SlideShare a Scribd company logo
1 of 9
Download to read offline
Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011
TRANSPORT AND STORAGE OF LNG IN CONTAINER TANKS
Edward Lisowski, Wojciech Czy ycki
Krakow University of Technology, Department of Mechanical Engineering
Jana Paw a II Street 37, 31-864 Kraków, Poland
phone+48 12 3743351, +48 12 3743654, fax: +48 12 3748267
e-mail: lisowski@mech.pk.edu.pl, czyzycki@mech.pk.edu.pl
Abstract
The work presents issues with the structure and thermal calculations of mobile tank for transport and storage of
LNG. A modern design of cryogenic tank container and stationery cryogenic tank is presented in the paper. Mobile
cryogenics container tank has been designed for transportation of LNG as well as other liquefied cryogenic gases with
the temperature down to –196°C. The analysis included two types of logistics solutions: one involving the transport
full container, which is removable from the vehicle and left in the workplace, and the second solution with reloading
from mobile tank into simplified container tank or other mobile tank located in the workplace. Simplified container
tank and mobile tank have been designed to storage some cryogenics gases as well as mobile container but without
transportation of them. Modern and effective insulation materials were applied in the tank structure. Therefore, the
liquefied cryogenic gases can be stored for a long time periods. Presented are selected depending on the extent of heat
exchange in cryogenic conditions, as well as a model for FEM calculations of thermal insulation inside the tank and
supports. Simulation results show the long storage times obtained for a simplified container which are close to the
times obtained by stationary tanks, however a lot easier to transport without charge. Presented solutions and results
of simulations may indicate, that depending on the requirements and considering manufacturing costs and operational
conditions, the proper variant of the tank can be chosen.
Keywords: LNG, transport, container tank, stationery tank, cryogenic tank, simulation
1. Introduction
In this paper a problem of mobile tank containers construction has been considered. The tanks
are designed mainly for usage in the LNG supply stations. The tanks can be used for storing the
liquefied natural gas for several weeks and then they are refuelled again. Storing of gas in liquefied
form is an advantageous option, because it is strongly condensed and occupies volume
approximately 660 times less than in gaseous form under the normal conditions. Nowadays, the
LNG becomes more and more popular fuel in areas as:
- gas supplying of small villages and places which cannot be connected to the gas piping,
- satisfying short-term, culminating demands for gas, during 1 to 4 months of the year (i.e. the
winter period),
- supplying of gas consumers temporarily cut off from the gas piping (i.e. due to repairs or
maintenance of the piping),
- supplying final LNG consumers as an alternative for gas delivered by conventional piping.
This is the method of gas delivery diversification which guarantees the energy independence,
- supplying the LNG car filling stations [7, 10].
The local LNG supply station consists of the cryogenic tank and the vaporising installation.
The main cost of the local station is a cryogenic tank. The tank is usually built with two walls and
the suitable layers of insulation with the purpose of obtaining the highest level of thermal
insulation efficiency. Inner tank and piping are made of the stainless steel. Therefore, usage of the
cryogenic tank has significant contribution in operating costs. Essentially, in local LNG supply
stations two types of tanks can be used: stationary ones and mobile ones. Mobile tanks can have
form of a standard ISO TC 104 container adapted for both road and rail transport with the load.
E. Lisowski, W. Czy ycki
The second option is a free-style construction, which only fulfils requirements applied to limiting
outline dimensions in road or rail transport. European regulations allow transporting containers
which have transverse dimensions of 2438 mm x 2591 mm, while the tank transported as
a common load can have transverse dimensions 3000 mm x 3000 mm. So, assuming the same
length of a mobile tank, a larger capacity can be obtained. Therefore, construction of a mobile tank
gives an opportunity to use wider range of tank dimensions, what can be used to obtain better
operating parameters.
Keeping in mind foregoing considerations, four design versions of cryogenic tanks were
developed and simulations of the variants were carried out. The types include various tank
diameters and operating pressures 7 and 12 bar:
- type I – tank installed in a standard ISO TC 104 container frame (Fig. 1) with the parameters:
outer tank diameter D=2350 mm, length L=5946 mm, volume V=19 m3 and operating pressure
p=7 bar,
- type II – tank constructed as variant I, with decreased dimensions of inner supports for the sake
of assumption, that only empty tank can be transported,
- type III – tank with the outer diameter D=3000 mm and length L=6058 mm, what gives the
volume V=32 m3; operating pressure p=7 bar (Fig. 2),
- type IV – tank as in variant III, but operating pressure increased to 12.5 bar (Fig. 2).
2. The design of the tank type I and II
Tank models of variants I and II are shown in Fig. 1 Stainless steel tank 1, in which the
cryogenic fluid is stored, is mounted by means of supports 2 of insulating material in the outer
shielding tank 3, made of carbon steel. In the space between the tanks there is a multi-layer
insulation material 4 with the radiation shields 5. The air has been removed from the space
between the tanks 6 in order to obtain a medium-level vacuum. The tank with fittings is placed on
external supports 7 in container frame 8. Container frame and the outer tank, together with other
construction elements must have sufficient strength to meet the requirements of road rail and
marine transportation in this case.
LNG storage container of type II has a structure similar to the mobile tank container I.
However, some changes had to be made due to the possibility of omitting computational cases
connected with the movement with the load. After carrying out the strength analysis, shapes of the
supports have been modified. The supports have been narrowed in the middle part. Besides, the
number of supports in the upper part of the tank has been reduced of half. The construction gives
the possibility of transporting the empty tank using the container – transportation devices.
Fig. 1. Model of the LNG tank container for LNG transportation and storage, tank type I and II : 1 – inner tank,
2 – inner supports made of plastic materials, 3 – outer tank, , 4 – insulation, 5 – radiation shields, 6 – the
vacuum, 7 – outer supports, 8 – container frame, 9 – fittings
194
Transport and Storage of LNG in Conainer Tanks
3. The design of the mobile tank built for type III i IV
For this comparison, also included a mobile tank with a design similar to the tank container,
but devoid of container frames and mountings. By omitting the limitations of container it was
possible to increase the capacity of the tank. In the design process of the tank, the ability to road
transport was taken into account. View of the mobile tank is shown in Fig. 2.
Fig. 2. Model of the mobile LNG, tank type III and IV: 1 – inner tank, 2 – outer tank, 3 – inner supports made of
plastic materials, 4 – outer supports, 5 – insulation, 6 – radiation shields, 7 – the vacuum, 8 – fittings
4. Heat transfer to the tank
Due to the large temperature differences between the medium and the environment, the heat
transfer to the tank may occur in three ways: by conduction, by convection and by radiation. Using
the theory of heat transition can be determined by these methods.
4.1. Heat transfer by the conduction
The heat conduction in designed tank occurs through walls of tank, supports, pipe fittings and
other elements connected with the tank. For LNG tanks, temperature difference between
transported liquid and outer environment can be 200 K or even more, under particular conditions.
In this case, the heat conduction process can be described as one-dimensional problem under
steady-state conditions [2, 3, 9]. This process can be described by the Fourier equation:
)(Tgradq , (1)
where:
q - elementary heat flux [W/m2
],
- thermal conductivity [W/(m K)],
nTTgrad /)( - derivative of temperature in direction n – perpendicular to isothermal surface.
Thermal conductivity under cryogenic conditions strongly depends upon the temperature.
Therefore, this dependence must be taken into consideration during computations.
4.2. Heat transfer by the convection
Convection in LNG tank, under cryogenic conditions does not differ from convection in higher
temperatures. Process of heat transmission from wall of tank to liquid gas can be computed on the
base of the Newton's equation [2, 3, 9]:
fs TTFQ , (2)
195
E. Lisowski, W. Czy ycki
where:
- heat transfer coefficient [W/(m2
K)],
F - area of solid body surface [m2
],
Ts - temperature of solid body surface [K],
Tf - – temperature of liquid [K].
Using of equation (2) requires value of heat transfer coefficient, which usually must be
determined experimentally. Similarity numbers Nu, Re, Pr and other necessary for describing heat
transfer by convection depend on thermal and transport properties of liquid. In particular, these
properties are: thermal conductivity , viscosity , thermal capacity c, density and others. Under
cryogenic conditions, these properties strongly depend on the temperature. Therefore, the heat
transfer coefficient should also be a function of temperature
4.3. Heat transfer by the radiation
Heat radiation is a process which is present in every body with temperature higher than
absolute zero. The heat flux transmitted by heat radiation between two bodies, which have
temperatures T1 and T2 (assuming, that T1>T2) can be determined from the following equation
[3, 9]:
4
2
4
1' TTqr
, (3)
where:
- a Stefan – Boltzmann constant ( = 5.67 10-8
W/m2
K4
),
' - a substitute emissivity of considered system,
T1, T2 - temperatures [K].
The heat radiation between two surfaces can be reduced by placing radiation shields between
them. Shields will receive intermediate temperatures between Tl and T2. If radiation shield and
surface of body which exchange the heat have the same emissivity, then amount of heat exchanged
by radiation between surfaces with one shield is two times smaller than without the shield.
Therefore, larger number of shields improves efficiency of radiation heat insulation. By the other
hand, each radiation shield takes some place, so the number of shields must be limited. In the
considered insulation of designed tank, three radiation shields have been applied.
4.4. Heat transfer by the residual gas
Obtaining a high-level vacuum (p << 0.1 Pa) is a time-consuming and expensive process for two-
walled cryogenic tanks with fibrous insulation. Besides, the keeping of the vacuum on the high level can
be difficult for the sake of outgassing materials of the tanks and insulation. The residual gas remaining
at the space between tank walls conduct heat. In considered tanks, the heat transfer by radiation and by
the residual gas conduction can be close to themselves, so this effect cannot be omitted.
In the first step of residual gas conduction modelling, a Knudsen number Kn was calculated. In
considered construction Kn 1, what indicates, that the residual gas cannot be modelled as
a continuous medium. Therefore, the Corruccini formula has been used [9]:
)(
81
1
12
2
1
TTp
MT
R
q
p
gr , (4)
where:
Vp cc / , (5)
21212
21
/)1( AA
, (6)
196
Transport and Storage of LNG in Conainer Tanks
where:
cp - specific heat of air at constant pressure [J/(kg K)],
cv - specific heat of air at constant volume [J/(kg K)],
1, 2 - heat transfer coefficients for the surface of the inner tank and the outer tank,
A1, A2 - area of inner tank walls and outer tank walls [m2
],
R - gas constant [J/(mol K)],
M - molar mass of the residual gas [kg/mol],
Tp - temperature in the pressure measurement point (on the outer tank) [K],
p - pressure of the residual gas [Pa],
T2, T1 - temperature of outer wall of inner tank and outer shield of inner tank insulation [K].
5. Modelling of the heat insulation
With the purpose of estimation usability of insulation materials in LNG tank containers
construction, several types of insulations have been selected for simulation research. The simulations
consisted in determination of average heat fluxes to the LNG from the environment [1, 4, 5]. An
insulation based on aerogel (trade name cryo-lite) has been chosen for analysis [5].
FEM calculations were carried out using the SolidWorks Simulation program. The following
assumptions were made: the model is in the thermal equilibrium, heat resistance of the inner tank
wall is omitted as negligible in comparison to insulation materials. Radiation shields were placed
between layers of insulation. Heat transfer in the vacuum space was considered only by the
radiation. Emissivity coefficients of the surfaces were assumed as dependent on type and
temperature of the particular surface. Moreover, heat transfer between the outer surface of the tank
and the environment proceeds only by convection with known, constant coefficient. The inner tank
was placed inside the outer one using system of plastic supports. Thermal contact resistance was
defined on the contact surfaces between supports and tanks. The coefficient values were assigned
on the basis of the own tank model investigations [3, 12-14]. According to EN 12213 standard,
a 50% filling ratio and +15°C degrees of ambient temperature were assigned. A solid model was
used for FEM calculations in SolidWorks Simulation.
As a result of the analysis, distributions of temperature and heat flux were obtained. Fig. 3 and
4 show the distribution of heat flux on the external tank respectively for variant construction for
tank types I and II and in Fig. 5 and 6 for the tank types III and IV. As it arise from the obtained
results, the highest value of heat flux occurs at the site of the inner supports. Temperature
distributions for tank type II on Fig. 7 and on Fig. 8 for type IV were shown.
Model name; zb-full_19_01
Test name: LNG Cryo-lite 75mm_15Cwor_rad
Chart type: Thermal HFL_gray
Step time: 1
Fig. 3. Heat flux on outer surface of container tank type I
197
E. Lisowski, W. Czy ycki
Model name; zb-full_19_01
Test name: LNG Cryo-lite 75mm_15Cwor_rad_stat
Chart type: Thermal HFL_gray
Step time: 1
Fig. 4. Heat flux on outer surface of simplified container tank type II
Model name; B_322 220000-1-00
Test name: LNG_vac_15_rad
Chart type: Thermal HFL_gray
Step time: 1
Fig. 5. Heat flux on outer surface of stationery tank type III
Model name; B_322 220000-1-00
Test name: LNG_vac_15_rad_125
Chart type: Thermal HFL_gray
Step time: 1
Fig. 6. Heat flux on outer surface of stationery tank type IV
198
Transport and Storage of LNG in Conainer Tanks
Model name; zb-full_19_01
Test name: LNG Cryo-lite 75mm_15Cwor_rad_stat
Chart type: Thermal Temp
Step time: 1
Fig. 7. Temperature distribution on outer surface of stationery tank type II
Model name; B_322 220000-2-00
Test name: LNG_vac_15_rad_125
Chart type: Thermal Temp
Step time: 1
Fig. 8. Temperature distribution on outer surface of stationery tank type IV
Comparison of the results of investigations was made using the EN 12213 methodology. With
the help of FEM models, an average heat flux on the outer surfaces of the tank was calculated.
Using FEM models was obtained the average heat flux on the external surfaces of tanks.
Comparison of the average heat fluxes on the outer surfaces of considered tanks is presented in
Fig. 9.
Fig. 9. Comparison of the average heat fluxes of the different tank types
The heat leakage was calculated using the formula [8]:
Fh
AQ
L c86400 , (7)
199
E. Lisowski, W. Czy ycki
where:
Qc - average heat flux on outer surface of the tank [W/m2
],
A - area of outer surface of the tank [m2
],
h - latent heat of vaporization [J/kg],
F - total mass of LNG in the tank [kg].
On the basis of the percentage heat leakage, a number of the days to empty the tank were
determined. Values of the percentage heat leakage and storage time in days of considered tank
types are summarized in Fig. 10.
Fig. 10. Comparison of the heat leakages (a) and storage time in days (b) of considered tank versions
As it arises from Fig. 9, the lowest value of average heat flux was obtained for tank type II. The
largest heat flux was obtained for LNG 1 tank container, what is obvious because the construction
had to fulfil increased strength requirements.
Comparison of heat leakages and connected with it storing time leads to the slightly different
conclusions. The longest storing times (Fig 10b) was obtained for tank variants III and IV. This
comes from their larger capacity. The tank variant II obtained considerably longer storing time
than tank container I, but shorter than variants III and IV.
6. Summary
In the paper is presented simulation research of four design variants of tank containers. The
tanks are assigned for movable LNG supply stations. The first variant consisted in using the
standard solution of a road and rail transportable container. This variant allows transporting the
tank container filled up with the LNG. The remaining three versions of tanks can be transported
only empty.
Presented solutions and results of simulations indicate, that depending on the requirements and
considering building costs and operational conditions, the proper variant of the tank can be chosen.
It arises from the analysis, that tank which is installed in the container frame and fulfils the
requirements of both road and rail transport in the filled up state has considerably worse thermal
properties than mobile tanks destined for transportation in the empty state only.
References
[1] Allen, M. S., Baumgartner, R. G., Fesmire, J. E., Augustynowicz, S. D. Advances in microsphere
insulation systems, Advances in Cryogenic Engineering, Proceedings of the Cryogenic
Engineering Conference, vol. 49, pp. 619-626, Melville, New York 2004.
[2] Arkharov A., Marfenina I, Mikulin Ye. Cryogenic Systems, Vol.l: Basics of Theory and
Design, Moscow 2000.
[3] Barron, R. R. Cryogenic heat transfer, Taylor & Francis 1999.
200
Transport and Storage of LNG in Conainer Tanks
[4] Cryogel Z – flexible industrial insulation with vapor barrier for sub-ambient and cryogenic
applications, Aspen Aerogels, Inc., 2008.
[5] Cryo-Lite – Cryogenic Insulation, Johns Manville, 2008.
[6] Czy ycki, W., Heat flow modelling on thermal insulation of cryogenics tanks using
SolidWorks simulation package, Technical Transactions vol. 4-M/2011A, Wydawnictwo
PK 2011.
[7] Dudek, S., Rudkowski, M., The comparative analysis of bus 6C(T)107 engine parameters
fuelled pressed with compressed CNG and liquid natural gas LNG, Journal of KONES,
Vol. 11, No. 1-2, pp. 128-136, Warsaw 2004.
[8] EN 12213:2001, Cryogenic vessels. Methods for performance evaluation of thermal
insulation.
[9] Flynn, T. M., Cryogenic Engineering, Marcel Dekker, USA 2005.
[10] Górski, Z., Cwilewicz, R., Konopacki, ., Kruk, K., Proposal of propulsion for liquefied
natural gas tanker (LNG carrier) supplying LNG terminal in Poland, Journal of KONES,
Vol. 15, No. 2, s. 103—108, Institute of Aviation, Warsaw 2008.
[11] Lisowski, E., Czy ycki, W., Filo, G., Computer aided design in mechanical engineering,
Transport of liquid natural gas by mobile tank container, Bergen University College, 2009.
[12] Lisowski, E., Czy ycki, W., azarczyk, K., Using of polyamide in construction of supporting
blocks of cryogenic tanks on example of LNG container, Archives of Foundry engineering,
Vol. 10, Is. 3, pp. 81-86, 2010.
[13] Lisowski, E., azarczyk, K., Badania stanowiskowe nowej konstrukcji kontenera do przewozu
p ynów kriogenicznych, szczególnie ciek ego azotu i LNG, Przegl d Mechaniczny 4’10, 2010.
[14] Lisowski, E., Czy ycki, W., azarczyk, K., Simulation and experimental research of internal
supports in mobile cryogenic tanks, Technical Transactions Vol. 2-M/2010, Wydawnictwo
PK 2010.
201

More Related Content

Viewers also liked (10)

New TBC website
New TBC websiteNew TBC website
New TBC website
 
Lesson8
Lesson8Lesson8
Lesson8
 
DFC Continue: Operation Raksha
DFC Continue: Operation RakshaDFC Continue: Operation Raksha
DFC Continue: Operation Raksha
 
628 ocg lng special investigation report part 1
628 ocg lng special investigation report part 1628 ocg lng special investigation report part 1
628 ocg lng special investigation report part 1
 
Administrasi guru nanan
Administrasi guru nananAdministrasi guru nanan
Administrasi guru nanan
 
DFC2009 India : Wealth out of Waste
DFC2009 India : Wealth out of WasteDFC2009 India : Wealth out of Waste
DFC2009 India : Wealth out of Waste
 
Ebook infoka 2015
Ebook infoka 2015Ebook infoka 2015
Ebook infoka 2015
 
461
461461
461
 
[실습] Ux디자인실무 20141203_4조
[실습] Ux디자인실무 20141203_4조[실습] Ux디자인실무 20141203_4조
[실습] Ux디자인실무 20141203_4조
 
4 study of_small_scale_lng_carrier
4 study of_small_scale_lng_carrier4 study of_small_scale_lng_carrier
4 study of_small_scale_lng_carrier
 

Similar to 2011 lisowski czyzycki_transport_and_storage

SRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydridesSRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydrideschrisrobschu
 
Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...eSAT Journals
 
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...Kelvin Xu (MRINA)
 
Comparative studies on heat transfer and fluid flow in cored brick and pebble...
Comparative studies on heat transfer and fluid flow in cored brick and pebble...Comparative studies on heat transfer and fluid flow in cored brick and pebble...
Comparative studies on heat transfer and fluid flow in cored brick and pebble...eSAT Journals
 
208564533 nuclear-reactors-types
208564533 nuclear-reactors-types208564533 nuclear-reactors-types
208564533 nuclear-reactors-typesmanojg1990
 
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage TankSeismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage TankIJERA Editor
 
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...IAEME Publication
 
CFD model to hygrogen filling station
CFD model to hygrogen filling stationCFD model to hygrogen filling station
CFD model to hygrogen filling stationSteven DAIX
 
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...IRJET Journal
 
Heat transfer enhancement in super heater tube using
Heat transfer enhancement in super heater tube usingHeat transfer enhancement in super heater tube using
Heat transfer enhancement in super heater tube usingeSAT Publishing House
 
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALS
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALSBOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALS
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALSVijay Sarathy
 
Kahir Thermal Analysis Full Paper
Kahir Thermal Analysis Full PaperKahir Thermal Analysis Full Paper
Kahir Thermal Analysis Full PaperHamidreza Araghian
 
Design_and_analysis_of_grooved_heat_pipe.pdf
Design_and_analysis_of_grooved_heat_pipe.pdfDesign_and_analysis_of_grooved_heat_pipe.pdf
Design_and_analysis_of_grooved_heat_pipe.pdfTHESEZAR1
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis IJMER
 
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...Dr. Amarjeet Singh
 
Optimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodOptimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodIJERA Editor
 

Similar to 2011 lisowski czyzycki_transport_and_storage (20)

SRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydridesSRNL Acceptability Envelope metal hydrides
SRNL Acceptability Envelope metal hydrides
 
Poster
PosterPoster
Poster
 
Vasiliev2007
Vasiliev2007Vasiliev2007
Vasiliev2007
 
Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...Experimental study of heat transfer and hydrodynamics of falling film on a no...
Experimental study of heat transfer and hydrodynamics of falling film on a no...
 
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...
Portable Fuel Tank - The Application of a New Method of Bunkering for Small S...
 
Comparative studies on heat transfer and fluid flow in cored brick and pebble...
Comparative studies on heat transfer and fluid flow in cored brick and pebble...Comparative studies on heat transfer and fluid flow in cored brick and pebble...
Comparative studies on heat transfer and fluid flow in cored brick and pebble...
 
208564533 nuclear-reactors-types
208564533 nuclear-reactors-types208564533 nuclear-reactors-types
208564533 nuclear-reactors-types
 
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage TankSeismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank
Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank
 
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...
NUMERICAL STUDIES ON THE LIQUID REQUIREMENTS FOR COMPLETE TRANSIENT CHILLDOWN...
 
CFD model to hygrogen filling station
CFD model to hygrogen filling stationCFD model to hygrogen filling station
CFD model to hygrogen filling station
 
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...
IRJET- Modelling and CFD Simulation of Prototype of AC Plant Chiller On-Board...
 
Hans Aksel Haugen (Tel-Tek) - The Crucial Role of Ships in Establishing a Nor...
Hans Aksel Haugen (Tel-Tek) - The Crucial Role of Ships in Establishing a Nor...Hans Aksel Haugen (Tel-Tek) - The Crucial Role of Ships in Establishing a Nor...
Hans Aksel Haugen (Tel-Tek) - The Crucial Role of Ships in Establishing a Nor...
 
Heat transfer enhancement in super heater tube using
Heat transfer enhancement in super heater tube usingHeat transfer enhancement in super heater tube using
Heat transfer enhancement in super heater tube using
 
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALS
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALSBOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALS
BOIL OFF GAS ANALYSIS OF LIQUEFIED NATURAL GAS (LNG) AT RECEIVING TERMINALS
 
Kahir Thermal Analysis Full Paper
Kahir Thermal Analysis Full PaperKahir Thermal Analysis Full Paper
Kahir Thermal Analysis Full Paper
 
Design_and_analysis_of_grooved_heat_pipe.pdf
Design_and_analysis_of_grooved_heat_pipe.pdfDesign_and_analysis_of_grooved_heat_pipe.pdf
Design_and_analysis_of_grooved_heat_pipe.pdf
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis
 
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...
Time History Analysis of Circular and Rectangular Elevated Water Storage Tank...
 
Optimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodOptimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical Method
 
20100022074
2010002207420100022074
20100022074
 

Recently uploaded

Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spaintimesproduction05
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 

Recently uploaded (20)

NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 

2011 lisowski czyzycki_transport_and_storage

  • 1. Journal of KONES Powertrain and Transport, Vol. 18, No. 3 2011 TRANSPORT AND STORAGE OF LNG IN CONTAINER TANKS Edward Lisowski, Wojciech Czy ycki Krakow University of Technology, Department of Mechanical Engineering Jana Paw a II Street 37, 31-864 Kraków, Poland phone+48 12 3743351, +48 12 3743654, fax: +48 12 3748267 e-mail: lisowski@mech.pk.edu.pl, czyzycki@mech.pk.edu.pl Abstract The work presents issues with the structure and thermal calculations of mobile tank for transport and storage of LNG. A modern design of cryogenic tank container and stationery cryogenic tank is presented in the paper. Mobile cryogenics container tank has been designed for transportation of LNG as well as other liquefied cryogenic gases with the temperature down to –196°C. The analysis included two types of logistics solutions: one involving the transport full container, which is removable from the vehicle and left in the workplace, and the second solution with reloading from mobile tank into simplified container tank or other mobile tank located in the workplace. Simplified container tank and mobile tank have been designed to storage some cryogenics gases as well as mobile container but without transportation of them. Modern and effective insulation materials were applied in the tank structure. Therefore, the liquefied cryogenic gases can be stored for a long time periods. Presented are selected depending on the extent of heat exchange in cryogenic conditions, as well as a model for FEM calculations of thermal insulation inside the tank and supports. Simulation results show the long storage times obtained for a simplified container which are close to the times obtained by stationary tanks, however a lot easier to transport without charge. Presented solutions and results of simulations may indicate, that depending on the requirements and considering manufacturing costs and operational conditions, the proper variant of the tank can be chosen. Keywords: LNG, transport, container tank, stationery tank, cryogenic tank, simulation 1. Introduction In this paper a problem of mobile tank containers construction has been considered. The tanks are designed mainly for usage in the LNG supply stations. The tanks can be used for storing the liquefied natural gas for several weeks and then they are refuelled again. Storing of gas in liquefied form is an advantageous option, because it is strongly condensed and occupies volume approximately 660 times less than in gaseous form under the normal conditions. Nowadays, the LNG becomes more and more popular fuel in areas as: - gas supplying of small villages and places which cannot be connected to the gas piping, - satisfying short-term, culminating demands for gas, during 1 to 4 months of the year (i.e. the winter period), - supplying of gas consumers temporarily cut off from the gas piping (i.e. due to repairs or maintenance of the piping), - supplying final LNG consumers as an alternative for gas delivered by conventional piping. This is the method of gas delivery diversification which guarantees the energy independence, - supplying the LNG car filling stations [7, 10]. The local LNG supply station consists of the cryogenic tank and the vaporising installation. The main cost of the local station is a cryogenic tank. The tank is usually built with two walls and the suitable layers of insulation with the purpose of obtaining the highest level of thermal insulation efficiency. Inner tank and piping are made of the stainless steel. Therefore, usage of the cryogenic tank has significant contribution in operating costs. Essentially, in local LNG supply stations two types of tanks can be used: stationary ones and mobile ones. Mobile tanks can have form of a standard ISO TC 104 container adapted for both road and rail transport with the load.
  • 2. E. Lisowski, W. Czy ycki The second option is a free-style construction, which only fulfils requirements applied to limiting outline dimensions in road or rail transport. European regulations allow transporting containers which have transverse dimensions of 2438 mm x 2591 mm, while the tank transported as a common load can have transverse dimensions 3000 mm x 3000 mm. So, assuming the same length of a mobile tank, a larger capacity can be obtained. Therefore, construction of a mobile tank gives an opportunity to use wider range of tank dimensions, what can be used to obtain better operating parameters. Keeping in mind foregoing considerations, four design versions of cryogenic tanks were developed and simulations of the variants were carried out. The types include various tank diameters and operating pressures 7 and 12 bar: - type I – tank installed in a standard ISO TC 104 container frame (Fig. 1) with the parameters: outer tank diameter D=2350 mm, length L=5946 mm, volume V=19 m3 and operating pressure p=7 bar, - type II – tank constructed as variant I, with decreased dimensions of inner supports for the sake of assumption, that only empty tank can be transported, - type III – tank with the outer diameter D=3000 mm and length L=6058 mm, what gives the volume V=32 m3; operating pressure p=7 bar (Fig. 2), - type IV – tank as in variant III, but operating pressure increased to 12.5 bar (Fig. 2). 2. The design of the tank type I and II Tank models of variants I and II are shown in Fig. 1 Stainless steel tank 1, in which the cryogenic fluid is stored, is mounted by means of supports 2 of insulating material in the outer shielding tank 3, made of carbon steel. In the space between the tanks there is a multi-layer insulation material 4 with the radiation shields 5. The air has been removed from the space between the tanks 6 in order to obtain a medium-level vacuum. The tank with fittings is placed on external supports 7 in container frame 8. Container frame and the outer tank, together with other construction elements must have sufficient strength to meet the requirements of road rail and marine transportation in this case. LNG storage container of type II has a structure similar to the mobile tank container I. However, some changes had to be made due to the possibility of omitting computational cases connected with the movement with the load. After carrying out the strength analysis, shapes of the supports have been modified. The supports have been narrowed in the middle part. Besides, the number of supports in the upper part of the tank has been reduced of half. The construction gives the possibility of transporting the empty tank using the container – transportation devices. Fig. 1. Model of the LNG tank container for LNG transportation and storage, tank type I and II : 1 – inner tank, 2 – inner supports made of plastic materials, 3 – outer tank, , 4 – insulation, 5 – radiation shields, 6 – the vacuum, 7 – outer supports, 8 – container frame, 9 – fittings 194
  • 3. Transport and Storage of LNG in Conainer Tanks 3. The design of the mobile tank built for type III i IV For this comparison, also included a mobile tank with a design similar to the tank container, but devoid of container frames and mountings. By omitting the limitations of container it was possible to increase the capacity of the tank. In the design process of the tank, the ability to road transport was taken into account. View of the mobile tank is shown in Fig. 2. Fig. 2. Model of the mobile LNG, tank type III and IV: 1 – inner tank, 2 – outer tank, 3 – inner supports made of plastic materials, 4 – outer supports, 5 – insulation, 6 – radiation shields, 7 – the vacuum, 8 – fittings 4. Heat transfer to the tank Due to the large temperature differences between the medium and the environment, the heat transfer to the tank may occur in three ways: by conduction, by convection and by radiation. Using the theory of heat transition can be determined by these methods. 4.1. Heat transfer by the conduction The heat conduction in designed tank occurs through walls of tank, supports, pipe fittings and other elements connected with the tank. For LNG tanks, temperature difference between transported liquid and outer environment can be 200 K or even more, under particular conditions. In this case, the heat conduction process can be described as one-dimensional problem under steady-state conditions [2, 3, 9]. This process can be described by the Fourier equation: )(Tgradq , (1) where: q - elementary heat flux [W/m2 ], - thermal conductivity [W/(m K)], nTTgrad /)( - derivative of temperature in direction n – perpendicular to isothermal surface. Thermal conductivity under cryogenic conditions strongly depends upon the temperature. Therefore, this dependence must be taken into consideration during computations. 4.2. Heat transfer by the convection Convection in LNG tank, under cryogenic conditions does not differ from convection in higher temperatures. Process of heat transmission from wall of tank to liquid gas can be computed on the base of the Newton's equation [2, 3, 9]: fs TTFQ , (2) 195
  • 4. E. Lisowski, W. Czy ycki where: - heat transfer coefficient [W/(m2 K)], F - area of solid body surface [m2 ], Ts - temperature of solid body surface [K], Tf - – temperature of liquid [K]. Using of equation (2) requires value of heat transfer coefficient, which usually must be determined experimentally. Similarity numbers Nu, Re, Pr and other necessary for describing heat transfer by convection depend on thermal and transport properties of liquid. In particular, these properties are: thermal conductivity , viscosity , thermal capacity c, density and others. Under cryogenic conditions, these properties strongly depend on the temperature. Therefore, the heat transfer coefficient should also be a function of temperature 4.3. Heat transfer by the radiation Heat radiation is a process which is present in every body with temperature higher than absolute zero. The heat flux transmitted by heat radiation between two bodies, which have temperatures T1 and T2 (assuming, that T1>T2) can be determined from the following equation [3, 9]: 4 2 4 1' TTqr , (3) where: - a Stefan – Boltzmann constant ( = 5.67 10-8 W/m2 K4 ), ' - a substitute emissivity of considered system, T1, T2 - temperatures [K]. The heat radiation between two surfaces can be reduced by placing radiation shields between them. Shields will receive intermediate temperatures between Tl and T2. If radiation shield and surface of body which exchange the heat have the same emissivity, then amount of heat exchanged by radiation between surfaces with one shield is two times smaller than without the shield. Therefore, larger number of shields improves efficiency of radiation heat insulation. By the other hand, each radiation shield takes some place, so the number of shields must be limited. In the considered insulation of designed tank, three radiation shields have been applied. 4.4. Heat transfer by the residual gas Obtaining a high-level vacuum (p << 0.1 Pa) is a time-consuming and expensive process for two- walled cryogenic tanks with fibrous insulation. Besides, the keeping of the vacuum on the high level can be difficult for the sake of outgassing materials of the tanks and insulation. The residual gas remaining at the space between tank walls conduct heat. In considered tanks, the heat transfer by radiation and by the residual gas conduction can be close to themselves, so this effect cannot be omitted. In the first step of residual gas conduction modelling, a Knudsen number Kn was calculated. In considered construction Kn 1, what indicates, that the residual gas cannot be modelled as a continuous medium. Therefore, the Corruccini formula has been used [9]: )( 81 1 12 2 1 TTp MT R q p gr , (4) where: Vp cc / , (5) 21212 21 /)1( AA , (6) 196
  • 5. Transport and Storage of LNG in Conainer Tanks where: cp - specific heat of air at constant pressure [J/(kg K)], cv - specific heat of air at constant volume [J/(kg K)], 1, 2 - heat transfer coefficients for the surface of the inner tank and the outer tank, A1, A2 - area of inner tank walls and outer tank walls [m2 ], R - gas constant [J/(mol K)], M - molar mass of the residual gas [kg/mol], Tp - temperature in the pressure measurement point (on the outer tank) [K], p - pressure of the residual gas [Pa], T2, T1 - temperature of outer wall of inner tank and outer shield of inner tank insulation [K]. 5. Modelling of the heat insulation With the purpose of estimation usability of insulation materials in LNG tank containers construction, several types of insulations have been selected for simulation research. The simulations consisted in determination of average heat fluxes to the LNG from the environment [1, 4, 5]. An insulation based on aerogel (trade name cryo-lite) has been chosen for analysis [5]. FEM calculations were carried out using the SolidWorks Simulation program. The following assumptions were made: the model is in the thermal equilibrium, heat resistance of the inner tank wall is omitted as negligible in comparison to insulation materials. Radiation shields were placed between layers of insulation. Heat transfer in the vacuum space was considered only by the radiation. Emissivity coefficients of the surfaces were assumed as dependent on type and temperature of the particular surface. Moreover, heat transfer between the outer surface of the tank and the environment proceeds only by convection with known, constant coefficient. The inner tank was placed inside the outer one using system of plastic supports. Thermal contact resistance was defined on the contact surfaces between supports and tanks. The coefficient values were assigned on the basis of the own tank model investigations [3, 12-14]. According to EN 12213 standard, a 50% filling ratio and +15°C degrees of ambient temperature were assigned. A solid model was used for FEM calculations in SolidWorks Simulation. As a result of the analysis, distributions of temperature and heat flux were obtained. Fig. 3 and 4 show the distribution of heat flux on the external tank respectively for variant construction for tank types I and II and in Fig. 5 and 6 for the tank types III and IV. As it arise from the obtained results, the highest value of heat flux occurs at the site of the inner supports. Temperature distributions for tank type II on Fig. 7 and on Fig. 8 for type IV were shown. Model name; zb-full_19_01 Test name: LNG Cryo-lite 75mm_15Cwor_rad Chart type: Thermal HFL_gray Step time: 1 Fig. 3. Heat flux on outer surface of container tank type I 197
  • 6. E. Lisowski, W. Czy ycki Model name; zb-full_19_01 Test name: LNG Cryo-lite 75mm_15Cwor_rad_stat Chart type: Thermal HFL_gray Step time: 1 Fig. 4. Heat flux on outer surface of simplified container tank type II Model name; B_322 220000-1-00 Test name: LNG_vac_15_rad Chart type: Thermal HFL_gray Step time: 1 Fig. 5. Heat flux on outer surface of stationery tank type III Model name; B_322 220000-1-00 Test name: LNG_vac_15_rad_125 Chart type: Thermal HFL_gray Step time: 1 Fig. 6. Heat flux on outer surface of stationery tank type IV 198
  • 7. Transport and Storage of LNG in Conainer Tanks Model name; zb-full_19_01 Test name: LNG Cryo-lite 75mm_15Cwor_rad_stat Chart type: Thermal Temp Step time: 1 Fig. 7. Temperature distribution on outer surface of stationery tank type II Model name; B_322 220000-2-00 Test name: LNG_vac_15_rad_125 Chart type: Thermal Temp Step time: 1 Fig. 8. Temperature distribution on outer surface of stationery tank type IV Comparison of the results of investigations was made using the EN 12213 methodology. With the help of FEM models, an average heat flux on the outer surfaces of the tank was calculated. Using FEM models was obtained the average heat flux on the external surfaces of tanks. Comparison of the average heat fluxes on the outer surfaces of considered tanks is presented in Fig. 9. Fig. 9. Comparison of the average heat fluxes of the different tank types The heat leakage was calculated using the formula [8]: Fh AQ L c86400 , (7) 199
  • 8. E. Lisowski, W. Czy ycki where: Qc - average heat flux on outer surface of the tank [W/m2 ], A - area of outer surface of the tank [m2 ], h - latent heat of vaporization [J/kg], F - total mass of LNG in the tank [kg]. On the basis of the percentage heat leakage, a number of the days to empty the tank were determined. Values of the percentage heat leakage and storage time in days of considered tank types are summarized in Fig. 10. Fig. 10. Comparison of the heat leakages (a) and storage time in days (b) of considered tank versions As it arises from Fig. 9, the lowest value of average heat flux was obtained for tank type II. The largest heat flux was obtained for LNG 1 tank container, what is obvious because the construction had to fulfil increased strength requirements. Comparison of heat leakages and connected with it storing time leads to the slightly different conclusions. The longest storing times (Fig 10b) was obtained for tank variants III and IV. This comes from their larger capacity. The tank variant II obtained considerably longer storing time than tank container I, but shorter than variants III and IV. 6. Summary In the paper is presented simulation research of four design variants of tank containers. The tanks are assigned for movable LNG supply stations. The first variant consisted in using the standard solution of a road and rail transportable container. This variant allows transporting the tank container filled up with the LNG. The remaining three versions of tanks can be transported only empty. Presented solutions and results of simulations indicate, that depending on the requirements and considering building costs and operational conditions, the proper variant of the tank can be chosen. It arises from the analysis, that tank which is installed in the container frame and fulfils the requirements of both road and rail transport in the filled up state has considerably worse thermal properties than mobile tanks destined for transportation in the empty state only. References [1] Allen, M. S., Baumgartner, R. G., Fesmire, J. E., Augustynowicz, S. D. Advances in microsphere insulation systems, Advances in Cryogenic Engineering, Proceedings of the Cryogenic Engineering Conference, vol. 49, pp. 619-626, Melville, New York 2004. [2] Arkharov A., Marfenina I, Mikulin Ye. Cryogenic Systems, Vol.l: Basics of Theory and Design, Moscow 2000. [3] Barron, R. R. Cryogenic heat transfer, Taylor & Francis 1999. 200
  • 9. Transport and Storage of LNG in Conainer Tanks [4] Cryogel Z – flexible industrial insulation with vapor barrier for sub-ambient and cryogenic applications, Aspen Aerogels, Inc., 2008. [5] Cryo-Lite – Cryogenic Insulation, Johns Manville, 2008. [6] Czy ycki, W., Heat flow modelling on thermal insulation of cryogenics tanks using SolidWorks simulation package, Technical Transactions vol. 4-M/2011A, Wydawnictwo PK 2011. [7] Dudek, S., Rudkowski, M., The comparative analysis of bus 6C(T)107 engine parameters fuelled pressed with compressed CNG and liquid natural gas LNG, Journal of KONES, Vol. 11, No. 1-2, pp. 128-136, Warsaw 2004. [8] EN 12213:2001, Cryogenic vessels. Methods for performance evaluation of thermal insulation. [9] Flynn, T. M., Cryogenic Engineering, Marcel Dekker, USA 2005. [10] Górski, Z., Cwilewicz, R., Konopacki, ., Kruk, K., Proposal of propulsion for liquefied natural gas tanker (LNG carrier) supplying LNG terminal in Poland, Journal of KONES, Vol. 15, No. 2, s. 103—108, Institute of Aviation, Warsaw 2008. [11] Lisowski, E., Czy ycki, W., Filo, G., Computer aided design in mechanical engineering, Transport of liquid natural gas by mobile tank container, Bergen University College, 2009. [12] Lisowski, E., Czy ycki, W., azarczyk, K., Using of polyamide in construction of supporting blocks of cryogenic tanks on example of LNG container, Archives of Foundry engineering, Vol. 10, Is. 3, pp. 81-86, 2010. [13] Lisowski, E., azarczyk, K., Badania stanowiskowe nowej konstrukcji kontenera do przewozu p ynów kriogenicznych, szczególnie ciek ego azotu i LNG, Przegl d Mechaniczny 4’10, 2010. [14] Lisowski, E., Czy ycki, W., azarczyk, K., Simulation and experimental research of internal supports in mobile cryogenic tanks, Technical Transactions Vol. 2-M/2010, Wydawnictwo PK 2010. 201