SlideShare a Scribd company logo
1 of 92
Dr. R K Maheshwari
Prof. (Ex-Head)
Department of Pharmacy
SGSITS, Indore
Contact no:09406621907
Email id: rkrkmaheshwari@yahoo.co.in
Website: www.rkmaheshwari.com
1
ECOFREINDLY PHARMACEUTICAL
APPLICATIONS OF –
1.HYDROTROPIC SOLUBILIZATION
2.MIXED HYDROTROPIC
SOLUBILIZATION
3.MIXED SOLVENCY CONCEPT
All substances whether liquids, gases or solids have solubilizing
power.
 Liquids are already known as solvents.
 In supercritical fluid technology, carbon di oxide gas is liquefied to act
as solvent to produce nanoparticles etc.
 There are many proofs to show the solubilizing power of solids.
2
 Solid substances can act as solvents if they are melted e.g.
 If PEG 4000 is melted at about 60°C, this melted liquid dissolves
diclofenac sodium (m.p 283°C).
 Melted ibuprofen (m.p. 78°C) dissolves diclofenac sodium (m.p.
283°C), salicylic acid (m. p. 159°C) etc.
 Melted urea (132°C) dissolves diclofenac sodium (m.p. 283°C).
 Solubility of nalidixic acid in ethanolic solution of Ibuprofen (20% w/v) is
2.689%w/v (Solubility of nalidixic acid in ethanol is 0.1981%w/v)- 13
times enhancement
3
 Eutectic liquid obtained by triturating equal proportions of menthol (a solid)
and thymol (a solid) dissolves salicylic acid, metronidazole benzoate,
Atenolol, Ornidazole, Benzocaine, Eudragit RSPO, Euragit RLPO,
Resorcinol , Diltiazem HCl, BHA nicely while the same eutectic liquid is bad
solvent for Satranidazole, Frusemide, Nimesulide, Aspartame, Carvedilol,
Gatifloxacin, Piroxicam, Methyl Paraben Sodium.
4
We know that the solvents like ethanol, methanol etc are also
solvents for some solutes and non-solvents for others.
 Any poor solvent may be made a strong solvent by use of proper
solubilizers.
 It may reduce the total concentration of individual solubilizers necessary to
produce modest increase in solubility by employing additives in lower
concentrations from the point of view of safety of solubilizers. This approach
shall be applicable to prepare different dosage forms of the poorly soluble
drugs.
 The mixed solvency approach can be utilized to perform titrimetric and
spectrophotometric analysis of poorly soluble drugs precluding the use of
organic solvents.
5
 The approach shall be useful to develop various novel drug delivery systems using
safer solvents precluding the use of toxic, pollutant organic solvents.
 Synergistic action in solvent character can be obtained. For example solubilities of
Ibuprofen in aqueous solutions of 40 % w/v PEG 400 (a solvent), 40 % w/v PEG
4000(solid substance), 40 % w/v Urea, and 40 % w/v sodium citrate (hydrotropic
agent) are 0.593% w/v, 0.440% w/v, 0.599 % w/v and 0.531% w/v respectively.
However, an aqueous solution made by mixing 10% w/v each of PEG 400, PEG
4000, urea and sodium citrate (total dissolved substances 40 % w/v) has solubility of
1.329% w/v for ibuprofen. This shows synergistic solvent action due to application of
mixed solvency.
6
 Carbon dioxide gas on liquefaction, dissolves solutes to obtain
nanoparticles.
 This technology is used for extractions of active constituents from
herbals.
 This technology is used for purification of solutes.
 Liquefied carbon dioxide gas is solvent for some solutes and non
solvent for others.
 Any liquefied gas ( oxygen, hydrogen, nitrogen etc ) shall also be
solvent for some solutes and non solvent for others.
 This proves that gases posses solvent character.
7
Compounds having good
solubility Compounds having bad solubility
 Metronidazole benzoate (more
than 200 mg/ml)
 Atenolol (>90 mg/ml)
 Ornidazole (>120 mg/ml)
 Benzocaine (>120 mg/ml)
 Eudragit RSPO (>300 mg/ml)
 Resorcinol (>190 mg/ml)
 Eudragit RLPO (>230 mg/ml)
 Diltiazem HCl (>150 mg/ml)
 BHA (>500 mg/ml)
 Salicylic acid (>70mg/ml)
 Satranidazole (less than 5 mg/ml)
 Frusemide (<5 mg/ml)
 Nimesulide (<5 mg/ml)
 Aspartame (<5 mg/ml)
 Carvedilol (<5 mg/ml)
 Gatifloxacin (<15 mg/ml)
 Piroxicam (<15 mg/ml)
 Methyl Paraben sodium (<5
mg/ml)
9
10
Miscible liquids Immiscible liquids
Ethanol Glycerin
Propylene Glycol Water
Benzyl alcohol
Soyabean oil
PEG 400
Methanol
Compounds having good solubility Compounds having poor solubility
 Ibuprofen (78°C) >600 mg/gm
 Salicylic acid (159°C) > 200
mg/gm
 Metronidazole benzoate > 180
mg/gm
 Naproxen (155°C) > 50 mg/gm
 Indomethacin (158°C) >90 mg/gm
 PVP K30 > 180 mg/gm
 Aspartame < 5mg/gm
 Piroxicam (198°C) < 15mg/gm
 Sodium caprylate < 5mg/gm
 Diclofenac sodium (283°C) <
5mg/gm
 Satranidazole (185°C) < 5mg/gm
 Gatifloxacin <15mg/gm
11
Compounds having good solubility Compounds having bad solubility
 Eudragit RLPO > 250mg/gm
 Piroxicam (198°C) >300mg/gm
 Salicylic acid > 150mg/gm
 Metronidazole benzoate
> 50mg/gm
 Naproxen (155°C) > 100 mg
 Caffeine > 350 mg/gm
 Indomethacin (158°C) >300
mg/gm
 PVP K30 > 300 mg/gm
 Sodium caprylate <5mg/gm
 Diclofenac Sodium <5mg/gm
 Aspartame <5mg/gm
12
13
Various Eutectic mixturesVarious Eutectic mixtures
1. Phenol + PEG 6000
2. Phenol + aspirin
3. Phenol + vanilin
4. Phenol + niacinamide
5. Phenol + caffeine
6. Phenol + metformin HCl
7. Phenol + eudragit RSPO + Thymol
8. Phenol + eudragit RLPO + Thymol
9. Camphor + eudragit RSPO + Thymol
10.Phenol + eudragit RLPO + Menthol
 Thymol-camphor
 Phenol-aspirin
 Phenol-vanillin
 Phenol-caffeine
 Menthol-camphor
14
All these liquids can act as solvents for some drugs and non-
solvents for others. These all studies also indicate that solids
also possess solvent character.
15
Eutectic Liquids
NOTE--Same vials when kept at room temperature
recover original liquid state
Compounds having good solubility Compounds having poor solubility
 Naproxen (155°C) >260mg/gm
 Piroxicam (198°C) >100 mg/gm
 Salicylic acid (159°C) >350mg/gm
 PVP K30 >200mg/gm
 Niacinamide (132°C) >160mg/gm
 Indomethacin (158°C) >90mg/gm
 Diclofenac Sodium (283°C)
 > 300mg/gm
 Methyl Paraben Sodium
>300mg/gm
 Sodium Caprylate >160mg/gm
 Caffeine >140mg/gm
 Sodium benzoate (>300°C)
<5mg/gm
 Satranidazole (185°C) <5mg/gm
 Metformin Hcl (218 °C) <15mg/gm
 Urea (132°C) <5mg/gm
 Paracetamol (168°C) <15mg/gm
 Norfloxacin (220°C) <5mg/gm
 Aspartame <5mg/gm
 HP-βCD <5mg/gm
 Frusemide <5mg/gm
 Nimesulide <15mg/gm
16
Drug Solvent system Solubility(%w/v)
Nalidixic acid Alcohol 0.198
Nalidixic acid 20% Ibuprofen in alcohol 2.689
Nalidixic acid 20% Ibuprofen+20%
Benzoic acid in alcohol
5.753
Nalidixic acid 20% Oleic acid in alcohol 0.621
Nalidixic acid 15% Niacinamide in
alcohol (pH 3-3.5)
0.347
Nalidixic acid 20% Camphor in alcohol
(pH 4.5)
0.221
Nalidixic acid 7% Atenolol in alcohol (pH
8.5-9.0)
8.545
17
Drug Solvent system Solubility(%w/v)
Frusemide Alcohol 1.769
Frusemide 20% Oleic acid in alcohol 2.947
Frusemide 20% Ibuprofen in alcohol 5.009
Frusemide 15% Niacinamide in
alcohol (pH 3-3.5)
5.009
Frusemide 20% Tween20 in alcohol
(pH 4-4.5)
6.777
Frusemide 20% Ibuprofen+20%
Benzoic acid in alcohol
0.630
Frusemide 20% Camphor in alcohol
(pH 4.5)
3.830
Frusemide Alcohol saturated with
niacinamide
8.381
18
Drug Solvent system Solubility(%w/v)
Salicylic acid Alcohol 31.746
Salicylic acid 20% Oleic acid in alcohol 24.856
Salicylic acid 20% Ibuprofen in alcohol 27.316
Salicylic acid 20% Tween20 in alcohol
(pH 4-4.5)
33.592
Salicylic acid 20% Camphor in alcohol
(pH 4.5)
36.456
19
 Phenol, below 8 % w/v concentration and above 70 % w/v
concentration gives clear solutions in water.
 5 gm phenol + 95 gm water gives a clear solution (here phenol
is solute and water is solvent).
 95 gm phenol + 5 gm water gives a clear solution (here water
is solute and phenol is solvent).
 This proves that solid has solvent action.
 Soxhelet apparatus can be run by phenol (like solvent).
20
S. No. Solvent system Solubility (% w/v)
1 Distilled water 0.028
2 40%w/v PEG 400 0.593
3 40%w/v Sodium citrate 0.531
4 40%w/v PEG 300 1.531
5 40%w/v glycerin 0.282
6 40%w/v PEG 4000 0.440
7 40%w/v PEG 6000 0.359
8 40%w/v urea 0.599
9 40%w/v Propylene glycol 0.469
21
S
no.
Blend composition Observed
Solubility
(% w/v)
Contributory
solubility
(% w/v)
1 GL-PG-ST-UR (10% w/v each solubilizer) 0.526 0.427
2 GL-FT-TH-UR (10% w/v each solubilizer) 0.425 0.713
3 FH-FT-UR-SC (10% w/v each solubilizer) 1.329 0.541
4 GL-PG-FH-UR (10% w/v each solubilizer) 0.732 0.448
5 PG-TH-FT-SC (10% w/v each solubilizer) 1.110 0.743
6 TH-FH-FT-ST (10% w/v each solubilizer) 0.877 0.731
7 GL-FH-TH-SC (10% w/v each solubilizer) 0.938 0.734
8 FT-ST-FH-UR (10% w/v each solubilizer) 0.764 0.498
9 FH-TH-UR-SC (10% w/v each solubilizer) 1.146 0.814
10 FT-TH-PG-UR (10% w/v each solubilizer) 0.952 0.460
22
 5% (Sodium benzoate + benzoic acid) as buffering agent
 5% Lignocain HCl as local anesthetic (to reduce the pain of
injection)
 4% Benzyl alcohol as preservative and/or as local anesthetic
 2.5% Niacinamide(as stabilizer)
 5% Alcohol (upto 10% alcohol can be used)
 5% Propylene glycol ( even very large amounts can be safely used)
23
 5% PVP (plasma expander)
 5% Tween (20/80 etc)
 5% HP Beta Cyclodextrin
 5% PEG 200/300/400/500/600 etc. (liquids)
 5% PEG 4000/6,000/8,000/10,000 etc. (solids)
24
 Various glycerides of –
1. Stearic acid-3.1%
2. Palmitic acid- 8.3%
3. Oleic acid- 56 %
4. Arachidic acid- 2.4 %
5. Behenic acid- 3.1 %
6. Lignoceric acid- 1.1%
7. Linoleic acid- 26 %
 Glyceryl monostearate- a waxy solid of M.P. 63-68 .℃
 Glyceryl tripalmitate-a solid having M.P. 66 .℃
 Glyceryl monooleate- a solid having M.P. 25 .℃
 Glyceryl trioleate-a yellowish oily liquid.
Thus peanut oil consists of several solids and liquids. The present
solid also contributes in the solvent action of peanut oil.
25
27
28
29
S no. Agent employed
(%w/w)
Solubility
enhancement
ratio
1 Ethyl acetate 1.000
2 Camphor (20%) 2.573
3 Camphor (10%) 1.261
4 PEG 200 (20%) 7.232
5 PEG 200 (10%) 2.827
6 PEG 400 (20%) 5.769
7 PEG 400 (10%) 2.070
Table continued…
S
no.
Agent employed
(%w/w)
Solubility
enhancement
ratio
8 Menthol (20%) 3.239
9 Menthol (10%) 2.252
10 Dichloromethane 1.957
11 Vanillin (10%) 2.921
12 Eudragit RSPO (20%) 5.107
13 Eudragit RSPO (15%) 3.367
14 Eudragit RSPO (10%) 1.756
36
Co surfactant Solubility (mg/g of
vehicle) (mean±SD)
Lauroglycol 90 80.51±2.38
PEG 400 103.26±3.37
Transcutol P 176.83±2.28
Propylene glycol 89.51 ±4.32
Ethanol 4.96±2.78
Menthol 30%* 30.98±0.18
Menthol 60%* 44.60±1.31
Camphor 30%* 145.26±1.20
Camphor 60%* 253.47±2.20
Vanillin 30%* 121.97±0.86
Vanillin 60%* 183.47±0.95
Leutrol F-68 30%* 33.34±0.18
Solubility data of Candesartan Cilexetil in different
cosurfactants (M Pharm thesis work of Mr. Chandan
Chandana).
*Solution in ethanol
37
Co surfactant Solubility (mg/g of
vehicle) (mean±SD)
Leutrol F-68 60%* 59.22±0.27
Camphor/Vanillin (20/20)* 193.32±2.65
Camphor/Vanillin (20/40)* 219.18±1.70
Camphor/Vanillin (40/20)* 265.34±1.71
Vanillin/Leutrol (20/20) * 107.79±1.86
Vanillin/Leutrol (20/40) * 98.93±1.40
Vanillin/Leutrol (40/20) * 137.55±3.48
Camphor/Leutrol (20/20)* 134.53±3.27
Camphor/Leutrol (20/40) * 118.10±1.09
Camphor/Leutrol (40/20) * 214.59±4.96
Camphor/Vanilin/Leutrol (10/10/10) * 210.65±1.39
Camphor/Vanilin/Leutrol (20/20/20)* 303.79±2.24
Table continued…
*Solution in ethanol
Naproxen solubility in propylene glycol-0.402% (4.02 mg/ml)
BLEND 1
( M Pharm thesis work of Ms. Lalita Gaur)
S. No. Ingredients Concentration
1 Sodium benzoate 5% w/v
2 Benzoic acid 5% w/v
3 Niacinamide 5% w/v
4 PVP 40000 5% w/v
5 Propylene glycol Up to 100% w/v
Solubility in blend 1 ( 4.81%)
Solubility enhancement- 11.94 Times
BLEND 2
( M Pharm thesis work of Ms. Lalita Gaur)
S. No. Solubilizers Concentration
1. Sodium benzoate 2% w/v
2. Benzoic acid 5% w/v
3. Niacinamide 5% w/v
4. PVP 40000 3% w/v
5. Propylene glycol Upto 100% w/v
Solubility in blend-2 (4.53%)
Solubility enhancement- 11.2 times
A model dry injection for reconstitution
Model Blend Composition
 Sodium benzoate – 5% w/v
 Lignocaine HCl – 5% w/v
 PVP K 30 – 5% w/v
 Niacinamide – 2.5% w/v
 PEG 4000 – 7.5% w/v
 Water, upto – 100 ml
 Solubility of aspirin in this blend at room temperature =
8.811% w/v (pH = 6)
 Solubility of aspirin in water at room temperature = 0.331%
w/v
 Therefore, solubility enhancement ratio = 8.811/0.331= more
than 25 fold
41
 NOTE: Sodium benzoate 5% w/v is widely used as
buffering agent in aqueous injections.
 Lignocaine hydrochloride 5% w/v is employed as an
additive to reduce the pain (of injections).
 PVP K30 5% w/v is safely used additive.
 Niacinamide 2.5% w/v is safely used stabilizer in
injections.
 PEG 4000 7.5%w/v, safely employed additive.
42
 100 mg Aspirin can be easily dissolved by 2 ml of
above blend (Mixed solvent blend).
 100 mg Sodium benzoate, fine powder.
 100 mg Lignocaine hydrochloride, fine powder.
 100 mg PVP K30, fine powder.
 50 mg Niacinamide, fine powder.
 150 mg PEG4000
 + 100 mg Aspirin, fine powder.
 All these are kept in a 5 ml vial. After reconstitution,
using 2 ml water, we get a clear solution.
43
Drug Solubility in
distilled water
at room
temperature
(%w/v)
Solubility in
model blend at
room
temperature
(%w/v)
Solubility
enhancement
ratio
Aspirin 0.331 8.811 26.6 fold
Norfloxacin 0.088 0.652 7.4 fold
Tinidazole 0.538 1.206 2.2 fold
Piroxicam 0.040 0.994 24.8 fold
Frusemide 0.064 2.013 31.4 fold
Indomethacin 0.036 3.009 83.6 fold
44
 Tablet powder equivalent to 50 mg was transfered
to 500 ml volumetric flask.
 Then, 10 ml of eutectic liquid of
Phenol: Niacinamide (25:10) was transfered to it
and the flask was shaken for 10 min.
 Then, about 400 ml distilled water was added and
flask was shaken for 5 min and volume was made
upto 500 ml with distilled water.
 Above solution was filtered through Whatmann
filter paper.
45
 Then, 10 ml of filtrate was diluted to 50 ml with
distilled water and the absorbance of filtrate was
noted at 318 nm against reagent blank.
 The drug content was calculated using the
calibration curve.
46
 Enhancement in aqueous solubility of a poorly water soluble drug in
the presence of large concentration of a solute (hydrotropic agent).
 Concentrated (20 to 50 %) aqueous solution of sodium benzoate,
sodium salicylate, sodium ascorbate, niacinamide and urea etc.
enhances the aqueous solubility of poorly soluble drugs. For
example 30% w/v aqueous solution of sodium benzoate increases
the solubility of ibuprofen, ketoprofen, nalidixic acid, naproxen,
ornidazole, tinidazole, metronidazole, gatifloxacin etc. to a large
extent.
47
Same concepts can be utilized for
 Extractions of herbal drugs to obtain the active constituents.
 In analytical techniques like – TLC, titrimetric analysis and
spectrophotometric analysis of poorly water soluble drugs.
 To develop various novel drug delivery systems of herbal origin.
48
The concept shall be very useful in all above mentioned fields. The
common advantage being avoidance of organic solvents (which may
be costlier, hazardous, pollutant).
49
50
Various Hydrotropic agents
Sodium Salicylate Lysine Methyl Urea
Sodium Gentisate Isoniazid Di methyl Urea
Sodium Gluconate Sodium Acetate Resorcinol
Sodium Benzoate Tryptophan Sodium-m-hydroxy
benzoate
Sodium Ascorbate Urea Sodium-p-hydroxy
benzoate
Sodium Ibuprofen Pheniramine
Maleate
Sodium 2,4 –
dihydroxy benzoate
Sodium citrate Niacinamide Sodium 2,5 –
dihydroxy benzoate
Cholpheniramine
Maleate
Ethyl Urea Butyl Urea
Drug Solvent system Solubility
(% w/v)
Solubility
enhancement
ratio
Ibuprofen DW 0.028 -
Ibuprofen 2 M SB 2.390 85.4
Flurbiprofen DW 0.012 -
Flurbiprofen 2 M SB 1.440 120.0
Naproxen DW 0.009 -
Naproxen 2 M SB 1.081 120.1
Aspirin DW 0.131 -
Aspirin 4 M SA 7.409 56.5
Aspirin 1.25 M SC 4.728 36.1
Aspirin 2 M SB 3.151 24.1
51
Drug Solvent system Solubility
(% w/v)
Solubility
enhancement
ratio
Aceclofenac DW 0.011 -
Aceclofenac 2 M SB 11.032 1002.9
Ketoprofen DW 0.007 -
Ketoprofen 4 M SA 0.944 134.9
Ketoprofen 2 M SB 12.321 1760.1
Ketoprofen 2 M SS 2.062 294.6
Metronidazole DW 0.728 -
Metronidazole 2 M SB 3.783 5.2
Metronidazole 2 M NM 7.941 10.9
Metronidazole 10 M UR 3.682 5.1
52
Drug Solvent system Solubility
(% w/v)
Solubility
enhancement
ratio
Tinidazole DW 0.538 -
Tinidazole 2 M SB 3.302 6.1
Tinidazole 2 M NM 3.794 7.1
Tinidazole 10 M UR 3.821 7.1
Norfloxacin DW 0.088 -
Norfloxacin 2 M SB 3.822 43.4
Norfloxacin 2 M NM 0.851 9.7
Nalidixic acid DW 0.021 -
Nalidixic acid 2 M SB 2.061 98.1
Nalidixic acid 2 M NM 0.452 21.5
53
Drug Solvent
system
Solubility
(% w/v)
Solubility
enhancement
ratio
Hydrochlorothiazide DW 0.039 -
Hydrochlorothiazide 10 M UR 1.784 45.7
Ofloxacin DW 1.452 -
Ofloxacin 2 M SB 8.560 5.9
Gatifloxacin DW 0.131 -
Gatifloxacin 10 M UR 8.183 62.5
Atenolol DW 1.112 -
Atenolol 10 M UR 6.814 6.1
Salicylic acid DW 0.170 -
Salicylic acid 1.25 M SC 15.059 88.6
54
SOME CLASS 3 SOLVENTS SOME CLASS 2 SOLVENTS
Ethanol Acetonitrile
Isopropyl acetate Chlorobenzene
Acetone Chloroform
Anisole Cyclohexae
1-Butanol Dichloromethane
2-Butanol Methanol
Dimethyl sulfoxid N,N-Dimethylacetamide
Acetone N,N-Dimethylformamide
Ethyl acetate 1,4-Dioxane
Heptane Formamide
Ethyl formate Ethylene glycol
55
56
57
58
Amount of
drug taken
Method of
Analysis
Amount
estimated
%coefficient
of variation
Standard
error
400 mg IP method 398.9±0.63 0.63 0.36
400 mg Proposed
method
398.3±0.70 0.70 0.40
59
60
61
 Involves use of dimethyl formamide (DMF), a
class 2 organic solvent in the titrimetric method.
 Analysis of frusemide bulk drug (hydrotropic
method) -organic solvent has been replaced by 2
M sodium benzoate solution.
62
Drug Hydrotrope
Aspirin (bulk) 2 M Sodium benzoate
4 M Sodium acetate
1.25 Sodium citrate
2 M Sodium salicylate
2 M Niacinamide
0.5 M Ibuprofen sodium
Sodium citrate
Aspirin (tablet) 2 M Niacinamide
2 M Sodium salicylate
0.5 M Ibuprofen sodium
2 M Sodium benzoate
10 M Urea
1.5 M Metformin HCl
63
Drug Hydrotrope
Aceclofenac (bulk) 2.5 M Sodium salicylate
2 M Sodium benzoate
0.5 M Ibuprofen sodium
1.5 M Metformin Hcl
(22.5:22.5) Sodium citrate : urea
NNDU : Sodium citrate(20:20)
Aceclofenac (Tablets) 0.5 M Ibuprofen sodium
2 M Sodium salicylate
(22.5:22.5) Sodium citrate : urea
2 M Sodium benzoate
Chlorpropamaide (bulk) 0.5 M Ibuprofen sodium
2 M Sodium benzoate
64
Drug Hydrotrope
Benzoic acid 2 M Sodium benzoate
2 M Sodium salicylate
1 M Calcium disodium edetate
1.5 M Ibuprofen sodium
7.5 M N-N Dimethyl Urea
Flurbiprofen (bulk) 2 M Sodium benzoate
0.5 M Ibuprofen sodium
Flurbiprofen (tablet) 2 M Sodium benzoate
Frusemide (bulk) 0.5 M Ibuprofen sodium
2 M Sodium salicylate
5 M Urea + 1 M Sodium acetate + 0.4 M Sodium citrate
15% NM in ethanol
7.5 M N-N Dimethyl Urea
65
Drug Hydrotrope
Frusemide (tablet) 2 M Sodium salicylate
5 M Urea + 1 M Sodium acetate + 0.4 M Sodium
citrate
15% Niacinamide in ethanol
0.5 M Ibuprofen sodium
7.5 M N-N Dimethyl Urea
20% Tween 20 in ethanol
Ibuprofen (bulk) 2 M Sodium benzoate
0.5 M Ibuprofen sodium
Mixed solvency
20 % Chlorpheniramine
7.5 M N-N Dimethyl Urea
66
Drug Hydrotrope
Ibuprofen (Tablet) 2 M Sodium benzoate
0.5 M Ibuprofen sodium
20 % Chlorpheniramine
7.5 M N-N Dimethyl Urea
Ketoprofen (bulk) 2 M Sodium benzoate
2 M Sodium salicylate
2 M Sodium acetate
2 M Potassium acetate
0.5 M Ibuprofen sodium
2 M Potassium citrate
1 M Aspirin sodium
30:30 Sodium acetate: Urea
30 Urea, 13.6 Sodium acetate, 11.8 Sodium
citrate
67
Drug Hydrotrope
Naproxen (bulk) 2 M Sodium benzoate
2 M Niacinamide
0.5 M Ibuprofen sodium
2 M Sodium Salicylate
7.5 M N-N Dimethyl Urea
Naproxen (Tablet) 2 M Sodium benzoate
2 M Niacinamide
0.5 M Ibuprofen sodium
2M sodium Salicylate
2 M Sodium benzoate
Phenlybutazone 2 M Sodium benzoate
0.5 M Ibuprofen sodium
68
Drug Hydrotrope
Salicylic acid 2 M Sodium benzoate
8 M Urea
1.25 M Sodium citrate
0.5 M Ibuprofen sodium
Sodium salicylate
1 M Calcium disodium edetate
Mixed solvency
2 M Sodium saccharin
7.5 M N-N Dimethyl Urea
69
70
71
72
Label Claim
per tablet
(mg)
Method
of
analysis
% Drug
estimated
(mean ±SD)
%
Coefficient
of
variation
Standard
error
300 Proposed
method
100.54±1.227 1.220 0.708
300 IP method 99.88±0.932 0.933 0.57
73
Drug
present in
pre
analyzed
powder
Pure drug
added
(spiked)
% Recovery
estimated
(mean ±
SD)
%
Coefficient
of variation
Standard
error
50 15 98.80± 1.831 1.853 1.0527
50 30 100.73
±0.740
0.734 0.427
74
 Sodium benzoate and niacinamide do not show
absorbence above 290 nm, therefore they do not
interfere in spectrophotometric analysis above 300 nm.
 Urea, sodium acetate and sodium citrate do not show
absorbence above 245 nm, therefore they do not
interfere in spectrophotometric analysis above 245 nm.
75
Drug Hydrotrope Wavelength
Aceclofenac (tablet) Urea : Sodium citrate (22.5 : 22.5) 274 nm
N-N Dimethyl Urea : Sodium
citrate (20:20)
Amoxycillin 10 M Urea 274 nm
Atenolol 1 M Metformin HCl 275 nm
10 M Urea
Cefixime 8 M Urea 288 nm
4 M Sodium acetate
1.25 Sodium citrate
0.5 M Potassium citrate
2 M Sodium tartrate
2 M Sodium glutamate
7.5 M N-N Dimethyl Urea
76
Drug Hydrotrope Wavelength
Cephalexin 8 M Urea 262 nm
Diclofenac Sodium 10 M Urea 276 nm
7.5 M N-N Dimethyl Urea
Famotidine 1.5 M Metformin HCl 286 nm
7.5 M N-N Dimethyl Urea
10 M Urea
Frusemide (bulk) 0.5 M Ibuprofen Sodium 330 nm
5 m Urea + 1 M Sodium acetate + 0.4
M Sodium citrate
277 nm
20 : 20 N-N Dimethyl Urea : Sodium
citrate
330 nm
20 : 20 N-N Dimethyl Urea : Sodium
citrate
277 nm
Frusemide (tablet) 0.5 M Ibuprofen sodium 330 nm
5 m Urea + 1 M Sodium acetate + 0.4
M Sodium citrate
330 nm
77
Drug Hydrotrope Wavelength
Gatifloxacin
(Tablet)
1.5 M Metformin HCl 333 nm
2 M Sodium benzoate
0.5 M Ibuprofen Sodium 333 nm
7.5 M N-N Dimethyl Urea
Sodium citrate, Glycine, Sodium
benzoate,4000 (10:10:10:10)
333 nm
4 M Niacinamide 333 nm
N-N Dimethyl Urea : Sodium citrate (20:20) 333 nm
N-N Dimethyl Urea : Sodium citrate (20:20) 288 nm
7.5 M N-N Dimethyl Urea 288 nm
Indomethacin 2 M Sodium benzoate 320 nm
2 M Niacinamide 320 nm
78
Drug Hydrotrope Wavelength
Ketoprofen 2M Potassium acetate 260 nm
4 M Sodium acetate
(30:30) Sodium citrate: Urea
1.25 M Sodium citrate
7.5 M N-N Dimethyl Urea
30 Urea, 13.6 Sodium acetate, 11.8 Sodium
citrate
Metronidazole
(tablet)
2 M Sodium benzoate 320 nm
8 M Urea (simultaneous with norfloxacin)
7.5 M N-N Dimethyl Urea
10 M Urea
1.5 M Ibuprofen sodium
79
Drug Hydrotrope Wavelength
Naproxen
(Tablet)
2 M Niacinamide 317nm
2 M Sodium benzoate 331, 317nm
0.5 M Ibuprofen sodium 317 nm
7.5 M N-N Dimethyl Urea 317, 272 nm
20:20 N-N Dimethyl Urea Sodium citrate 272, 317 , 332
nm
Ornidazole 0.5M Ibuprofen sodium 320 nm
10 M Urea
2 M Sodium benzoate
Norfloxacin 2 M Sodium benzoate 324 nm
2 M Niacinamide
8 M Urea 272 nm
80
Drug Hydrotrope Wavelength
Norfloxacin +
Metronidazole
8 M Urea (Simultaneous
analysis)
Norfloxacin +
Tinidazole
(Simultaneous)
8 M Urea (Simultaneous
analysis)
Nalidixic acid 2 M Sodium benzoate 330 nm
2 M Niacinamide 330 nm
Ofloxacin 2 M Sodium benzoate 332 nm
2.5 M Niacinamide 332 nm
Piroxicam 2 M Sodium benzoate 358 nm
1.5 M Ibuprofen sodium
(20 : 20) N-N Dimethyl Urea:
Sodium citrate
254nm, 287 nm,
360 nm
81
Salicylic acid Calcium disodium
edetate
296 nm
Tinidazole 1.25 M Sodium citrate 318 nm
4 M Sodium acetate
8 m Urea
2 M Sodium benzoate
2 M Niacinamide
1 M Lignocaine HCl
7.5 M N-N Dimethyl
Urea
Norfloxacin + Tinidazole 8 M Urea
82
83
Sr.
No.
Drug Method Mobile Phase
Rf
Value
1 Atenolol IPM
A mixture of 99 volumes of methanol and
1 volume of strong ammonia solution
0.67
2 Atenolol PMUR 5.0 M Urea solution 0.77
3. Atenolol PM SB 1.0 M Sodium benzoate solution 0.63
4.
Diclofenac
sodium
IPM
A mixture of 100 volumes of toluene, 10
volumes of hexane and 10 volumes of
anhydrous formic acid
0.87
5.
Diclofenac
sodium
PMUR 5.0 M Urea solution 0.87
6.
Diclofenac
Sodium
PM SB 2.0 M Sodium benzoate solution 0.64
84
Sr.
No.
Drug Method Mobile Phase
Rf
Value
7. Paracetamol IPM
A mixture of 65 volumes of chloroform ,
25 volumes of acetone and 10 volumes of
toluene
0.65
8 Paracetamol PM UR 5.0 M Urea solution 0.86
9. Paracetamol PM SB 0.5 M Sodium benzoate solution 0.68
10. Caffeine IPM
A mixture of 40 volumes of isobutanol, 30
volumes of chloroform, 10 volumes of
strong ammonia solution, 3 volumes of
acetone
0.70
11 Caffeine PM UR 5.0 M Urea solution 0.89
12 Caffeine PM SB 2.0 M Sodium benzoate solution 0.87
85
Sr. No. Drug Method Mobile Phase Rf
Value
13 Ibuprofen IPM
A mixture of 75 volumes of n-
hexane, 25 volumes of ethyl acetate,
and 5 volumes of glacial acetic acid
0.60
14. Ibuprofen PMUR 5.0 M Urea solution 0.90
15 Ibuprofen PM SB 2.0 M Sodium benzoate solution 0.82
86
87
88
Hydrotropic agent Concentration 40
% w/v
Solubility
enhancement
ratio
Urea 0.191 23.857
Sodium acetate 0.239 29.857
Sodium benzoate 2.157 296.632
Sodium citrate 0.129 16.125
Solubility of Furosemide in different hydrotropic
agent ( Solubility in distilled water ~ 0.008 % )
( M Pharm thesis work of Mr.Yitesh Jagwani)
89
Solubility of Furosemide in mixture of different hydrotropic
agent ( M Pharm thesis work of Mr.Yitesh Jagwani)
Combination Total
concentratio
n 40 % w/v
Solubility Solubility
enhancement ratio
U + A 40.00 0.651 81.375 (synergistic
solvent action)
U + B 40.00 2.909 363.625
U + C 40.00 0.943 117.875
A + B 40.00 2.148 268.516
A+ C 40.00 0.067 8.375
B + C 40.00 3.005 375.625
U + A + B 40.00 1.918 239.756
U + A + C 40.00 0.243 30.375
A + B + C 40.00 0.926 115.754
U + B + C 40.00 3.958 494.752
90
Solubility of Furosemide in mixture of different hydrotropic
agent ( M Pharm thesis work of Mr.Yitesh Jagwani)
Combination Total
concentratio
n (40 %
w/v)
Ratio Solubility Solubility
enhancement
ratio
U + B + C 40.00 10:20:10 4.782 597.751
U + B + C 40.00 10:10:20 1.934 241.749
U + B + C 40.00 15:20:05 5.285 660.625
U + B + C 40.00 05:20:15 3.405 425.625
U + A + B + C 40.00 10:10:10:10 1.183 147.875
U + A + B + C 40.00 5:5:10:20 1.953 244.125
U + A + B + C 40.00 5:20:10:5 1.132 141.575
U + A + B + C 40.00 20:5:10:5 3.085 385.625
U + A + B + C 40.00 10:5:20:5 4.524 565.529
U + A + B + C 40.00 15:5:15:5 4.247 530.875
91
Suggestions
Since all compounds posses solubilising power, we
should try to use nutraceuticals, proteins, amino acids,
herbal harmless constituents, fruit and vegetable juices
etc to enhance the solubility of poorly soluble drugs to
develop different pharmaceutical dosage forms.
Since there are no mathematical formulae for solubility
enhancement, hence we have to try them by trial and
error methods.
Dr. R K Maheshwari
Prof. (Ex-Head)
Department of Pharmacy
SGSITS, 23 Park road Indore
E mail id:
rkrkmaheshwari@yahoo.co.in
Website: www.rkmaheshwari.com
Contact No. - 0731- 2542213
09406621907
92

More Related Content

What's hot

Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
mariam1020
 
Solvents used in pharmacy
Solvents used in pharmacySolvents used in pharmacy
Solvents used in pharmacy
Zulcaif Ahmad
 
Osmotic pump for colon specific delivery
Osmotic pump for colon specific deliveryOsmotic pump for colon specific delivery
Osmotic pump for colon specific delivery
devang084
 

What's hot (8)

Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation ReactionSynthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
Synthesis of 3-Substituted Coumarins by the Knoevenagel Condensation Reaction
 
Pla with soyabene oil
Pla with soyabene oilPla with soyabene oil
Pla with soyabene oil
 
Ureases mimics
Ureases mimicsUreases mimics
Ureases mimics
 
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
Evaluation of antioxidant and antiradical properties of pomegranate (punica g...
 
Ncert class-12-chemistry-part-2
Ncert class-12-chemistry-part-2Ncert class-12-chemistry-part-2
Ncert class-12-chemistry-part-2
 
Solvents used in pharmacy
Solvents used in pharmacySolvents used in pharmacy
Solvents used in pharmacy
 
Osmotic pump for colon specific delivery
Osmotic pump for colon specific deliveryOsmotic pump for colon specific delivery
Osmotic pump for colon specific delivery
 
Why we need and use LCMS
Why we need and  use LCMSWhy we need and  use LCMS
Why we need and use LCMS
 

Similar to Ppt noopur,anirudh 1-27-02-2018

Umang presentation pharma 2014
Umang presentation pharma 2014Umang presentation pharma 2014
Umang presentation pharma 2014
Umang Budhraja
 
Phytochemical investigation of lawsonia inermis linn and its
Phytochemical investigation of lawsonia inermis linn and itsPhytochemical investigation of lawsonia inermis linn and its
Phytochemical investigation of lawsonia inermis linn and its
Mamoona Nigha
 
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
BRNSS Publication Hub
 
Protocol_GTK_glycan_booklet
Protocol_GTK_glycan_bookletProtocol_GTK_glycan_booklet
Protocol_GTK_glycan_booklet
Amber Cook
 

Similar to Ppt noopur,anirudh 1-27-02-2018 (20)

02_Noopur_91_Harsh_ppt 02-08-2023 (1).pptx
02_Noopur_91_Harsh_ppt 02-08-2023 (1).pptx02_Noopur_91_Harsh_ppt 02-08-2023 (1).pptx
02_Noopur_91_Harsh_ppt 02-08-2023 (1).pptx
 
Umang presentation pharma 2014
Umang presentation pharma 2014Umang presentation pharma 2014
Umang presentation pharma 2014
 
Electrophoresis
ElectrophoresisElectrophoresis
Electrophoresis
 
Solid Lipid Nano particles of Alendronate Sodium
 Solid Lipid Nano particles of Alendronate Sodium Solid Lipid Nano particles of Alendronate Sodium
Solid Lipid Nano particles of Alendronate Sodium
 
2014 15 product list
2014 15 product list2014 15 product list
2014 15 product list
 
Rosuvastatin orodispersible tablet
Rosuvastatin orodispersible tabletRosuvastatin orodispersible tablet
Rosuvastatin orodispersible tablet
 
API PELLETS , HERBAL EXTRACTS AND INTERMEDIATES
API PELLETS , HERBAL EXTRACTS AND INTERMEDIATESAPI PELLETS , HERBAL EXTRACTS AND INTERMEDIATES
API PELLETS , HERBAL EXTRACTS AND INTERMEDIATES
 
INTERMEDIATES API PELLETS , HERBAL EXTRACTS AND FORMULATIONS
INTERMEDIATES API PELLETS , HERBAL EXTRACTS AND FORMULATIONSINTERMEDIATES API PELLETS , HERBAL EXTRACTS AND FORMULATIONS
INTERMEDIATES API PELLETS , HERBAL EXTRACTS AND FORMULATIONS
 
Abiraterone Acetate 154229-18-2 API-MANUFACTURER SUPPLIERS
Abiraterone Acetate	154229-18-2	API-MANUFACTURER SUPPLIERSAbiraterone Acetate	154229-18-2	API-MANUFACTURER SUPPLIERS
Abiraterone Acetate 154229-18-2 API-MANUFACTURER SUPPLIERS
 
Abacavir Sulfate API PELLETS MANUFACTURER EXPORTER
Abacavir Sulfate API PELLETS MANUFACTURER EXPORTERAbacavir Sulfate API PELLETS MANUFACTURER EXPORTER
Abacavir Sulfate API PELLETS MANUFACTURER EXPORTER
 
Market profile polysorbate
Market profile polysorbateMarket profile polysorbate
Market profile polysorbate
 
Phytochemical investigation of lawsonia inermis linn and its
Phytochemical investigation of lawsonia inermis linn and itsPhytochemical investigation of lawsonia inermis linn and its
Phytochemical investigation of lawsonia inermis linn and its
 
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
Dissolution Method Validation with Reverse Phase Chromatographic Method for D...
 
IJPBA_1895_20_20220314_V2.pdf
IJPBA_1895_20_20220314_V2.pdfIJPBA_1895_20_20220314_V2.pdf
IJPBA_1895_20_20220314_V2.pdf
 
Analysis of quercetin and phyllanthin
Analysis of quercetin and phyllanthinAnalysis of quercetin and phyllanthin
Analysis of quercetin and phyllanthin
 
Determination of Anions by Ion Chromatography
Determination of Anions by Ion ChromatographyDetermination of Anions by Ion Chromatography
Determination of Anions by Ion Chromatography
 
Protocol_GTK_glycan_booklet
Protocol_GTK_glycan_bookletProtocol_GTK_glycan_booklet
Protocol_GTK_glycan_booklet
 
Pharmaceutics Unit -2.pptx
Pharmaceutics Unit -2.pptxPharmaceutics Unit -2.pptx
Pharmaceutics Unit -2.pptx
 
medicinal importance of all types of alkaloids.
medicinal importance of all types of alkaloids.medicinal importance of all types of alkaloids.
medicinal importance of all types of alkaloids.
 
Degradation and Degradant Characterization
Degradation and Degradant CharacterizationDegradation and Degradant Characterization
Degradation and Degradant Characterization
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
Cherry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Cherry
 

Recently uploaded (20)

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 

Ppt noopur,anirudh 1-27-02-2018

  • 1. Dr. R K Maheshwari Prof. (Ex-Head) Department of Pharmacy SGSITS, Indore Contact no:09406621907 Email id: rkrkmaheshwari@yahoo.co.in Website: www.rkmaheshwari.com 1 ECOFREINDLY PHARMACEUTICAL APPLICATIONS OF – 1.HYDROTROPIC SOLUBILIZATION 2.MIXED HYDROTROPIC SOLUBILIZATION 3.MIXED SOLVENCY CONCEPT
  • 2. All substances whether liquids, gases or solids have solubilizing power.  Liquids are already known as solvents.  In supercritical fluid technology, carbon di oxide gas is liquefied to act as solvent to produce nanoparticles etc.  There are many proofs to show the solubilizing power of solids. 2
  • 3.  Solid substances can act as solvents if they are melted e.g.  If PEG 4000 is melted at about 60°C, this melted liquid dissolves diclofenac sodium (m.p 283°C).  Melted ibuprofen (m.p. 78°C) dissolves diclofenac sodium (m.p. 283°C), salicylic acid (m. p. 159°C) etc.  Melted urea (132°C) dissolves diclofenac sodium (m.p. 283°C).  Solubility of nalidixic acid in ethanolic solution of Ibuprofen (20% w/v) is 2.689%w/v (Solubility of nalidixic acid in ethanol is 0.1981%w/v)- 13 times enhancement 3
  • 4.  Eutectic liquid obtained by triturating equal proportions of menthol (a solid) and thymol (a solid) dissolves salicylic acid, metronidazole benzoate, Atenolol, Ornidazole, Benzocaine, Eudragit RSPO, Euragit RLPO, Resorcinol , Diltiazem HCl, BHA nicely while the same eutectic liquid is bad solvent for Satranidazole, Frusemide, Nimesulide, Aspartame, Carvedilol, Gatifloxacin, Piroxicam, Methyl Paraben Sodium. 4 We know that the solvents like ethanol, methanol etc are also solvents for some solutes and non-solvents for others.
  • 5.  Any poor solvent may be made a strong solvent by use of proper solubilizers.  It may reduce the total concentration of individual solubilizers necessary to produce modest increase in solubility by employing additives in lower concentrations from the point of view of safety of solubilizers. This approach shall be applicable to prepare different dosage forms of the poorly soluble drugs.  The mixed solvency approach can be utilized to perform titrimetric and spectrophotometric analysis of poorly soluble drugs precluding the use of organic solvents. 5
  • 6.  The approach shall be useful to develop various novel drug delivery systems using safer solvents precluding the use of toxic, pollutant organic solvents.  Synergistic action in solvent character can be obtained. For example solubilities of Ibuprofen in aqueous solutions of 40 % w/v PEG 400 (a solvent), 40 % w/v PEG 4000(solid substance), 40 % w/v Urea, and 40 % w/v sodium citrate (hydrotropic agent) are 0.593% w/v, 0.440% w/v, 0.599 % w/v and 0.531% w/v respectively. However, an aqueous solution made by mixing 10% w/v each of PEG 400, PEG 4000, urea and sodium citrate (total dissolved substances 40 % w/v) has solubility of 1.329% w/v for ibuprofen. This shows synergistic solvent action due to application of mixed solvency. 6
  • 7.  Carbon dioxide gas on liquefaction, dissolves solutes to obtain nanoparticles.  This technology is used for extractions of active constituents from herbals.  This technology is used for purification of solutes.  Liquefied carbon dioxide gas is solvent for some solutes and non solvent for others.  Any liquefied gas ( oxygen, hydrogen, nitrogen etc ) shall also be solvent for some solutes and non solvent for others.  This proves that gases posses solvent character. 7
  • 8.
  • 9. Compounds having good solubility Compounds having bad solubility  Metronidazole benzoate (more than 200 mg/ml)  Atenolol (>90 mg/ml)  Ornidazole (>120 mg/ml)  Benzocaine (>120 mg/ml)  Eudragit RSPO (>300 mg/ml)  Resorcinol (>190 mg/ml)  Eudragit RLPO (>230 mg/ml)  Diltiazem HCl (>150 mg/ml)  BHA (>500 mg/ml)  Salicylic acid (>70mg/ml)  Satranidazole (less than 5 mg/ml)  Frusemide (<5 mg/ml)  Nimesulide (<5 mg/ml)  Aspartame (<5 mg/ml)  Carvedilol (<5 mg/ml)  Gatifloxacin (<15 mg/ml)  Piroxicam (<15 mg/ml)  Methyl Paraben sodium (<5 mg/ml) 9
  • 10. 10 Miscible liquids Immiscible liquids Ethanol Glycerin Propylene Glycol Water Benzyl alcohol Soyabean oil PEG 400 Methanol
  • 11. Compounds having good solubility Compounds having poor solubility  Ibuprofen (78°C) >600 mg/gm  Salicylic acid (159°C) > 200 mg/gm  Metronidazole benzoate > 180 mg/gm  Naproxen (155°C) > 50 mg/gm  Indomethacin (158°C) >90 mg/gm  PVP K30 > 180 mg/gm  Aspartame < 5mg/gm  Piroxicam (198°C) < 15mg/gm  Sodium caprylate < 5mg/gm  Diclofenac sodium (283°C) < 5mg/gm  Satranidazole (185°C) < 5mg/gm  Gatifloxacin <15mg/gm 11
  • 12. Compounds having good solubility Compounds having bad solubility  Eudragit RLPO > 250mg/gm  Piroxicam (198°C) >300mg/gm  Salicylic acid > 150mg/gm  Metronidazole benzoate > 50mg/gm  Naproxen (155°C) > 100 mg  Caffeine > 350 mg/gm  Indomethacin (158°C) >300 mg/gm  PVP K30 > 300 mg/gm  Sodium caprylate <5mg/gm  Diclofenac Sodium <5mg/gm  Aspartame <5mg/gm 12
  • 13. 13 Various Eutectic mixturesVarious Eutectic mixtures 1. Phenol + PEG 6000 2. Phenol + aspirin 3. Phenol + vanilin 4. Phenol + niacinamide 5. Phenol + caffeine 6. Phenol + metformin HCl 7. Phenol + eudragit RSPO + Thymol 8. Phenol + eudragit RLPO + Thymol 9. Camphor + eudragit RSPO + Thymol 10.Phenol + eudragit RLPO + Menthol
  • 14.  Thymol-camphor  Phenol-aspirin  Phenol-vanillin  Phenol-caffeine  Menthol-camphor 14 All these liquids can act as solvents for some drugs and non- solvents for others. These all studies also indicate that solids also possess solvent character.
  • 15. 15 Eutectic Liquids NOTE--Same vials when kept at room temperature recover original liquid state
  • 16. Compounds having good solubility Compounds having poor solubility  Naproxen (155°C) >260mg/gm  Piroxicam (198°C) >100 mg/gm  Salicylic acid (159°C) >350mg/gm  PVP K30 >200mg/gm  Niacinamide (132°C) >160mg/gm  Indomethacin (158°C) >90mg/gm  Diclofenac Sodium (283°C)  > 300mg/gm  Methyl Paraben Sodium >300mg/gm  Sodium Caprylate >160mg/gm  Caffeine >140mg/gm  Sodium benzoate (>300°C) <5mg/gm  Satranidazole (185°C) <5mg/gm  Metformin Hcl (218 °C) <15mg/gm  Urea (132°C) <5mg/gm  Paracetamol (168°C) <15mg/gm  Norfloxacin (220°C) <5mg/gm  Aspartame <5mg/gm  HP-βCD <5mg/gm  Frusemide <5mg/gm  Nimesulide <15mg/gm 16
  • 17. Drug Solvent system Solubility(%w/v) Nalidixic acid Alcohol 0.198 Nalidixic acid 20% Ibuprofen in alcohol 2.689 Nalidixic acid 20% Ibuprofen+20% Benzoic acid in alcohol 5.753 Nalidixic acid 20% Oleic acid in alcohol 0.621 Nalidixic acid 15% Niacinamide in alcohol (pH 3-3.5) 0.347 Nalidixic acid 20% Camphor in alcohol (pH 4.5) 0.221 Nalidixic acid 7% Atenolol in alcohol (pH 8.5-9.0) 8.545 17
  • 18. Drug Solvent system Solubility(%w/v) Frusemide Alcohol 1.769 Frusemide 20% Oleic acid in alcohol 2.947 Frusemide 20% Ibuprofen in alcohol 5.009 Frusemide 15% Niacinamide in alcohol (pH 3-3.5) 5.009 Frusemide 20% Tween20 in alcohol (pH 4-4.5) 6.777 Frusemide 20% Ibuprofen+20% Benzoic acid in alcohol 0.630 Frusemide 20% Camphor in alcohol (pH 4.5) 3.830 Frusemide Alcohol saturated with niacinamide 8.381 18
  • 19. Drug Solvent system Solubility(%w/v) Salicylic acid Alcohol 31.746 Salicylic acid 20% Oleic acid in alcohol 24.856 Salicylic acid 20% Ibuprofen in alcohol 27.316 Salicylic acid 20% Tween20 in alcohol (pH 4-4.5) 33.592 Salicylic acid 20% Camphor in alcohol (pH 4.5) 36.456 19
  • 20.  Phenol, below 8 % w/v concentration and above 70 % w/v concentration gives clear solutions in water.  5 gm phenol + 95 gm water gives a clear solution (here phenol is solute and water is solvent).  95 gm phenol + 5 gm water gives a clear solution (here water is solute and phenol is solvent).  This proves that solid has solvent action.  Soxhelet apparatus can be run by phenol (like solvent). 20
  • 21. S. No. Solvent system Solubility (% w/v) 1 Distilled water 0.028 2 40%w/v PEG 400 0.593 3 40%w/v Sodium citrate 0.531 4 40%w/v PEG 300 1.531 5 40%w/v glycerin 0.282 6 40%w/v PEG 4000 0.440 7 40%w/v PEG 6000 0.359 8 40%w/v urea 0.599 9 40%w/v Propylene glycol 0.469 21
  • 22. S no. Blend composition Observed Solubility (% w/v) Contributory solubility (% w/v) 1 GL-PG-ST-UR (10% w/v each solubilizer) 0.526 0.427 2 GL-FT-TH-UR (10% w/v each solubilizer) 0.425 0.713 3 FH-FT-UR-SC (10% w/v each solubilizer) 1.329 0.541 4 GL-PG-FH-UR (10% w/v each solubilizer) 0.732 0.448 5 PG-TH-FT-SC (10% w/v each solubilizer) 1.110 0.743 6 TH-FH-FT-ST (10% w/v each solubilizer) 0.877 0.731 7 GL-FH-TH-SC (10% w/v each solubilizer) 0.938 0.734 8 FT-ST-FH-UR (10% w/v each solubilizer) 0.764 0.498 9 FH-TH-UR-SC (10% w/v each solubilizer) 1.146 0.814 10 FT-TH-PG-UR (10% w/v each solubilizer) 0.952 0.460 22
  • 23.  5% (Sodium benzoate + benzoic acid) as buffering agent  5% Lignocain HCl as local anesthetic (to reduce the pain of injection)  4% Benzyl alcohol as preservative and/or as local anesthetic  2.5% Niacinamide(as stabilizer)  5% Alcohol (upto 10% alcohol can be used)  5% Propylene glycol ( even very large amounts can be safely used) 23
  • 24.  5% PVP (plasma expander)  5% Tween (20/80 etc)  5% HP Beta Cyclodextrin  5% PEG 200/300/400/500/600 etc. (liquids)  5% PEG 4000/6,000/8,000/10,000 etc. (solids) 24
  • 25.  Various glycerides of – 1. Stearic acid-3.1% 2. Palmitic acid- 8.3% 3. Oleic acid- 56 % 4. Arachidic acid- 2.4 % 5. Behenic acid- 3.1 % 6. Lignoceric acid- 1.1% 7. Linoleic acid- 26 %  Glyceryl monostearate- a waxy solid of M.P. 63-68 .℃  Glyceryl tripalmitate-a solid having M.P. 66 .℃  Glyceryl monooleate- a solid having M.P. 25 .℃  Glyceryl trioleate-a yellowish oily liquid. Thus peanut oil consists of several solids and liquids. The present solid also contributes in the solvent action of peanut oil. 25
  • 26.
  • 27. 27
  • 28. 28
  • 29. 29
  • 30.
  • 31.
  • 32. S no. Agent employed (%w/w) Solubility enhancement ratio 1 Ethyl acetate 1.000 2 Camphor (20%) 2.573 3 Camphor (10%) 1.261 4 PEG 200 (20%) 7.232 5 PEG 200 (10%) 2.827 6 PEG 400 (20%) 5.769 7 PEG 400 (10%) 2.070
  • 33. Table continued… S no. Agent employed (%w/w) Solubility enhancement ratio 8 Menthol (20%) 3.239 9 Menthol (10%) 2.252 10 Dichloromethane 1.957 11 Vanillin (10%) 2.921 12 Eudragit RSPO (20%) 5.107 13 Eudragit RSPO (15%) 3.367 14 Eudragit RSPO (10%) 1.756
  • 34.
  • 35.
  • 36. 36 Co surfactant Solubility (mg/g of vehicle) (mean±SD) Lauroglycol 90 80.51±2.38 PEG 400 103.26±3.37 Transcutol P 176.83±2.28 Propylene glycol 89.51 ±4.32 Ethanol 4.96±2.78 Menthol 30%* 30.98±0.18 Menthol 60%* 44.60±1.31 Camphor 30%* 145.26±1.20 Camphor 60%* 253.47±2.20 Vanillin 30%* 121.97±0.86 Vanillin 60%* 183.47±0.95 Leutrol F-68 30%* 33.34±0.18 Solubility data of Candesartan Cilexetil in different cosurfactants (M Pharm thesis work of Mr. Chandan Chandana). *Solution in ethanol
  • 37. 37 Co surfactant Solubility (mg/g of vehicle) (mean±SD) Leutrol F-68 60%* 59.22±0.27 Camphor/Vanillin (20/20)* 193.32±2.65 Camphor/Vanillin (20/40)* 219.18±1.70 Camphor/Vanillin (40/20)* 265.34±1.71 Vanillin/Leutrol (20/20) * 107.79±1.86 Vanillin/Leutrol (20/40) * 98.93±1.40 Vanillin/Leutrol (40/20) * 137.55±3.48 Camphor/Leutrol (20/20)* 134.53±3.27 Camphor/Leutrol (20/40) * 118.10±1.09 Camphor/Leutrol (40/20) * 214.59±4.96 Camphor/Vanilin/Leutrol (10/10/10) * 210.65±1.39 Camphor/Vanilin/Leutrol (20/20/20)* 303.79±2.24 Table continued… *Solution in ethanol
  • 38.
  • 39. Naproxen solubility in propylene glycol-0.402% (4.02 mg/ml) BLEND 1 ( M Pharm thesis work of Ms. Lalita Gaur) S. No. Ingredients Concentration 1 Sodium benzoate 5% w/v 2 Benzoic acid 5% w/v 3 Niacinamide 5% w/v 4 PVP 40000 5% w/v 5 Propylene glycol Up to 100% w/v Solubility in blend 1 ( 4.81%) Solubility enhancement- 11.94 Times
  • 40. BLEND 2 ( M Pharm thesis work of Ms. Lalita Gaur) S. No. Solubilizers Concentration 1. Sodium benzoate 2% w/v 2. Benzoic acid 5% w/v 3. Niacinamide 5% w/v 4. PVP 40000 3% w/v 5. Propylene glycol Upto 100% w/v Solubility in blend-2 (4.53%) Solubility enhancement- 11.2 times
  • 41. A model dry injection for reconstitution Model Blend Composition  Sodium benzoate – 5% w/v  Lignocaine HCl – 5% w/v  PVP K 30 – 5% w/v  Niacinamide – 2.5% w/v  PEG 4000 – 7.5% w/v  Water, upto – 100 ml  Solubility of aspirin in this blend at room temperature = 8.811% w/v (pH = 6)  Solubility of aspirin in water at room temperature = 0.331% w/v  Therefore, solubility enhancement ratio = 8.811/0.331= more than 25 fold 41
  • 42.  NOTE: Sodium benzoate 5% w/v is widely used as buffering agent in aqueous injections.  Lignocaine hydrochloride 5% w/v is employed as an additive to reduce the pain (of injections).  PVP K30 5% w/v is safely used additive.  Niacinamide 2.5% w/v is safely used stabilizer in injections.  PEG 4000 7.5%w/v, safely employed additive. 42
  • 43.  100 mg Aspirin can be easily dissolved by 2 ml of above blend (Mixed solvent blend).  100 mg Sodium benzoate, fine powder.  100 mg Lignocaine hydrochloride, fine powder.  100 mg PVP K30, fine powder.  50 mg Niacinamide, fine powder.  150 mg PEG4000  + 100 mg Aspirin, fine powder.  All these are kept in a 5 ml vial. After reconstitution, using 2 ml water, we get a clear solution. 43
  • 44. Drug Solubility in distilled water at room temperature (%w/v) Solubility in model blend at room temperature (%w/v) Solubility enhancement ratio Aspirin 0.331 8.811 26.6 fold Norfloxacin 0.088 0.652 7.4 fold Tinidazole 0.538 1.206 2.2 fold Piroxicam 0.040 0.994 24.8 fold Frusemide 0.064 2.013 31.4 fold Indomethacin 0.036 3.009 83.6 fold 44
  • 45.  Tablet powder equivalent to 50 mg was transfered to 500 ml volumetric flask.  Then, 10 ml of eutectic liquid of Phenol: Niacinamide (25:10) was transfered to it and the flask was shaken for 10 min.  Then, about 400 ml distilled water was added and flask was shaken for 5 min and volume was made upto 500 ml with distilled water.  Above solution was filtered through Whatmann filter paper. 45
  • 46.  Then, 10 ml of filtrate was diluted to 50 ml with distilled water and the absorbance of filtrate was noted at 318 nm against reagent blank.  The drug content was calculated using the calibration curve. 46
  • 47.  Enhancement in aqueous solubility of a poorly water soluble drug in the presence of large concentration of a solute (hydrotropic agent).  Concentrated (20 to 50 %) aqueous solution of sodium benzoate, sodium salicylate, sodium ascorbate, niacinamide and urea etc. enhances the aqueous solubility of poorly soluble drugs. For example 30% w/v aqueous solution of sodium benzoate increases the solubility of ibuprofen, ketoprofen, nalidixic acid, naproxen, ornidazole, tinidazole, metronidazole, gatifloxacin etc. to a large extent. 47
  • 48. Same concepts can be utilized for  Extractions of herbal drugs to obtain the active constituents.  In analytical techniques like – TLC, titrimetric analysis and spectrophotometric analysis of poorly water soluble drugs.  To develop various novel drug delivery systems of herbal origin. 48 The concept shall be very useful in all above mentioned fields. The common advantage being avoidance of organic solvents (which may be costlier, hazardous, pollutant).
  • 49. 49
  • 50. 50 Various Hydrotropic agents Sodium Salicylate Lysine Methyl Urea Sodium Gentisate Isoniazid Di methyl Urea Sodium Gluconate Sodium Acetate Resorcinol Sodium Benzoate Tryptophan Sodium-m-hydroxy benzoate Sodium Ascorbate Urea Sodium-p-hydroxy benzoate Sodium Ibuprofen Pheniramine Maleate Sodium 2,4 – dihydroxy benzoate Sodium citrate Niacinamide Sodium 2,5 – dihydroxy benzoate Cholpheniramine Maleate Ethyl Urea Butyl Urea
  • 51. Drug Solvent system Solubility (% w/v) Solubility enhancement ratio Ibuprofen DW 0.028 - Ibuprofen 2 M SB 2.390 85.4 Flurbiprofen DW 0.012 - Flurbiprofen 2 M SB 1.440 120.0 Naproxen DW 0.009 - Naproxen 2 M SB 1.081 120.1 Aspirin DW 0.131 - Aspirin 4 M SA 7.409 56.5 Aspirin 1.25 M SC 4.728 36.1 Aspirin 2 M SB 3.151 24.1 51
  • 52. Drug Solvent system Solubility (% w/v) Solubility enhancement ratio Aceclofenac DW 0.011 - Aceclofenac 2 M SB 11.032 1002.9 Ketoprofen DW 0.007 - Ketoprofen 4 M SA 0.944 134.9 Ketoprofen 2 M SB 12.321 1760.1 Ketoprofen 2 M SS 2.062 294.6 Metronidazole DW 0.728 - Metronidazole 2 M SB 3.783 5.2 Metronidazole 2 M NM 7.941 10.9 Metronidazole 10 M UR 3.682 5.1 52
  • 53. Drug Solvent system Solubility (% w/v) Solubility enhancement ratio Tinidazole DW 0.538 - Tinidazole 2 M SB 3.302 6.1 Tinidazole 2 M NM 3.794 7.1 Tinidazole 10 M UR 3.821 7.1 Norfloxacin DW 0.088 - Norfloxacin 2 M SB 3.822 43.4 Norfloxacin 2 M NM 0.851 9.7 Nalidixic acid DW 0.021 - Nalidixic acid 2 M SB 2.061 98.1 Nalidixic acid 2 M NM 0.452 21.5 53
  • 54. Drug Solvent system Solubility (% w/v) Solubility enhancement ratio Hydrochlorothiazide DW 0.039 - Hydrochlorothiazide 10 M UR 1.784 45.7 Ofloxacin DW 1.452 - Ofloxacin 2 M SB 8.560 5.9 Gatifloxacin DW 0.131 - Gatifloxacin 10 M UR 8.183 62.5 Atenolol DW 1.112 - Atenolol 10 M UR 6.814 6.1 Salicylic acid DW 0.170 - Salicylic acid 1.25 M SC 15.059 88.6 54
  • 55. SOME CLASS 3 SOLVENTS SOME CLASS 2 SOLVENTS Ethanol Acetonitrile Isopropyl acetate Chlorobenzene Acetone Chloroform Anisole Cyclohexae 1-Butanol Dichloromethane 2-Butanol Methanol Dimethyl sulfoxid N,N-Dimethylacetamide Acetone N,N-Dimethylformamide Ethyl acetate 1,4-Dioxane Heptane Formamide Ethyl formate Ethylene glycol 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. Amount of drug taken Method of Analysis Amount estimated %coefficient of variation Standard error 400 mg IP method 398.9±0.63 0.63 0.36 400 mg Proposed method 398.3±0.70 0.70 0.40 59
  • 60. 60
  • 61. 61
  • 62.  Involves use of dimethyl formamide (DMF), a class 2 organic solvent in the titrimetric method.  Analysis of frusemide bulk drug (hydrotropic method) -organic solvent has been replaced by 2 M sodium benzoate solution. 62
  • 63. Drug Hydrotrope Aspirin (bulk) 2 M Sodium benzoate 4 M Sodium acetate 1.25 Sodium citrate 2 M Sodium salicylate 2 M Niacinamide 0.5 M Ibuprofen sodium Sodium citrate Aspirin (tablet) 2 M Niacinamide 2 M Sodium salicylate 0.5 M Ibuprofen sodium 2 M Sodium benzoate 10 M Urea 1.5 M Metformin HCl 63
  • 64. Drug Hydrotrope Aceclofenac (bulk) 2.5 M Sodium salicylate 2 M Sodium benzoate 0.5 M Ibuprofen sodium 1.5 M Metformin Hcl (22.5:22.5) Sodium citrate : urea NNDU : Sodium citrate(20:20) Aceclofenac (Tablets) 0.5 M Ibuprofen sodium 2 M Sodium salicylate (22.5:22.5) Sodium citrate : urea 2 M Sodium benzoate Chlorpropamaide (bulk) 0.5 M Ibuprofen sodium 2 M Sodium benzoate 64
  • 65. Drug Hydrotrope Benzoic acid 2 M Sodium benzoate 2 M Sodium salicylate 1 M Calcium disodium edetate 1.5 M Ibuprofen sodium 7.5 M N-N Dimethyl Urea Flurbiprofen (bulk) 2 M Sodium benzoate 0.5 M Ibuprofen sodium Flurbiprofen (tablet) 2 M Sodium benzoate Frusemide (bulk) 0.5 M Ibuprofen sodium 2 M Sodium salicylate 5 M Urea + 1 M Sodium acetate + 0.4 M Sodium citrate 15% NM in ethanol 7.5 M N-N Dimethyl Urea 65
  • 66. Drug Hydrotrope Frusemide (tablet) 2 M Sodium salicylate 5 M Urea + 1 M Sodium acetate + 0.4 M Sodium citrate 15% Niacinamide in ethanol 0.5 M Ibuprofen sodium 7.5 M N-N Dimethyl Urea 20% Tween 20 in ethanol Ibuprofen (bulk) 2 M Sodium benzoate 0.5 M Ibuprofen sodium Mixed solvency 20 % Chlorpheniramine 7.5 M N-N Dimethyl Urea 66
  • 67. Drug Hydrotrope Ibuprofen (Tablet) 2 M Sodium benzoate 0.5 M Ibuprofen sodium 20 % Chlorpheniramine 7.5 M N-N Dimethyl Urea Ketoprofen (bulk) 2 M Sodium benzoate 2 M Sodium salicylate 2 M Sodium acetate 2 M Potassium acetate 0.5 M Ibuprofen sodium 2 M Potassium citrate 1 M Aspirin sodium 30:30 Sodium acetate: Urea 30 Urea, 13.6 Sodium acetate, 11.8 Sodium citrate 67
  • 68. Drug Hydrotrope Naproxen (bulk) 2 M Sodium benzoate 2 M Niacinamide 0.5 M Ibuprofen sodium 2 M Sodium Salicylate 7.5 M N-N Dimethyl Urea Naproxen (Tablet) 2 M Sodium benzoate 2 M Niacinamide 0.5 M Ibuprofen sodium 2M sodium Salicylate 2 M Sodium benzoate Phenlybutazone 2 M Sodium benzoate 0.5 M Ibuprofen sodium 68
  • 69. Drug Hydrotrope Salicylic acid 2 M Sodium benzoate 8 M Urea 1.25 M Sodium citrate 0.5 M Ibuprofen sodium Sodium salicylate 1 M Calcium disodium edetate Mixed solvency 2 M Sodium saccharin 7.5 M N-N Dimethyl Urea 69
  • 70. 70
  • 71. 71
  • 72. 72
  • 73. Label Claim per tablet (mg) Method of analysis % Drug estimated (mean ±SD) % Coefficient of variation Standard error 300 Proposed method 100.54±1.227 1.220 0.708 300 IP method 99.88±0.932 0.933 0.57 73
  • 74. Drug present in pre analyzed powder Pure drug added (spiked) % Recovery estimated (mean ± SD) % Coefficient of variation Standard error 50 15 98.80± 1.831 1.853 1.0527 50 30 100.73 ±0.740 0.734 0.427 74
  • 75.  Sodium benzoate and niacinamide do not show absorbence above 290 nm, therefore they do not interfere in spectrophotometric analysis above 300 nm.  Urea, sodium acetate and sodium citrate do not show absorbence above 245 nm, therefore they do not interfere in spectrophotometric analysis above 245 nm. 75
  • 76. Drug Hydrotrope Wavelength Aceclofenac (tablet) Urea : Sodium citrate (22.5 : 22.5) 274 nm N-N Dimethyl Urea : Sodium citrate (20:20) Amoxycillin 10 M Urea 274 nm Atenolol 1 M Metformin HCl 275 nm 10 M Urea Cefixime 8 M Urea 288 nm 4 M Sodium acetate 1.25 Sodium citrate 0.5 M Potassium citrate 2 M Sodium tartrate 2 M Sodium glutamate 7.5 M N-N Dimethyl Urea 76
  • 77. Drug Hydrotrope Wavelength Cephalexin 8 M Urea 262 nm Diclofenac Sodium 10 M Urea 276 nm 7.5 M N-N Dimethyl Urea Famotidine 1.5 M Metformin HCl 286 nm 7.5 M N-N Dimethyl Urea 10 M Urea Frusemide (bulk) 0.5 M Ibuprofen Sodium 330 nm 5 m Urea + 1 M Sodium acetate + 0.4 M Sodium citrate 277 nm 20 : 20 N-N Dimethyl Urea : Sodium citrate 330 nm 20 : 20 N-N Dimethyl Urea : Sodium citrate 277 nm Frusemide (tablet) 0.5 M Ibuprofen sodium 330 nm 5 m Urea + 1 M Sodium acetate + 0.4 M Sodium citrate 330 nm 77
  • 78. Drug Hydrotrope Wavelength Gatifloxacin (Tablet) 1.5 M Metformin HCl 333 nm 2 M Sodium benzoate 0.5 M Ibuprofen Sodium 333 nm 7.5 M N-N Dimethyl Urea Sodium citrate, Glycine, Sodium benzoate,4000 (10:10:10:10) 333 nm 4 M Niacinamide 333 nm N-N Dimethyl Urea : Sodium citrate (20:20) 333 nm N-N Dimethyl Urea : Sodium citrate (20:20) 288 nm 7.5 M N-N Dimethyl Urea 288 nm Indomethacin 2 M Sodium benzoate 320 nm 2 M Niacinamide 320 nm 78
  • 79. Drug Hydrotrope Wavelength Ketoprofen 2M Potassium acetate 260 nm 4 M Sodium acetate (30:30) Sodium citrate: Urea 1.25 M Sodium citrate 7.5 M N-N Dimethyl Urea 30 Urea, 13.6 Sodium acetate, 11.8 Sodium citrate Metronidazole (tablet) 2 M Sodium benzoate 320 nm 8 M Urea (simultaneous with norfloxacin) 7.5 M N-N Dimethyl Urea 10 M Urea 1.5 M Ibuprofen sodium 79
  • 80. Drug Hydrotrope Wavelength Naproxen (Tablet) 2 M Niacinamide 317nm 2 M Sodium benzoate 331, 317nm 0.5 M Ibuprofen sodium 317 nm 7.5 M N-N Dimethyl Urea 317, 272 nm 20:20 N-N Dimethyl Urea Sodium citrate 272, 317 , 332 nm Ornidazole 0.5M Ibuprofen sodium 320 nm 10 M Urea 2 M Sodium benzoate Norfloxacin 2 M Sodium benzoate 324 nm 2 M Niacinamide 8 M Urea 272 nm 80
  • 81. Drug Hydrotrope Wavelength Norfloxacin + Metronidazole 8 M Urea (Simultaneous analysis) Norfloxacin + Tinidazole (Simultaneous) 8 M Urea (Simultaneous analysis) Nalidixic acid 2 M Sodium benzoate 330 nm 2 M Niacinamide 330 nm Ofloxacin 2 M Sodium benzoate 332 nm 2.5 M Niacinamide 332 nm Piroxicam 2 M Sodium benzoate 358 nm 1.5 M Ibuprofen sodium (20 : 20) N-N Dimethyl Urea: Sodium citrate 254nm, 287 nm, 360 nm 81
  • 82. Salicylic acid Calcium disodium edetate 296 nm Tinidazole 1.25 M Sodium citrate 318 nm 4 M Sodium acetate 8 m Urea 2 M Sodium benzoate 2 M Niacinamide 1 M Lignocaine HCl 7.5 M N-N Dimethyl Urea Norfloxacin + Tinidazole 8 M Urea 82
  • 83. 83
  • 84. Sr. No. Drug Method Mobile Phase Rf Value 1 Atenolol IPM A mixture of 99 volumes of methanol and 1 volume of strong ammonia solution 0.67 2 Atenolol PMUR 5.0 M Urea solution 0.77 3. Atenolol PM SB 1.0 M Sodium benzoate solution 0.63 4. Diclofenac sodium IPM A mixture of 100 volumes of toluene, 10 volumes of hexane and 10 volumes of anhydrous formic acid 0.87 5. Diclofenac sodium PMUR 5.0 M Urea solution 0.87 6. Diclofenac Sodium PM SB 2.0 M Sodium benzoate solution 0.64 84
  • 85. Sr. No. Drug Method Mobile Phase Rf Value 7. Paracetamol IPM A mixture of 65 volumes of chloroform , 25 volumes of acetone and 10 volumes of toluene 0.65 8 Paracetamol PM UR 5.0 M Urea solution 0.86 9. Paracetamol PM SB 0.5 M Sodium benzoate solution 0.68 10. Caffeine IPM A mixture of 40 volumes of isobutanol, 30 volumes of chloroform, 10 volumes of strong ammonia solution, 3 volumes of acetone 0.70 11 Caffeine PM UR 5.0 M Urea solution 0.89 12 Caffeine PM SB 2.0 M Sodium benzoate solution 0.87 85
  • 86. Sr. No. Drug Method Mobile Phase Rf Value 13 Ibuprofen IPM A mixture of 75 volumes of n- hexane, 25 volumes of ethyl acetate, and 5 volumes of glacial acetic acid 0.60 14. Ibuprofen PMUR 5.0 M Urea solution 0.90 15 Ibuprofen PM SB 2.0 M Sodium benzoate solution 0.82 86
  • 87. 87
  • 88. 88 Hydrotropic agent Concentration 40 % w/v Solubility enhancement ratio Urea 0.191 23.857 Sodium acetate 0.239 29.857 Sodium benzoate 2.157 296.632 Sodium citrate 0.129 16.125 Solubility of Furosemide in different hydrotropic agent ( Solubility in distilled water ~ 0.008 % ) ( M Pharm thesis work of Mr.Yitesh Jagwani)
  • 89. 89 Solubility of Furosemide in mixture of different hydrotropic agent ( M Pharm thesis work of Mr.Yitesh Jagwani) Combination Total concentratio n 40 % w/v Solubility Solubility enhancement ratio U + A 40.00 0.651 81.375 (synergistic solvent action) U + B 40.00 2.909 363.625 U + C 40.00 0.943 117.875 A + B 40.00 2.148 268.516 A+ C 40.00 0.067 8.375 B + C 40.00 3.005 375.625 U + A + B 40.00 1.918 239.756 U + A + C 40.00 0.243 30.375 A + B + C 40.00 0.926 115.754 U + B + C 40.00 3.958 494.752
  • 90. 90 Solubility of Furosemide in mixture of different hydrotropic agent ( M Pharm thesis work of Mr.Yitesh Jagwani) Combination Total concentratio n (40 % w/v) Ratio Solubility Solubility enhancement ratio U + B + C 40.00 10:20:10 4.782 597.751 U + B + C 40.00 10:10:20 1.934 241.749 U + B + C 40.00 15:20:05 5.285 660.625 U + B + C 40.00 05:20:15 3.405 425.625 U + A + B + C 40.00 10:10:10:10 1.183 147.875 U + A + B + C 40.00 5:5:10:20 1.953 244.125 U + A + B + C 40.00 5:20:10:5 1.132 141.575 U + A + B + C 40.00 20:5:10:5 3.085 385.625 U + A + B + C 40.00 10:5:20:5 4.524 565.529 U + A + B + C 40.00 15:5:15:5 4.247 530.875
  • 91. 91 Suggestions Since all compounds posses solubilising power, we should try to use nutraceuticals, proteins, amino acids, herbal harmless constituents, fruit and vegetable juices etc to enhance the solubility of poorly soluble drugs to develop different pharmaceutical dosage forms. Since there are no mathematical formulae for solubility enhancement, hence we have to try them by trial and error methods.
  • 92. Dr. R K Maheshwari Prof. (Ex-Head) Department of Pharmacy SGSITS, 23 Park road Indore E mail id: rkrkmaheshwari@yahoo.co.in Website: www.rkmaheshwari.com Contact No. - 0731- 2542213 09406621907 92