13/2 4 S3/2 4 I11/2 4 I15/2 4 I13/2 4 F9/2 CR1 CR2 Er-Er interactions at low fluxes  Refilling of low-energy levels at expenses of high-energy ones most of excited Er3+ R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009) RT PL spectra
  • 17. 0.0 0.2 0.4 0.6 0.8 0 2 4 6 0 4 8 12 16 Er (at.%) x det = 0.98 mm det = 1.54 mm (ms) Energy migration and quenching 4 I11/2 4 I15/2 4 I13/2 2 1 0 Er3+ -OH Increase of 4I11/2 and 4I13/2 decay rates a,b) energy migration; c) IR photon emission; d) non-radiative energy dissipation. -OH a a b c b d Concentration quenching c)
  • 18. 0.0 0.2 0.4 0.6 0.8 0 1 2 3 4 5 R= -1 (10 4 s -1 ) x     6 6 6 6 1 2 64Er Er Er Er d high C d d low       1   Er Er q ErR C N N  E. Snoeks et al., Opt. Mater. 5, 159 (1996) Er-concentration regimes Slope increase by a factor of 64 Er-doping (x < 0.5) → Er-O-Y units Er compound (x > 0.5) → Er-O-Er units det = 1.54 mm Same environment of Er2O3
  • 19. Infrared PL Max IPL at 0.98 mmEr-doping Population inversion N(4I11/2) > N(4I13/2) Er compound Max IPL at 1.54 mm 4 I9/2 4 I15/2 4 I13/2 CR3 PLANAR OPTICAL AMPLIFIERS AT 2.7 mm 4 I11/2 4 I15/2 4 I13/2 0.0 0.2 0.4 0.6 0.8 0 30 60 90 0 4 8 12 16 Er (at.%) x det = 0.98 mm PL det = 1.54 mm PL IPL (a.u.) R. Lo Savio et al., J. Appl. Phys. 106, 043512 (2009)
  • 20. 0.50 0.55 0.60 0.65 0.70 0.75 0.00 0.05 0.10 0.15 4 F9/2 exc = 980 nm PLIntensity(a.u.) Wavelength (mm) x = 0.05 x = 0.17 x = 0.41 x = 0.57 4 S3/2 Visible up-conversion High up-converted PL for x < 0.57 0 5 10 15 20 (4) (3) (2) (1) 980 nm energy(10 3 cm -1 ) 4 F7/2 4 S3/2 4 F9/2 4 I9/2 4 I11/2 4 I15/2 4 I13/2 560 nm (1) UP-CONVERSION exc > emission
  • 21.  Y-Er oxide  Y-Er disilicate
  • 22. 0.6 0.7 0.8 0.9 1.0 1.1 1.6 1.7 1.8 1.9 0 10 20 30 40 50 ErYSi x = 0.17 x = 0.65 x = 1.15 NormalizedYield(a.u.) Energy (MeV) O  Total [Y]+[Er] is constant  Disilicate-like composition  [Er] = 2×1020 - 1.5×1022 at/cm3 RTA 1200 °C, 30 s, O2 Y-Er disilicate Y2-xErxSi2O7 x between 0.03 and 2.00  Stable composition under reactive annealing  Higher optical emission at 1.54 mm R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
  • 23. 15 20 25 30 35 40 45 50 55 60 0 200 400 600 800 1000 Intensity(cps) 2 (degree) x = 0.03 x = 1.15 x = 2 a phase y phase RE2Si2O7 amorphous y α β γ Y-Er disilicate R. Lo Savio et al., Appl. Phys. Lett. 93, 021919 (2008)
  • 24. 1450 1500 1550 1600 1650 0 2 4 6 8 10 12 14 x = 0.03 x = 0.65 x = 2.00  exc = 488 nm  = 10 19 cm -2 s -1 PLIntensity(a.u.) Wavelength (nm) PL emission in a-Y2-xErxSi2O7 Highest PL intensity for Er disilicate  PL emission only at 1.54 mm  Peak shape characteristic of a-phase  Maximum efficiency is associated to Er in a-Er2Si2O7 structure
  • 25. 10 18 10 19 10 20 10 21 10 22 10 -1 10 0 10 1 10 2 10 3 10 4 IPL at1.54mm(a.u.) x = 0.03 x = 0.65 x = 2.00  (cm -2 s -1 ) Up-conversion in a-Y2-xErxSi2O7 Sublinear IPL increase Rate equation for the 4I13/2 level    1 1 1 1 PL 1 1 1 2 8 N (1 ) I N 4              up up C C    21 1 1 up 1 1 dN N (N N ) 2C N 0 dt        4I15/2 4I13/2  excitation  de-excitation  up-conversion, up = (CupN1)-1    Cup Cup
  • 26. 10 18 10 19 10 20 10 21 10 22 10 -1 10 0 10 1 10 2 10 3 10 4 10 15 10 16 10 17 10 18 10 19 10 20 IPL at1.54mm(a.u.) x = 0.03 x = 0.65 x = 2.00  (cm -2 s -1 ) N1 (at/cm 3 ) Up-conversion in a-Y2-xErxSi2O7   = 0 = 2.2 × 10-21 cm2 Cup = (2.3±0.6)×10-17 cm3/s  Low Cup (similar to Er:SiO2)  High excited Er fraction (≈ 10%) PLANAR OPTICAL AMPLIFIERS AT 1.54 mm Absorption cross section at 488 nm for Er:SiO2 4I15/2 4I13/2
  • 27. 10 18 10 19 10 20 10 21 10 22 10 -1 10 0 10 1 10 2 10 3 10 4 10 15 10 16 10 17 10 18 10 19 10 20 IPL at1.54mm(a.u.) x = 0.03 x = 0.65 x = 2.00  (cm -2 s -1 ) N1 (at/cm 3 ) Cup = (2 ± 1)×10-17 cm3/s Cup = (6 ± 1)×10-16 cm3/s Cup = (1.1 ± 0.1)×10-15 cm3/s Er-Er interactions in the linear regime   0 = 2.2 × 10-21 cm2   0 = 4.4 × 10-21 cm2   30 = 6.6 × 10-21 cm2 Excitation cross section depends on Er content!!! Cup and  increase implies a common root? 4I15/2 4I13/2
  • 28. 0.0 0.4 0.8 1.2 1.6 2.0 0 4 8 12 16 1 2 3 4 NEr ( 10 21 at/cm 3 ) exc = 488 nm /0 x Excitation cross section Linear pumping regime PL Er RAD I N     RAD → independent on NEr PL Er RAD I N       x = 0.03  = 0
  • 29. 0.0 0.4 0.8 1.2 1.6 2.0 0 4 8 12 16 1 2 3 4 NEr ( 10 21 at/cm 3 ) exc = 488 nm /0 x Quantum cutting 0.0 0.5 1.0 1.5 2.0 2.5 Energy(eV) 4 F7/2 4 I15/2 4 I13/2 Low NEr(x < 0.65) 1 excitation per photon pump
  • 30. Quantum cutting Medium NEr(0.65 ≤ x < 2) 2 excitations per photon 0.0 0.4 0.8 1.2 1.6 2.0 0 4 8 12 16 1 2 3 4 NEr ( 10 21 at/cm 3 ) exc = 488 nm /0 x pump int <  Cross-relaxations  = 5 ms int = 0.5 ms int = (NErCup)-1  = 0.2 ms
  • 31. Quantum cutting 4 I15/2 4 I13/2 4 I15/2 4 I13/2 High NEr (x = 2) 3 excitations per photon 2 cross-relaxations 0.0 0.4 0.8 1.2 1.6 2.0 0 4 8 12 16 1 2 3 4 NEr ( 10 21 at/cm 3 ) exc = 488 nm /0 x pump  = 5 ms  = 0.2 ms int = 0.05 ms Maximum excitation efficiency of 300 %
  • 32. 0 4 8 12 16 1 2 3 4 0.0 0.4 0.8 1.2 1.6 2.0 /0 NEr (×10 21 cm -3 )  exc = 380 nm x Quantum cutting 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Energy(eV) 4 F7/2 4 I9/2 4 I11/2 4 I15/2 4 I13/2 2 G11/2 2 H9/2 4 F5/2 4 S3/2 pump 380 nm 4 I15/2 4 I13/2 4 I15/2 4 I13/2 4 I15/2 4 I13/2 Maximum excitation efficiency of 400 %
  • 33. 0 4 8 12 16 1 2 3 4 0.0 0.4 0.8 1.2 1.6 2.0 /0 NEr (×10 21 cm -3 )  exc = 380 nm x Quantum cutting Ge
  • 34. Conclusions Y-Er OXIDE  Two distinct regimes exist: Er-doping and Er compound.  In the Er compound regime cross-relaxations deplete the high-energy levels. Optical amplification at 2.7 mm 0.0 0.2 0.4 0.6 0.8 0 30 60 90 0 4 8 12 16 Er (at.%) x det = 0.98 mm PL det = 1.54 mm PL IPL (a.u.) 0.5 0.6 0.7 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 x = 0.05 x = 0.17 x = 0.57  4 I11/2 PLIntensity(a.u.) 4 F9/2 4 S3/2  exc = 488 nm,  = 5 10 20 /cm 2 s 1.0 1.4 1.5 1.6 Wavelength (mm) 4 I13/2 Visible emitter for x < 0.57
  • 35. Conclusions Y-Er DISILICATE  Two distinct regimes exist: Er-doping and Er compound.  In the Er compound regime cross-relaxations deplete the high-energy levels. Quantum cutting effect with an excitation efficiency up to 400 % Correlation between  and Cup increase 10 18 10 19 10 20 10 21 10 22 10 -1 10 0 10 1 10 2 10 3 10 4 10 15 10 16 10 17 10 18 10 19 10 20 IPL at1.54mm(a.u.) x = 0.03 x = 0.65 x = 2.00  (cm -2 s -1 ) N1 (at/cm 3 ) 0 4 8 12 16 1 2 3 4 /0 NEr (×10 21 cm -3 )  exc = 380 nm

Editor's Notes

  1. -Up-convertedvisible PL; -Suppression at x=0.57; -Balancebetweenup-conversion and cross-relaxation