SlideShare a Scribd company logo
1 of 1
Download to read offline
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
0	
   20	
   40	
   60	
   80	
   100	
  
Mass	
  Flow	
  Rate	
  [g/min]	
  
Time	
  [min]	
  
Trial	
  1	
   Trial	
  2	
   Trial	
  3	
  
Prototype	
  I	
  and	
  II	
  Tes:ng	
  
A	
  total	
  of	
  three	
  prototypes	
  were	
  designed,	
  printed,	
  and	
  tested	
  (Figure	
  2).	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  purpose	
  of	
  prototype	
  I	
  was	
  to	
  validate	
  the	
  concept	
  of	
  the	
  nested	
  shell	
  
design	
   and	
   to	
   test	
   the	
   limitaFons	
   of	
   a	
   composite	
   pressure	
   vessel	
   printed	
  
using	
  ABSplus.	
  For	
  prototype	
  II,	
  the	
  purpose	
  was	
  to	
  test	
  the	
  design	
  changes	
  
made	
  and	
  to	
  pracFce	
  recording	
  boil	
  off	
  mass	
  flow	
  rate.	
  
Prototype	
  I	
  Problems	
  
» Since	
  all	
  of	
  the	
  caps	
  were	
  printed	
  separately,	
  ABS	
  cement	
  was	
  used	
  to	
  
aNach	
  each	
  cap	
  to	
  the	
  main	
  shell.	
  	
  Due	
  to	
  the	
  cap	
  thinness,	
  the	
  cement	
  
would	
  leak	
  into	
  the	
  sides	
  of	
  the	
  shell,	
  clogging	
  up	
  the	
  vapor	
  passage.	
  
» Cracking	
  was	
  audible	
  when	
  LN2	
  was	
  poured	
  into	
  the	
  tank	
  and	
  vapor	
  was	
  
seen	
  seeping	
  out	
  of	
  the	
  boNom,	
  signifying	
  internal	
  failures.	
  	
  
Prototype	
  I	
  Conclusions	
  
» Cap	
  and	
  shell	
  thickness	
  increase	
  were	
  necessary.	
  	
  To	
  facilitate	
  assembly,	
  
the	
  boNom	
  caps	
  would	
  be	
  printed	
  aNached	
  to	
  the	
  shell	
  in	
  prototype	
  II.	
  
Prototype	
  II	
  Problems	
  
» Once	
  again,	
  vapor	
  passage	
  blockage	
  from	
  the	
  ABS	
  cement.	
  
» Since	
  the	
  boNom	
  was	
  now	
  part	
  of	
  the	
  shell,	
  there	
  were	
  concerns	
  that	
  
the	
   support	
   material	
   needed	
   for	
   the	
   second	
   vapor	
   hole	
   would	
   not	
  
dissolve	
  enFrely.	
  
Prototype	
  Conclusions	
  
» The	
  usage	
  of	
  rubber	
  O-­‐rings	
  to	
  make	
  a	
  leak	
  free	
  seal	
  instead	
  of	
  cement	
  
was	
  decided	
  on.	
   	
  The	
  number	
  of	
  vapor	
  holes	
  for	
  the	
  second	
  layer	
  was	
  
increased	
  from	
  one	
  to	
  seven	
  to	
  prevent	
  support	
  material	
  blockage.	
  	
  
Methods	
  
Two	
   steps	
   are	
   required	
   in	
   order	
   to	
   validate	
   our	
   tank	
   design:	
   an	
   iteraFve	
  
design	
  process	
  and	
  a	
  tesFng	
  process	
  of	
  prototypes.	
  	
  Using	
  SolidWorks	
  2013	
  
Student	
   EdiFon,	
   iniFal	
   designs	
   of	
   the	
   tank	
   were	
   created.	
   	
   Once	
   specific	
  
details,	
   such	
   as	
   wall	
   thickness	
   or	
   cap	
   design,	
   were	
   agreed	
   upon	
   the	
  
SolidWorks	
  file	
  was	
  saved	
  as	
  an	
  STL	
  file	
  and	
  was	
  then	
  to	
  be	
  printed	
  using	
  the	
  
uPrint	
  SE	
  by	
  Stratasys.	
   	
  Once	
  prinFng	
  was	
  complete,	
  prototypes	
  composed	
  
of	
  ABSplus	
  and	
  lined	
  with	
  polystyrene	
  were	
  then	
  tested	
  using	
  liquid	
  nitrogen	
  
(LN2)	
   and	
   their	
   boil	
   off	
   mass	
   flow	
   rate	
   calculated.	
   	
   The	
   addiFonal	
   use	
   of	
  
Mylar	
  as	
  an	
  insulaFon	
  was	
  also	
  tested.	
  
Prototype	
  Design	
  of	
  a	
  Type	
  IV	
  Hydrogen	
  
Pressure	
  Vessel	
  with	
  Vapor	
  Cooled	
  Shielding	
  
Gina	
  Georgadarellis1,2,	
  Patrick	
  Adam2,	
  and	
  Dr.	
  Jacob	
  Leachman2	
  
1University	
  of	
  MassachuseNs	
  Amherst;	
  2Mechanical	
  Engineering;	
  Washington	
  State	
  University	
  
Acknowledgements	
  
This	
  work	
  was	
  supported	
  by	
  the	
  NaFonal	
  Science	
  FoundaFon’s	
  
REU	
  program	
  under	
  grant	
  number	
  	
  EEC-­‐1157094.	
  
Introduc:on	
  
The	
   uFlizaFon	
   of	
   hydrogen	
   as	
   a	
   fuel	
   source	
   requires	
   solving	
   the	
   issue	
   of	
  
containment.	
   	
   Hydrogen	
   stores	
   2.8	
   Fmes	
   more	
   energy	
   per	
   weight	
   than	
  
gasoline	
  but	
  more	
  than	
  three	
  Fmes	
  as	
  much	
  volume	
  is	
  typically	
  required,	
  
making	
   it	
   difficult	
   for	
   gasoline-­‐powered	
   vehicles	
   to	
   convert	
   to	
   hydrogen	
  
power.	
   	
   To	
   resolve	
   this	
   issue,	
   hydrogen	
   can	
   be	
   liquefied	
   to	
   increase	
   the	
  
density	
  to	
  two	
  Fmes	
  that	
  of	
  room	
  temperature	
  gas	
  at	
  700	
  bar	
  (10,000	
  psi).	
  	
  
The	
   new	
   issue	
   created	
   with	
   the	
   use	
   of	
   liquid	
   hydrogen	
   is	
   the	
   low	
  
temperature	
  (-­‐422°F,	
  21K)	
  needed	
  for	
  hydrogen	
  to	
  maintain	
  the	
  liquid	
  state.	
  	
  
A	
  type	
  IV	
  pressure	
  vessel	
  made	
  of	
  polymeric	
  liner	
  and	
  wrapped	
  in	
  a	
  fiber-­‐
resin	
  composite	
  may	
  be	
  used	
  to	
  meet	
  such	
  requirements.	
  
Hydrogen	
  and	
  Pressure	
  Vessels	
  
Table	
  1	
  below	
  compares	
  and	
  shows	
  five	
  types	
  of	
  pressure	
  vessels2.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Each	
   of	
   the	
   five	
   types	
   of	
   pressure	
   vessels	
   can	
   be	
   used	
   and	
   the	
   choice	
   of	
  
storage	
   depends	
   on	
   the	
   applicaFon.	
   	
   When	
   cost	
   needs	
   to	
   be	
   minimized,	
  
hydrogen	
   is	
   stored	
   in	
   type	
   I	
   tanks	
   with	
   pressures	
   ranging	
   from	
   150	
   to	
  
300	
   bars.	
   	
   In	
   regards	
   to	
   staFonary	
   purposes,	
   when	
   higher	
   pressures	
   are	
  
desired	
  type	
  II	
  tanks	
  are	
  typically	
  chosen.	
  	
  When	
  weight	
  is	
  an	
  issue	
  and	
  cost	
  
may	
  be	
  disregarded,	
  type	
  III	
  and	
  type	
  IV	
  vessels	
  are	
  preferred,	
  especially	
  for	
  
portable	
  applicaFons.	
  	
  	
  
References	
  
1.  Naval	
  Research	
  Laboratory.	
  "Ion	
  Tiger	
  Fuel	
  Cell	
  Unmanned	
  Air	
  Vehicle	
  Completes	
  23-­‐
hour	
  Flight."	
  ScienceDaily.	
  ScienceDaily,	
  15	
  October	
  2009.	
  
2.  Barthélémy,	
  Hervé.	
  “Hydrogen	
  Storage	
  –	
  Industrial	
  ProspecFves.”	
  Interna+onal	
  Journal	
  
of	
  Hydrogen	
  Energy	
  37.22	
  (2012):	
  17364–17372.	
  Web.	
  13	
  June	
  2014.	
  
Results	
  and	
  Conclusions	
  
We	
   compared	
   the	
   percent	
   differences	
   of	
   the	
   integrated	
   average	
   boil	
   off	
  
mass	
  flow	
  rates	
  between	
  the	
  sole	
  use	
  of	
  polystyrene	
  as	
  an	
  insulaFon	
  and	
  the	
  
different	
  combinaFons	
  of	
  Mylar	
  (Table	
  2).	
   	
  Though	
  the	
  graphs	
  look	
  similar,	
  
the	
  percent	
  differences	
  show	
  that	
  the	
  different	
  combinaFons	
  of	
  polystyrene	
  
and	
  Mylar	
  each	
  have	
  an	
  effect	
  on	
  the	
  mass	
  flow	
  rate.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Our	
   design	
   of	
   a	
   type	
   IV	
   pressure	
   vessel	
   with	
   vapor	
   cooled	
   shielding	
  
successfully	
  holds	
  and	
  insulates	
  liquids	
  at	
  cryogenic	
  temperatures.	
   	
  In	
  the	
  
future,	
   experimenFng	
   with	
   different	
   types	
   of	
   insulaFon	
   as	
   well	
   materials	
  
used	
  for	
  the	
  tank	
  may	
  be	
  beneficial.	
  
Mo:va:on	
  
Hydrogen	
   fuel	
   use	
   is	
   not	
   a	
   new	
   idea.	
   	
   Liquid	
   hydrogen-­‐powered	
   vehicles	
  
running	
   on	
   high-­‐power	
   fuel	
   cell	
   propulsion	
   systems	
   (Ion	
   Tiger	
   by	
   the	
   U.S	
  
Naval	
   Research	
   Laboratory)	
   and	
   propeller-­‐driven	
   internal	
   combusFon	
  
engines	
  (Phantom	
  Eye	
  by	
  Boeing)	
  are	
  in	
  use.	
  	
  AddiFonally,	
  Washington	
  State	
  
University	
  Unmanned	
  Aerial	
  Systems	
  is	
  in	
  the	
  process	
  of	
  building	
  Genii,	
  the	
  
first	
   university	
   demonstrated	
   liquid	
   hydrogen-­‐powered	
   unmanned	
   aerial	
  
system	
  for	
  long	
  endurance	
  missions	
  (Figure	
  1).	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
A	
  type	
  IV	
  hydrogen	
  pressure	
  vessel	
  with	
  vapor	
  cooled	
  shielding,	
  however,	
  
has	
  never	
  been	
  done	
  before.	
  	
  	
  With	
  our	
  vessel,	
  the	
  goal	
  is	
  to	
  design	
  a	
  tank	
  
that	
  has	
  excellent	
  insulaFon,	
  has	
  a	
  built	
  in	
  heat	
  exchanger,	
  and	
  can	
  contain	
  
liquid	
  hydrogen	
  while	
  withstanding	
  the	
  cryogenic	
  temperatures	
  associated	
  
with	
  it	
  	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
0	
   20	
   40	
   60	
   80	
  
Mass	
  Flow	
  Rate	
  [g/min]	
  
Time	
  [min]	
  
Trial	
  1	
   Trial	
  2	
   Trial	
  3	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
0	
   10	
   20	
   30	
   40	
   50	
   60	
   70	
  
Mass	
  Flow	
  Rate	
  [g/min]	
  
Time	
  [min]	
  
Trial	
  1	
   Trial	
  2	
   Trial	
  3	
  
Table	
  1:	
  Informa:on	
  on	
  Pressure	
  Vessels	
  
Type	
   Image*	
   Material	
  Used	
   Main	
  Features	
  
I	
  
Metal	
  tank	
  with	
  no	
  
liner	
  
Pressure	
  limit:	
  300	
  bars	
  
Excellent	
  cost	
  performance	
  
Poor	
  weight	
  performance	
  
II	
  
Thick	
  metallic	
  liner	
  
hoop	
  wrapped	
  with	
  a	
  
fiber-­‐resin	
  composite	
  
No	
  pressure	
  limit	
  
Good	
  cost	
  performance	
  
Neutral	
  weight	
  performance	
  
III	
  
Metallic	
  liner	
  fully-­‐
wrapped	
  with	
  a	
  fiber-­‐
resin	
  composite	
  
Usable	
  for	
  pressures	
  less	
  than	
  350	
  bars	
  
Poor	
  cost	
  performance	
  
Good	
  weight	
  performance	
  
IV	
  
Polymeric	
  liner	
  fully-­‐
wrapped	
  with	
  a	
  fiber-­‐
resin	
  composite	
  
Usable	
  for	
  pressures	
  less	
  than	
  350	
  bars	
  
Poor	
  cost	
  performance	
  
Good	
  weight	
  performance	
  
V	
  
Composite	
  tank	
  with	
  
no	
  liner	
  
Can	
  be	
  made	
  into	
  conformal	
  shapes	
  more	
  
easily	
  
*The	
  type	
  V	
  image	
  is	
  adapted	
  from	
  hNp://www.compositesworld.com/	
  
Prototype	
  III	
  Tes:ng	
  	
  
Using	
  the	
  Cole-­‐Parmer	
  Symmetry	
  IS	
  Compact	
  Industrial	
  Bench	
  Scale,	
  Omega	
  
RH820	
  Humidity	
  Temperature	
  Handheld	
  Meter,	
  and	
  LN2,	
  the	
  boil	
  off	
  mass	
  
flow	
  rate	
  was	
  recorded	
  for	
  prototype	
  III.	
  	
  The	
  experiment	
  was	
  setup	
  so	
  that	
  
the	
   mass	
   of	
   the	
   vessel,	
   which	
   contained	
   LN2,	
   was	
   recorded	
   every	
   five	
  
minutes	
  unFl	
  the	
  mass	
  no	
  longer	
  changed	
  (Figure	
  3).	
  
	
  
	
  
	
  
	
  
	
  	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
This	
   process	
   was	
   repeated	
   three	
   Fmes	
   for	
   each	
   different	
   combinaFon	
   of	
  
insulaFon	
  and	
  boil	
  off	
  mass	
  flow	
  rate	
  was	
  then	
  calculated	
  using	
  excel.	
  	
  The	
  
results	
  from	
  the	
  experiment	
  are	
  shown	
  below	
  (Figure	
  4).	
  	
  For	
  each	
  trial,	
  the	
  
general	
  shape	
  of	
  the	
  graph	
  was	
  similar.	
   	
  The	
  mass	
  flow	
  rate	
  peaked	
  at	
  the	
  
very	
  beginning,	
  steadily	
  decreased,	
  and	
  then	
  reached	
  zero	
  at	
  the	
  very	
  end	
  
arer	
  minor	
  oscillaFons	
  in	
  the	
  mass	
  flow	
  rate.	
  	
  	
  
a)	
  Overall	
  Experiment	
  Setup	
  	
   b)	
  Temperature	
  Meter	
  Placement	
  
Figure	
  3:	
  	
  Prototype	
  III	
  Boil	
  Off	
  Mass	
  Flow	
  Rate	
  TesFng	
  
Figure	
  2:	
  Going	
  counterclockwise	
  from	
  the	
  top	
  ler	
  corner,	
  shown	
  above	
  are	
  pictures	
  of	
  prototype	
  components,	
  
the	
  aerial	
  view	
  of	
  the	
  shell,	
  and	
  CAD	
  drawings	
  for	
  (a)	
  prototype	
  I,	
  (b)	
  prototype	
  II,	
  and	
  (c)	
  prototype	
  III.	
  
a)	
  
b)	
  
c)	
  
Figure	
  4:	
  A	
  plot	
  of	
  the	
  boil	
  off	
  mass	
  flow	
  rate	
  vs.	
  Fme	
  is	
  shown	
  for	
  prototype	
  III	
  when	
  (a)	
  polystyrene,	
  (b)	
  
polystyrene	
  with	
  an	
  outer	
  layer	
  of	
  Mylar,	
  (c)	
  polystyrene	
  with	
  an	
  inner	
  layer	
  of	
  Mylar,	
  and	
  (d)	
  polystyrene	
  
with	
  both	
  an	
  outer	
  and	
  inner	
  layer	
  of	
  Mylar	
  were	
  used	
  for	
  insulaFon.	
  
a)	
   b)	
  
c)	
   d)	
  
Table	
  2:	
  Integrated	
  Average	
  Mass	
  Flow	
  Rate	
  and	
  Percent	
  Difference	
  from	
  Polystyrene	
  of	
  Prototype	
  III	
  
Integrated	
  Average	
  Mass	
  Flow	
  Rate	
  
[g/min]	
  
Percent	
  Difference	
  from	
  Polystyrene	
  
Trial	
  1	
   Trial	
  2	
   Trial	
  3	
   Average	
   Trial	
  1	
   Trial	
  2	
   Trial	
  3	
   Average	
  
Polystyrene	
   0.6031	
   0.6293	
   0.4895	
   0.57396	
   -­‐	
   -­‐	
   -­‐	
   -­‐	
  
Polystyrene	
  and	
  Outer	
  
Mylar	
  
0.5693	
   0.6067	
   0.5967	
   0.5909	
   5.7563	
   3.6677	
   19.7383	
   9.7208	
  
Polystyrene	
  and	
  Inner	
  
Mylar	
  
0.7683	
   0.7031	
   0.7046	
   0.7253	
   24.1002	
   11.0692	
   36.0344	
   23.7346	
  
Polystyrene,	
  Outer	
  
Mylar,	
  and	
  Inner	
  Mylar	
  
0.7067	
   0.5708	
   0.8746	
   0.7173	
   15.8183	
   9.7486	
   56.4613	
   27.3428	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
0	
   20	
   40	
   60	
   80	
  
Mass	
  Flow	
  Rate	
  [g/min]	
  
Time	
  [min]	
  
Trial	
  1	
   Trial	
  2	
   Trial	
  3	
  
Figure	
  1:	
  Examples	
  of	
  vehicles	
  that	
  uFlize	
  liquid	
  hydrogen	
  use	
  as	
  fuel.	
  
(a)	
  Ion	
  Tiger	
  and	
  its	
  fuel	
  cell1	
   (b)	
  Phantom	
  Eye	
   (c)	
  Genii	
  UAS	
  	
  

More Related Content

What's hot

Influence of Urea on Concrete
Influence of Urea on ConcreteInfluence of Urea on Concrete
Influence of Urea on Concreteijtsrd
 
CON 123 - Session 4 - Hydraulic Cement Specifications
CON 123 - Session 4 - Hydraulic Cement SpecificationsCON 123 - Session 4 - Hydraulic Cement Specifications
CON 123 - Session 4 - Hydraulic Cement Specificationsalpenaccedu
 
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...IRJET Journal
 
High durable concrete
High durable concreteHigh durable concrete
High durable concreteBibek Tamang
 
As32709714
As32709714As32709714
As32709714IJMER
 
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...eSAT Publishing House
 
Viscocity graded bitumen system
Viscocity graded bitumen systemViscocity graded bitumen system
Viscocity graded bitumen systempjainrahul
 
Membrane distillation
Membrane distillationMembrane distillation
Membrane distillationYahia Reda
 
PoreSizeDistribution-AASC
PoreSizeDistribution-AASCPoreSizeDistribution-AASC
PoreSizeDistribution-AASCfrank collins
 
180831 nawtec__inconel overlay
180831  nawtec__inconel overlay180831  nawtec__inconel overlay
180831 nawtec__inconel overlayRobert Morin
 
Microcracking-Activated Slag (C&CC)
Microcracking-Activated Slag (C&CC)Microcracking-Activated Slag (C&CC)
Microcracking-Activated Slag (C&CC)frank collins
 
CON 124 Session 1 - Introduction
CON 124 Session 1 - IntroductionCON 124 Session 1 - Introduction
CON 124 Session 1 - Introductionalpenaccedu
 
purdue paper final_Rong Yu
purdue paper final_Rong Yupurdue paper final_Rong Yu
purdue paper final_Rong YuRong Yu
 
Penetration and viscosity Grading
Penetration and viscosity GradingPenetration and viscosity Grading
Penetration and viscosity GradingKunal Bhadane
 
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot watt
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot wattEnhanced oil recovery_and_co2_storage_by_carbonated water heriot watt
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot wattSteve Wittrig
 

What's hot (20)

Influence of Urea on Concrete
Influence of Urea on ConcreteInfluence of Urea on Concrete
Influence of Urea on Concrete
 
3068
30683068
3068
 
CON 123 - Session 4 - Hydraulic Cement Specifications
CON 123 - Session 4 - Hydraulic Cement SpecificationsCON 123 - Session 4 - Hydraulic Cement Specifications
CON 123 - Session 4 - Hydraulic Cement Specifications
 
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...
IRJET- Evaluation of Water Absorption and Sorptivity Properties of Fly Ash, G...
 
High durable concrete
High durable concreteHigh durable concrete
High durable concrete
 
205
205205
205
 
As32709714
As32709714As32709714
As32709714
 
C222431
C222431C222431
C222431
 
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
 
B0560816
B0560816B0560816
B0560816
 
Viscocity graded bitumen system
Viscocity graded bitumen systemViscocity graded bitumen system
Viscocity graded bitumen system
 
Membrane distillation
Membrane distillationMembrane distillation
Membrane distillation
 
PoreSizeDistribution-AASC
PoreSizeDistribution-AASCPoreSizeDistribution-AASC
PoreSizeDistribution-AASC
 
180831 nawtec__inconel overlay
180831  nawtec__inconel overlay180831  nawtec__inconel overlay
180831 nawtec__inconel overlay
 
Microcracking-Activated Slag (C&CC)
Microcracking-Activated Slag (C&CC)Microcracking-Activated Slag (C&CC)
Microcracking-Activated Slag (C&CC)
 
CON 124 Session 1 - Introduction
CON 124 Session 1 - IntroductionCON 124 Session 1 - Introduction
CON 124 Session 1 - Introduction
 
purdue paper final_Rong Yu
purdue paper final_Rong Yupurdue paper final_Rong Yu
purdue paper final_Rong Yu
 
Penetration and viscosity Grading
Penetration and viscosity GradingPenetration and viscosity Grading
Penetration and viscosity Grading
 
J48077280
J48077280J48077280
J48077280
 
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot watt
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot wattEnhanced oil recovery_and_co2_storage_by_carbonated water heriot watt
Enhanced oil recovery_and_co2_storage_by_carbonated water heriot watt
 

Similar to Poster

2011 lisowski czyzycki_transport_and_storage
2011 lisowski czyzycki_transport_and_storage2011 lisowski czyzycki_transport_and_storage
2011 lisowski czyzycki_transport_and_storageAgustinus Cahyo Wibowo
 
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptx
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptxExperimental Study of the effect of Al2O3 Nanoparticles coating on the.pptx
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptxabbasalbosalih1
 
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic Loading
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic LoadingNumerical Analysis of Liquid Storage Tank Subjected to Dynamic Loading
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic LoadingIRJET Journal
 
Composite pressure hulls for autonomous
Composite pressure hulls for autonomousComposite pressure hulls for autonomous
Composite pressure hulls for autonomousDineshRaj Goud
 
Time dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteTime dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteeSAT Publishing House
 
IRJET- Solution for Decrease in Land due to Global Warming by Constructio...
IRJET-  	  Solution for Decrease in Land due to Global Warming by Constructio...IRJET-  	  Solution for Decrease in Land due to Global Warming by Constructio...
IRJET- Solution for Decrease in Land due to Global Warming by Constructio...IRJET Journal
 
IRJET-Experimental Investigations on a Single Slope Solar Still
IRJET-Experimental Investigations on a Single Slope Solar StillIRJET-Experimental Investigations on a Single Slope Solar Still
IRJET-Experimental Investigations on a Single Slope Solar StillIRJET Journal
 
Optimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailsOptimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailseSAT Publishing House
 
Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...eSAT Journals
 
CF Application in Aerospace.pdf
CF Application in Aerospace.pdfCF Application in Aerospace.pdf
CF Application in Aerospace.pdfPayalFirodiya3
 
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...Moisture absorption and mechanical degradation studies of PMI foam cored fibe...
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...IJERA Editor
 
Design & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightDesign & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightijsrd.com
 
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsReview Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsIRJET Journal
 
IRJET- Comparative Study between Soaked & Unsoaked Value of Soil Samples
IRJET-  	  Comparative Study between Soaked & Unsoaked Value of Soil SamplesIRJET-  	  Comparative Study between Soaked & Unsoaked Value of Soil Samples
IRJET- Comparative Study between Soaked & Unsoaked Value of Soil SamplesIRJET Journal
 
COMSOL Conference Europe Milan 2012
COMSOL Conference Europe Milan 2012COMSOL Conference Europe Milan 2012
COMSOL Conference Europe Milan 2012Xavier Borras
 

Similar to Poster (20)

2011 lisowski czyzycki_transport_and_storage
2011 lisowski czyzycki_transport_and_storage2011 lisowski czyzycki_transport_and_storage
2011 lisowski czyzycki_transport_and_storage
 
Multi
MultiMulti
Multi
 
E013122834
E013122834E013122834
E013122834
 
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptx
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptxExperimental Study of the effect of Al2O3 Nanoparticles coating on the.pptx
Experimental Study of the effect of Al2O3 Nanoparticles coating on the.pptx
 
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic Loading
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic LoadingNumerical Analysis of Liquid Storage Tank Subjected to Dynamic Loading
Numerical Analysis of Liquid Storage Tank Subjected to Dynamic Loading
 
Composite pressure hulls for autonomous
Composite pressure hulls for autonomousComposite pressure hulls for autonomous
Composite pressure hulls for autonomous
 
Time dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concreteTime dependent behaviour of a class f fly ash-based geopolymer concrete
Time dependent behaviour of a class f fly ash-based geopolymer concrete
 
IRJET- Solution for Decrease in Land due to Global Warming by Constructio...
IRJET-  	  Solution for Decrease in Land due to Global Warming by Constructio...IRJET-  	  Solution for Decrease in Land due to Global Warming by Constructio...
IRJET- Solution for Decrease in Land due to Global Warming by Constructio...
 
4457301.ppt
4457301.ppt4457301.ppt
4457301.ppt
 
Sirko.MATSE.REU.Poster
Sirko.MATSE.REU.PosterSirko.MATSE.REU.Poster
Sirko.MATSE.REU.Poster
 
IRJET-Experimental Investigations on a Single Slope Solar Still
IRJET-Experimental Investigations on a Single Slope Solar StillIRJET-Experimental Investigations on a Single Slope Solar Still
IRJET-Experimental Investigations on a Single Slope Solar Still
 
Optimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailsOptimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tails
 
Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...
 
CF Application in Aerospace.pdf
CF Application in Aerospace.pdfCF Application in Aerospace.pdf
CF Application in Aerospace.pdf
 
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...Moisture absorption and mechanical degradation studies of PMI foam cored fibe...
Moisture absorption and mechanical degradation studies of PMI foam cored fibe...
 
Design & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightDesign & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weight
 
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsReview Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
 
EXPERIMENTAL INVESTIGATION OF CuO NANOPARTICLES ON THERMOMECHANICAL PROPERTI...
EXPERIMENTAL INVESTIGATION OF CuO NANOPARTICLES ON  THERMOMECHANICAL PROPERTI...EXPERIMENTAL INVESTIGATION OF CuO NANOPARTICLES ON  THERMOMECHANICAL PROPERTI...
EXPERIMENTAL INVESTIGATION OF CuO NANOPARTICLES ON THERMOMECHANICAL PROPERTI...
 
IRJET- Comparative Study between Soaked & Unsoaked Value of Soil Samples
IRJET-  	  Comparative Study between Soaked & Unsoaked Value of Soil SamplesIRJET-  	  Comparative Study between Soaked & Unsoaked Value of Soil Samples
IRJET- Comparative Study between Soaked & Unsoaked Value of Soil Samples
 
COMSOL Conference Europe Milan 2012
COMSOL Conference Europe Milan 2012COMSOL Conference Europe Milan 2012
COMSOL Conference Europe Milan 2012
 

Poster

  • 1. 0   0.5   1   1.5   2   2.5   3   0   20   40   60   80   100   Mass  Flow  Rate  [g/min]   Time  [min]   Trial  1   Trial  2   Trial  3   Prototype  I  and  II  Tes:ng   A  total  of  three  prototypes  were  designed,  printed,  and  tested  (Figure  2).                                                                 The  purpose  of  prototype  I  was  to  validate  the  concept  of  the  nested  shell   design   and   to   test   the   limitaFons   of   a   composite   pressure   vessel   printed   using  ABSplus.  For  prototype  II,  the  purpose  was  to  test  the  design  changes   made  and  to  pracFce  recording  boil  off  mass  flow  rate.   Prototype  I  Problems   » Since  all  of  the  caps  were  printed  separately,  ABS  cement  was  used  to   aNach  each  cap  to  the  main  shell.    Due  to  the  cap  thinness,  the  cement   would  leak  into  the  sides  of  the  shell,  clogging  up  the  vapor  passage.   » Cracking  was  audible  when  LN2  was  poured  into  the  tank  and  vapor  was   seen  seeping  out  of  the  boNom,  signifying  internal  failures.     Prototype  I  Conclusions   » Cap  and  shell  thickness  increase  were  necessary.    To  facilitate  assembly,   the  boNom  caps  would  be  printed  aNached  to  the  shell  in  prototype  II.   Prototype  II  Problems   » Once  again,  vapor  passage  blockage  from  the  ABS  cement.   » Since  the  boNom  was  now  part  of  the  shell,  there  were  concerns  that   the   support   material   needed   for   the   second   vapor   hole   would   not   dissolve  enFrely.   Prototype  Conclusions   » The  usage  of  rubber  O-­‐rings  to  make  a  leak  free  seal  instead  of  cement   was  decided  on.    The  number  of  vapor  holes  for  the  second  layer  was   increased  from  one  to  seven  to  prevent  support  material  blockage.     Methods   Two   steps   are   required   in   order   to   validate   our   tank   design:   an   iteraFve   design  process  and  a  tesFng  process  of  prototypes.    Using  SolidWorks  2013   Student   EdiFon,   iniFal   designs   of   the   tank   were   created.     Once   specific   details,   such   as   wall   thickness   or   cap   design,   were   agreed   upon   the   SolidWorks  file  was  saved  as  an  STL  file  and  was  then  to  be  printed  using  the   uPrint  SE  by  Stratasys.    Once  prinFng  was  complete,  prototypes  composed   of  ABSplus  and  lined  with  polystyrene  were  then  tested  using  liquid  nitrogen   (LN2)   and   their   boil   off   mass   flow   rate   calculated.     The   addiFonal   use   of   Mylar  as  an  insulaFon  was  also  tested.   Prototype  Design  of  a  Type  IV  Hydrogen   Pressure  Vessel  with  Vapor  Cooled  Shielding   Gina  Georgadarellis1,2,  Patrick  Adam2,  and  Dr.  Jacob  Leachman2   1University  of  MassachuseNs  Amherst;  2Mechanical  Engineering;  Washington  State  University   Acknowledgements   This  work  was  supported  by  the  NaFonal  Science  FoundaFon’s   REU  program  under  grant  number    EEC-­‐1157094.   Introduc:on   The   uFlizaFon   of   hydrogen   as   a   fuel   source   requires   solving   the   issue   of   containment.     Hydrogen   stores   2.8   Fmes   more   energy   per   weight   than   gasoline  but  more  than  three  Fmes  as  much  volume  is  typically  required,   making   it   difficult   for   gasoline-­‐powered   vehicles   to   convert   to   hydrogen   power.     To   resolve   this   issue,   hydrogen   can   be   liquefied   to   increase   the   density  to  two  Fmes  that  of  room  temperature  gas  at  700  bar  (10,000  psi).     The   new   issue   created   with   the   use   of   liquid   hydrogen   is   the   low   temperature  (-­‐422°F,  21K)  needed  for  hydrogen  to  maintain  the  liquid  state.     A  type  IV  pressure  vessel  made  of  polymeric  liner  and  wrapped  in  a  fiber-­‐ resin  composite  may  be  used  to  meet  such  requirements.   Hydrogen  and  Pressure  Vessels   Table  1  below  compares  and  shows  five  types  of  pressure  vessels2.                                           Each   of   the   five   types   of   pressure   vessels   can   be   used   and   the   choice   of   storage   depends   on   the   applicaFon.     When   cost   needs   to   be   minimized,   hydrogen   is   stored   in   type   I   tanks   with   pressures   ranging   from   150   to   300   bars.     In   regards   to   staFonary   purposes,   when   higher   pressures   are   desired  type  II  tanks  are  typically  chosen.    When  weight  is  an  issue  and  cost   may  be  disregarded,  type  III  and  type  IV  vessels  are  preferred,  especially  for   portable  applicaFons.       References   1.  Naval  Research  Laboratory.  "Ion  Tiger  Fuel  Cell  Unmanned  Air  Vehicle  Completes  23-­‐ hour  Flight."  ScienceDaily.  ScienceDaily,  15  October  2009.   2.  Barthélémy,  Hervé.  “Hydrogen  Storage  –  Industrial  ProspecFves.”  Interna+onal  Journal   of  Hydrogen  Energy  37.22  (2012):  17364–17372.  Web.  13  June  2014.   Results  and  Conclusions   We   compared   the   percent   differences   of   the   integrated   average   boil   off   mass  flow  rates  between  the  sole  use  of  polystyrene  as  an  insulaFon  and  the   different  combinaFons  of  Mylar  (Table  2).    Though  the  graphs  look  similar,   the  percent  differences  show  that  the  different  combinaFons  of  polystyrene   and  Mylar  each  have  an  effect  on  the  mass  flow  rate.                                                               Our   design   of   a   type   IV   pressure   vessel   with   vapor   cooled   shielding   successfully  holds  and  insulates  liquids  at  cryogenic  temperatures.    In  the   future,   experimenFng   with   different   types   of   insulaFon   as   well   materials   used  for  the  tank  may  be  beneficial.   Mo:va:on   Hydrogen   fuel   use   is   not   a   new   idea.     Liquid   hydrogen-­‐powered   vehicles   running   on   high-­‐power   fuel   cell   propulsion   systems   (Ion   Tiger   by   the   U.S   Naval   Research   Laboratory)   and   propeller-­‐driven   internal   combusFon   engines  (Phantom  Eye  by  Boeing)  are  in  use.    AddiFonally,  Washington  State   University  Unmanned  Aerial  Systems  is  in  the  process  of  building  Genii,  the   first   university   demonstrated   liquid   hydrogen-­‐powered   unmanned   aerial   system  for  long  endurance  missions  (Figure  1).                 A  type  IV  hydrogen  pressure  vessel  with  vapor  cooled  shielding,  however,   has  never  been  done  before.      With  our  vessel,  the  goal  is  to  design  a  tank   that  has  excellent  insulaFon,  has  a  built  in  heat  exchanger,  and  can  contain   liquid  hydrogen  while  withstanding  the  cryogenic  temperatures  associated   with  it     0   0.5   1   1.5   2   2.5   3   0   20   40   60   80   Mass  Flow  Rate  [g/min]   Time  [min]   Trial  1   Trial  2   Trial  3   0   0.5   1   1.5   2   2.5   3   3.5   0   10   20   30   40   50   60   70   Mass  Flow  Rate  [g/min]   Time  [min]   Trial  1   Trial  2   Trial  3   Table  1:  Informa:on  on  Pressure  Vessels   Type   Image*   Material  Used   Main  Features   I   Metal  tank  with  no   liner   Pressure  limit:  300  bars   Excellent  cost  performance   Poor  weight  performance   II   Thick  metallic  liner   hoop  wrapped  with  a   fiber-­‐resin  composite   No  pressure  limit   Good  cost  performance   Neutral  weight  performance   III   Metallic  liner  fully-­‐ wrapped  with  a  fiber-­‐ resin  composite   Usable  for  pressures  less  than  350  bars   Poor  cost  performance   Good  weight  performance   IV   Polymeric  liner  fully-­‐ wrapped  with  a  fiber-­‐ resin  composite   Usable  for  pressures  less  than  350  bars   Poor  cost  performance   Good  weight  performance   V   Composite  tank  with   no  liner   Can  be  made  into  conformal  shapes  more   easily   *The  type  V  image  is  adapted  from  hNp://www.compositesworld.com/   Prototype  III  Tes:ng     Using  the  Cole-­‐Parmer  Symmetry  IS  Compact  Industrial  Bench  Scale,  Omega   RH820  Humidity  Temperature  Handheld  Meter,  and  LN2,  the  boil  off  mass   flow  rate  was  recorded  for  prototype  III.    The  experiment  was  setup  so  that   the   mass   of   the   vessel,   which   contained   LN2,   was   recorded   every   five   minutes  unFl  the  mass  no  longer  changed  (Figure  3).                                           This   process   was   repeated   three   Fmes   for   each   different   combinaFon   of   insulaFon  and  boil  off  mass  flow  rate  was  then  calculated  using  excel.    The   results  from  the  experiment  are  shown  below  (Figure  4).    For  each  trial,  the   general  shape  of  the  graph  was  similar.    The  mass  flow  rate  peaked  at  the   very  beginning,  steadily  decreased,  and  then  reached  zero  at  the  very  end   arer  minor  oscillaFons  in  the  mass  flow  rate.       a)  Overall  Experiment  Setup     b)  Temperature  Meter  Placement   Figure  3:    Prototype  III  Boil  Off  Mass  Flow  Rate  TesFng   Figure  2:  Going  counterclockwise  from  the  top  ler  corner,  shown  above  are  pictures  of  prototype  components,   the  aerial  view  of  the  shell,  and  CAD  drawings  for  (a)  prototype  I,  (b)  prototype  II,  and  (c)  prototype  III.   a)   b)   c)   Figure  4:  A  plot  of  the  boil  off  mass  flow  rate  vs.  Fme  is  shown  for  prototype  III  when  (a)  polystyrene,  (b)   polystyrene  with  an  outer  layer  of  Mylar,  (c)  polystyrene  with  an  inner  layer  of  Mylar,  and  (d)  polystyrene   with  both  an  outer  and  inner  layer  of  Mylar  were  used  for  insulaFon.   a)   b)   c)   d)   Table  2:  Integrated  Average  Mass  Flow  Rate  and  Percent  Difference  from  Polystyrene  of  Prototype  III   Integrated  Average  Mass  Flow  Rate   [g/min]   Percent  Difference  from  Polystyrene   Trial  1   Trial  2   Trial  3   Average   Trial  1   Trial  2   Trial  3   Average   Polystyrene   0.6031   0.6293   0.4895   0.57396   -­‐   -­‐   -­‐   -­‐   Polystyrene  and  Outer   Mylar   0.5693   0.6067   0.5967   0.5909   5.7563   3.6677   19.7383   9.7208   Polystyrene  and  Inner   Mylar   0.7683   0.7031   0.7046   0.7253   24.1002   11.0692   36.0344   23.7346   Polystyrene,  Outer   Mylar,  and  Inner  Mylar   0.7067   0.5708   0.8746   0.7173   15.8183   9.7486   56.4613   27.3428   0   0.5   1   1.5   2   2.5   3   3.5   0   20   40   60   80   Mass  Flow  Rate  [g/min]   Time  [min]   Trial  1   Trial  2   Trial  3   Figure  1:  Examples  of  vehicles  that  uFlize  liquid  hydrogen  use  as  fuel.   (a)  Ion  Tiger  and  its  fuel  cell1   (b)  Phantom  Eye   (c)  Genii  UAS