SlideShare a Scribd company logo
Organic Reactions and Mechanisms
• Organic reactions are chemical reactions
involving organic compounds. The basic
organic chemistry reaction types are addition
reactions, elimination reactions, substitution
reactions, pericyclic reactions, rearrangement
reactions and redox reactions.
• A reaction mechanism is the step by step
sequence of elementary reactions by which
overall chemical change occurs.
Nucleophilie
• A reagent which can donate an electron pair in a
reaction is called a nucleophile.
• The name nucleophile means nucleous loving and
indicates that it attacks regions of low electron
density (positive centres) in the substrate molecule.
• Nucleophiles are electron rich.
• They may be negative ions including carbanions or
neutral molecules with free electron pair.
• A nucleophile can be represented by a by general
symbol Nu:-
• Examples
• Cl-
, Br-
, I-
, CN -
, OH-
, RCH2
-
, NH3, RNH2, H2O, ROH
Electrophiles
• A reagent which can accept an electron pair in a
reaction called an electrophile.
• The name electrophile means electron-loving and
indicates that it attacks regions of high electron
density (negative centres) in the substrates
molecule.
• Electrophiles are electron deficient.
• They may be positive ions including carbonium ions
or neutral molecules with electron deficient centres
• An electrophile can represented by E+
• Examples
• H+
, Cl+
, Br+
, I+
, NO2
+
, R3C+
, +
SO3H, AlCl3, BF3
Organic Reaction Mechanism
• A reaction mechanism is the step by
step sequence of elementary reactions by
which overall chemical change occurs.
• Although only the net chemical change is
directly observable for most chemical
reactions, experiments can often be
designed that suggest the possible
sequence of steps in a reaction
mechanism.
Mechanism
• There is no limit to the number of possible organic
reactions and mechanisms . However, certain general
patterns are observed that can be used to describe
many common or useful reactions. Each reaction has a
stepwise reaction mechanism that explains how it
happens, although this detailed description of steps is
not always clear from a list of reactants alone.
Types of Organic Reactions
• Organic reactions can be organized into
several basic types. Some reactions fit into
more than one category. For example,
some substitution reactions follow an
addition-elimination pathway. This overview
isn't intended to include every single
organic reaction. Rather, it is intended to
cover the basic reactions.
Types of reactions
• Addition reactions
• Substitution reactions
• Elimination Reactions
• Rearrangement reactions
• Organic Redox reactions
Types of Reactions
redox reactions specific
to organic compounds
Organic Redox
reactions
1,2-rearrangements
pericyclic reactions
metathesis
Rearrangements
reactions
with SN1
, SN2
and
SNi reaction
mechanisms
nucleophilic aliphatic
Substitution
nucleophilic aromatic substitution
nucleophilic acyl substitution
electrophilic substitution
electrophilic aromatic substitution
radical substitution
Substitution reactions
Dehydration
Elimination reaction
halognenation,
hydrohalogenation and
hydration
Electrophilic
Nucloephilic
radical
Addition reactions
comments
Sub-type
Reaction Type
Addition Reactions-Electrophilic addition
• An electrophilic addition reaction is an addition
reaction where, in a chemical compound, a π
bond is broken and two new σ bonds are
formed. The substrate of an electrophilic addition
reaction must have a double bond or triple
bond.
• The driving force for this reaction is the
formation of an electrophile X+ that forms a
covalent bond with an electron-rich
unsaturated C=C bond. The positive charge on
X is transferred to the carbon-carbon bond,
forming a carbocation.
Addition Reactions-Electrophilic addition
Addition Reactions-Electrophilic addition
• In step 1, the positively charged
intermediate combines with (Y) that is
electron-rich and usually an anion to form
the second covalent bond.
•
Step 2 is the same nucleophilic attack
process found in an SN1 reaction. The
exact nature of the electrophile and the
nature of the positively charged
intermediate are not always clear and
depend on reactants and reaction
conditions.
Addition Reactions-Electrophilic addition
• In all asymmetric addition reactions to carbon,
regioselectivity is important and often determined by
Markovnikov's rule. Organoborane compounds give anti-
Markovnikov additions. Electrophilic attack to an
aromatic system results in electrophilic aromatic
substitution rather than an addition reaction.
• Typical electrophilic additions to alkenes with reagents
are:
• dihalo addition reactions: X2
• Hydrohalogenations:HX
• Hydration reactions: H2O
• Hydrogenations H2
• Oxymercuration reactions: mercuric acetate, water
• Hydroboration-oxidation reactions : diborane
• the Prins reaction : formaldehyde, water
Nucleophiic addition
• A nucleophilic addition reaction is an addition
reaction where in a chemical compound a π
bond is removed by the creation of two new
covalent bonds by the addition of a
nucleophile.
• Addition reactions are limited to chemical
compounds that have multiple-bonded atoms
• molecules with carbon - hetero multiple bonds
like carbonyls, imines or nitriles
• molecules with carbon - carbon double bonds or
triple bonds
Nucleophiic addition
• An example of a nucleophilic addition reaction that
occurs at the carbonyl group of a ketone by substitution
with hydroxide-based compounds, denoted shorthand. In
this example, an unstable hemiketal is formed.
Nucleophilic Addition
to carbon - hetero double bonds
• Addition reactions of a nucleophile to carbon - hetero
double bonds such as C=O or CN triple bond show a
wide variety. These bonds are polar (have a large
difference in electronegativity between the two atoms)
consequently carbon carries a partial positive charge.
This makes this atom the primary target for the
nucleophile.
Nucleophilic Addition
to carbon - hetero double bonds
• This type of reaction is also called a 1,2 nucleophilic addition. The
stereochemistry of this type of nucleophilic attack is not an issue,
when both alkyl substituents are dissimilar and there are not any
other controlling issues such as chelation with a Lewis acid, the
reaction product is a racemate. Addition reactions of this type are
numerous. When the addition reaction is accompanied by an
elimination, the reaction type is nucleophilic acyl substitution or an
addition-elimination reaction.
• Carbonyls
• With a carbonyl compound as an electrophile, the nucleophile can be:
• water in hydration to a geminal diol (hydrate)
• an alcohol in acetalisation to an acetal
• an hydride in reduction to an alcohol
• an amine with formaldehyde and a carbonyl compound in the
Mannich reaction
• an enolate ion in an aldol reaction or Baylis-Hillman reaction
• an organometallic nucleophile in the Grignard reaction or the related
Barbier reaction or a Reformatskii reaction
• ylides such as a Wittig reagent or the Corey-Chaykovsky reagent or α-silyl
carbanions in the Peterson olefination
• a phosphonate carbanion in the Horner-Wadsworth-Emmons reaction
• a pyridine zwitterion in the Hammick reaction
• an acetylide in the Favorskii reaction
• Nitriles
• With nitrile electrophiles nucleophilic addition
take place by:
• hydrolysis of a nitrile to an amide or a
carboxylic acid
• organozinc nucleophiles in the Blaise reaction
• alcohols in the Pinner reaction.
• the (same) nitrile α-carbon in the
Thorpe reaction. The intramolecular version is
called the Thorpe-Ziegler reaction.
• Imines and other
• With imine electrophiles nucleophilic addition
take place by:
• hydrides to amines in the
Eschweiler-Clarke reaction
• water to carbonyls in the Nef reaction.
• With miscellaneous electrophiles:
• addition of an alcohol to an isocyanate to form a
carbamate.
• Nucleophiles attack carbonyl centers from a
specific angle called the Bürgi-Dunitz angle.
Nucleophilic Addition
to carbon - carbon double bonds
• The driving force for the addition to alkenes is the
formation of a nucleophile X- that forms a covalent bond
with an electron-poor unsaturated system -C=C- (step 1).
The negative charge on X is transferred to the carbon -
carbon bond.
• In step 2 the negatively charged carbanion combines
with (Y) that is electron-poor to form the second covalent
bond.
Nucleophilic Addition
to carbon - carbon double bonds
• Ordinary alkenes are not susceptible to a nucleophilic
attack (apolar bond). Styrene reacts in toluene with
sodium to 1,3-diphenylpropane through the intermediate
carbanion:
Substitution Reactions
The reactions in which an atom or group of atoms in a molecule is replaced or
substituted by different atoms or group of atoms are called substitution
reaction. For example,
Nucleophilic Substitution
• Nucleophilic substitution is a fundamental
class of substitution reaction in which an
"electron rich" nucleophile selectively bonds with
or attacks the positive or partially positive charge
of an atom attached to a group or atom called
the leaving group; the positive or partially
positive atom is referred to as an electrophile.
• Nucleophilic substitution reactions can be
broadly classified as
– Nucleophilic substitution at saturated carbon centres
– Nucleophilic substitution at unsaturated carbon
centres
Nucleophilic substitution at
saturated carbon centres
• In 1935, Edward D. Hughes and Sir Christopher
Ingold studied nucleophilic substitution reactions
of alkyl halides and related compounds. They
proposed that there were two main mechanisms
at work, both of them competing with each other.
The two main mechanisms are the SN1
reaction and the SN2 reaction. S stands for
chemical substitution, N stands for nucleophilic,
and the number represents the kinetic order of
the reaction.
• In the SN2 reaction, the addition of the
nucleophile and the elimination of leaving group
take place simultaneously. SN2 occurs where
the central carbon atom is easily accessible to
the nucleophile. By contrast the SN1 reaction
involves two steps. SN1 reactions tend to be
important when the central carbon atom of the
substrate is surrounded by bulky groups, both
because such groups interfere sterically with the
SN2 reaction (discussed above) and because a
highly substituted carbon forms a stable
carbocation.
Nucleophilic substitution at carbon atom
SN1
Mechanism
Nucleophilic substitution at carbon atom
SN2
Mechanism
Nucleophilic substitution at
unsaturated carbon centres
• Nucleophilic substitution via the SN1 or SN2
mechanism does not generally occur with vinyl
or aryl halides or related compounds.
• When the substitution occurs at the carbonyl
group, the acyl group may undergo nucleophilic
acyl substitution. This is the normal mode of
substitution with carboxylic acid derivatives such
as acyl chlorides, esters and amides.
Nucleophilic Aromatic substitution
• A nucleophilic aromatic substitution is a
substitution reaction in organic chemistry in
which the nucleophile displaces a good leaving
group, such as a halide, on an aromatic ring.
Nitration
• Nitration is a general chemical process for the
introduction of a nitro group into a chemical compound.
Examples of nitrations are the conversion of glycerin to
nitroglycerin and the conversion of toluene to
trinitrotoluene. Both of these conversions use nitric acid
and sulfuric acid.
• In aromatic nitration, aromatic organic compounds are
nitrated via an electrophilic aromatic substitution
mechanism involving the attack of the electron-rich
benzene ring by the nitronium ion.
Aromatic nitro compounds are important intermediates to anilines by
action of a reducing agent. Benzene is nitrated by refluxing with
concentrated sulfuric acid and concentrated nitric acid at 50 °C.The
sulfuric acid is regenerated and hence acts as a catalyst. It also
absorbs water.
• The formation of a nitronium ion (the electrophile) from nitric acid
and sulfuric acid and subsequent reaction of the ion with benzene is
shown below:
Sulphonation
• Electrophilic Aromatic Substitution
• Overall transformation : Ar-H to Ar-SO3H, a sulfonic acid.
• Reagent : for benzene, H2SO4 / heat or SO3 / H2SO4 / heat (= fuming
sulfuric acid)
• Electrophilic species : SO3 which can be formed by the loss of water from
the sulfuric acid
• Unlike the other electrophilic aromatic substitution reactions, sulfonation is
reversible.
• Removal of water from the system favours the formation of the sulfonation
product.
• Heating a sulfonic acid with aqueous sulfuric acid can result be the reverse
reaction, desulfonation.
• Sulfonation with fuming sulfuric acid strongly favours formation of the
product the sulfonic acid.
MECHANISM FOR SULFONATION OF BENZENE
• Step 1:
The p electrons of the aromatic C=C act as a
nucleophile, attacking the electrophilic S,
pushing charge out onto an electronegative O
atom. This destroys the aromaticity giving the
cyclohexadienyl cation intermediate.
• Step 2:
Loss of the proton from the sp3 C bearing the
sulfonyl- group reforms the C=C and the
aromatic system.
• Step 3:
Protonation of the conjugate base of the
sulfonic acid by sulfuric acid produces the
sulfonic acid
Halogenation
• An electrophilic aromatic halogenation is a type of
electrophilic aromatic substitution. This organic reaction
is typical of aromatic compounds and a very useful
method for adding substituents to an aromatic system.
• A few types of aromatic compounds, such as phenol, will react
without a catalyst, but for typical benzene derivatives with less
reactive substrates, a Lewis acid catalyst is required. Typical Lewis
acid catalysts include AlCl3, FeCl3, FeBr3, and ZnCl2. These work
by forming a highly electrophilic complex which attacks the
benzene ring.
Reaction mechanism
• The reaction mechanism for chlorination of benzene is
the same as bromination of benzene.
• The mechanism for iodination is slightly different: iodine
(I2) is treated with an oxidizing agent such as nitric acid
to obtain the electrophilic iodine (2 I+). Unlike the other
halogens, iodine does not serve as a base since it is
positive.
• Halogenation of aromatic compounds differs from the
halogenation of alkenes, which do not require a Lewis
Acid catalyst.
scope
• If the ring contains a strongly activating
substituent such as -OH, -OR or amines, a
catalyst is not necessary, for example in
the bromination of p-cresol
• However, if a catalyst is used with excess
bromine, then a tribromide will be formed.
• Halogenation of phenols is faster in polar solvents due to the
dissociation of phenol, with phenoxide ions being more susceptible
to electrophilic attack as they are more electron-rich.
• Chlorination of toluene with chlorine without catalyst requires a polar
solvent as well such as acetic acid. The ortho to para selectivity is
low:
• No reaction takes place when the solvent is replaced by
tetrachloromethane. In contrast, when the reactant is 2-phenyl-
ethylamine, it is possible to employ relatively apolar solvents with
exclusive ortho- regioselectivity due to the intermediate formation of
a chloramine making the subsequent reaction step intramolecular.
• The food dye erythrosine can be
synthesized by iodination of another dye
called fluorescein:
• This reaction is driven by sodium
bicarbonate.

More Related Content

Similar to organicreactionsandmechanisms-120331092608-phpapp01.pdf

Reactions of Organic Compounds yesssssss
Reactions of Organic Compounds yesssssssReactions of Organic Compounds yesssssss
Reactions of Organic Compounds yesssssss
ValerieIntong
 
Addition Reaction.pptx
Addition Reaction.pptxAddition Reaction.pptx
Addition Reaction.pptx
knowledgeofsciences
 
Types of Organic Reactions
Types of Organic ReactionsTypes of Organic Reactions
Types of Organic Reactions
Liwayway Memije-Cruz
 
Presentation apc
Presentation apcPresentation apc
Presentation apc
shishirkawde
 
bioenergetics.pptx
bioenergetics.pptxbioenergetics.pptx
bioenergetics.pptx
NoorKhan428102
 
Electrophilic substitution reaction.pptx
Electrophilic substitution reaction.pptxElectrophilic substitution reaction.pptx
Electrophilic substitution reaction.pptx
AliAwan652291
 
Electrophilic Substitution reactions
Electrophilic Substitution reactionsElectrophilic Substitution reactions
Electrophilic Substitution reactions
Vastvikta Sahai
 
Nucleophilic Substitution Lab Report
Nucleophilic Substitution Lab ReportNucleophilic Substitution Lab Report
Nucleophilic Substitution Lab Report
Jasmine Culbreth
 
B.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistryB.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistry
Rai University
 
pdf alkyl_halides.pdf
pdf alkyl_halides.pdfpdf alkyl_halides.pdf
pdf alkyl_halides.pdf
SN20619PhangJianAn
 
Topic 3 Introduction to Reaction Mechanism (1).pptx
Topic 3 Introduction to Reaction Mechanism (1).pptxTopic 3 Introduction to Reaction Mechanism (1).pptx
Topic 3 Introduction to Reaction Mechanism (1).pptx
JaneYl1
 
Org.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptxOrg.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptx
ssuser183732
 
Organic reaction mechanism full
Organic reaction mechanism fullOrganic reaction mechanism full
Organic reaction mechanism full
suresh gdvm
 
Atkins Chapter 3.ppt
Atkins Chapter 3.pptAtkins Chapter 3.ppt
Atkins Chapter 3.ppt
HAMMOUDDima1
 
Name-Reaction-2 (1).pptx
Name-Reaction-2 (1).pptxName-Reaction-2 (1).pptx
Name-Reaction-2 (1).pptx
Tayari
 
Elimination reactions- E1 Elimination reaction
Elimination reactions- E1 Elimination reactionElimination reactions- E1 Elimination reaction
Elimination reactions- E1 Elimination reaction
Sapna Sivanthie
 
Group transfer reactions
Group transfer reactionsGroup transfer reactions
Group transfer reactions
Harish Chopra
 
Chapter 3 Alkenes and Alkynes
Chapter 3 Alkenes and AlkynesChapter 3 Alkenes and Alkynes
Chapter 3 Alkenes and Alkynes
elfisusanti
 
Introduction to Organic Chemistry.pdf
Introduction to Organic Chemistry.pdfIntroduction to Organic Chemistry.pdf
Introduction to Organic Chemistry.pdf
mansoorahmed989397
 
(26) session 26 electrophilic addition of alkenes
(26) session 26   electrophilic addition of alkenes(26) session 26   electrophilic addition of alkenes
(26) session 26 electrophilic addition of alkenes
Nixon Hamutumwa
 

Similar to organicreactionsandmechanisms-120331092608-phpapp01.pdf (20)

Reactions of Organic Compounds yesssssss
Reactions of Organic Compounds yesssssssReactions of Organic Compounds yesssssss
Reactions of Organic Compounds yesssssss
 
Addition Reaction.pptx
Addition Reaction.pptxAddition Reaction.pptx
Addition Reaction.pptx
 
Types of Organic Reactions
Types of Organic ReactionsTypes of Organic Reactions
Types of Organic Reactions
 
Presentation apc
Presentation apcPresentation apc
Presentation apc
 
bioenergetics.pptx
bioenergetics.pptxbioenergetics.pptx
bioenergetics.pptx
 
Electrophilic substitution reaction.pptx
Electrophilic substitution reaction.pptxElectrophilic substitution reaction.pptx
Electrophilic substitution reaction.pptx
 
Electrophilic Substitution reactions
Electrophilic Substitution reactionsElectrophilic Substitution reactions
Electrophilic Substitution reactions
 
Nucleophilic Substitution Lab Report
Nucleophilic Substitution Lab ReportNucleophilic Substitution Lab Report
Nucleophilic Substitution Lab Report
 
B.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistryB.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistry
 
pdf alkyl_halides.pdf
pdf alkyl_halides.pdfpdf alkyl_halides.pdf
pdf alkyl_halides.pdf
 
Topic 3 Introduction to Reaction Mechanism (1).pptx
Topic 3 Introduction to Reaction Mechanism (1).pptxTopic 3 Introduction to Reaction Mechanism (1).pptx
Topic 3 Introduction to Reaction Mechanism (1).pptx
 
Org.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptxOrg.chem_Lecture_5_Haloderivatives.pptx
Org.chem_Lecture_5_Haloderivatives.pptx
 
Organic reaction mechanism full
Organic reaction mechanism fullOrganic reaction mechanism full
Organic reaction mechanism full
 
Atkins Chapter 3.ppt
Atkins Chapter 3.pptAtkins Chapter 3.ppt
Atkins Chapter 3.ppt
 
Name-Reaction-2 (1).pptx
Name-Reaction-2 (1).pptxName-Reaction-2 (1).pptx
Name-Reaction-2 (1).pptx
 
Elimination reactions- E1 Elimination reaction
Elimination reactions- E1 Elimination reactionElimination reactions- E1 Elimination reaction
Elimination reactions- E1 Elimination reaction
 
Group transfer reactions
Group transfer reactionsGroup transfer reactions
Group transfer reactions
 
Chapter 3 Alkenes and Alkynes
Chapter 3 Alkenes and AlkynesChapter 3 Alkenes and Alkynes
Chapter 3 Alkenes and Alkynes
 
Introduction to Organic Chemistry.pdf
Introduction to Organic Chemistry.pdfIntroduction to Organic Chemistry.pdf
Introduction to Organic Chemistry.pdf
 
(26) session 26 electrophilic addition of alkenes
(26) session 26   electrophilic addition of alkenes(26) session 26   electrophilic addition of alkenes
(26) session 26 electrophilic addition of alkenes
 

Recently uploaded

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASICINTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
GOKULKANNANMMECLECTC
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
Pallavi Sharma
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
vmspraneeth
 
Beckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview PresentationBeckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview Presentation
VanTuDuong1
 
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUESAN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
drshikhapandey2022
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
MuhammadJazib15
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
b0754201
 
comptia-security-sy0-701-exam-objectives-(5-0).pdf
comptia-security-sy0-701-exam-objectives-(5-0).pdfcomptia-security-sy0-701-exam-objectives-(5-0).pdf
comptia-security-sy0-701-exam-objectives-(5-0).pdf
foxlyon
 
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
IJCNCJournal
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
wafawafa52
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
Kamal Acharya
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
ijseajournal
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
PreethaV16
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
Kamal Acharya
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
sydezfe
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
felixwold
 
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
GiselleginaGloria
 
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls ChennaiCall Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
paraasingh12 #V08
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
DharmaBanothu
 

Recently uploaded (20)

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASICINTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
INTRODUCTION TO ARTIFICIAL INTELLIGENCE BASIC
 
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdfSELENIUM CONF -PALLAVI SHARMA - 2024.pdf
SELENIUM CONF -PALLAVI SHARMA - 2024.pdf
 
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICSUNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
UNIT 4 LINEAR INTEGRATED CIRCUITS-DIGITAL ICS
 
Beckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview PresentationBeckhoff Programmable Logic Control Overview Presentation
Beckhoff Programmable Logic Control Overview Presentation
 
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUESAN INTRODUCTION OF AI & SEARCHING TECHIQUES
AN INTRODUCTION OF AI & SEARCHING TECHIQUES
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
 
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptxSENTIMENT ANALYSIS ON PPT AND Project template_.pptx
SENTIMENT ANALYSIS ON PPT AND Project template_.pptx
 
comptia-security-sy0-701-exam-objectives-(5-0).pdf
comptia-security-sy0-701-exam-objectives-(5-0).pdfcomptia-security-sy0-701-exam-objectives-(5-0).pdf
comptia-security-sy0-701-exam-objectives-(5-0).pdf
 
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
Particle Swarm Optimization–Long Short-Term Memory based Channel Estimation w...
 
Ericsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.pptEricsson LTE Throughput Troubleshooting Techniques.ppt
Ericsson LTE Throughput Troubleshooting Techniques.ppt
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
 
OOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming languageOOPS_Lab_Manual - programs using C++ programming language
OOPS_Lab_Manual - programs using C++ programming language
 
Supermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdfSupermarket Management System Project Report.pdf
Supermarket Management System Project Report.pdf
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
 
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdfAsymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
Asymmetrical Repulsion Magnet Motor Ratio 6-7.pdf
 
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
3rd International Conference on Artificial Intelligence Advances (AIAD 2024)
 
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls ChennaiCall Girls Chennai +91-8824825030 Vip Call Girls Chennai
Call Girls Chennai +91-8824825030 Vip Call Girls Chennai
 
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
A high-Speed Communication System is based on the Design of a Bi-NoC Router, ...
 

organicreactionsandmechanisms-120331092608-phpapp01.pdf

  • 1. Organic Reactions and Mechanisms • Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions and redox reactions. • A reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs.
  • 2. Nucleophilie • A reagent which can donate an electron pair in a reaction is called a nucleophile. • The name nucleophile means nucleous loving and indicates that it attacks regions of low electron density (positive centres) in the substrate molecule. • Nucleophiles are electron rich. • They may be negative ions including carbanions or neutral molecules with free electron pair. • A nucleophile can be represented by a by general symbol Nu:- • Examples • Cl- , Br- , I- , CN - , OH- , RCH2 - , NH3, RNH2, H2O, ROH
  • 3. Electrophiles • A reagent which can accept an electron pair in a reaction called an electrophile. • The name electrophile means electron-loving and indicates that it attacks regions of high electron density (negative centres) in the substrates molecule. • Electrophiles are electron deficient. • They may be positive ions including carbonium ions or neutral molecules with electron deficient centres • An electrophile can represented by E+ • Examples • H+ , Cl+ , Br+ , I+ , NO2 + , R3C+ , + SO3H, AlCl3, BF3
  • 4. Organic Reaction Mechanism • A reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. • Although only the net chemical change is directly observable for most chemical reactions, experiments can often be designed that suggest the possible sequence of steps in a reaction mechanism.
  • 5. Mechanism • There is no limit to the number of possible organic reactions and mechanisms . However, certain general patterns are observed that can be used to describe many common or useful reactions. Each reaction has a stepwise reaction mechanism that explains how it happens, although this detailed description of steps is not always clear from a list of reactants alone.
  • 6. Types of Organic Reactions • Organic reactions can be organized into several basic types. Some reactions fit into more than one category. For example, some substitution reactions follow an addition-elimination pathway. This overview isn't intended to include every single organic reaction. Rather, it is intended to cover the basic reactions.
  • 7. Types of reactions • Addition reactions • Substitution reactions • Elimination Reactions • Rearrangement reactions • Organic Redox reactions
  • 8. Types of Reactions redox reactions specific to organic compounds Organic Redox reactions 1,2-rearrangements pericyclic reactions metathesis Rearrangements reactions with SN1 , SN2 and SNi reaction mechanisms nucleophilic aliphatic Substitution nucleophilic aromatic substitution nucleophilic acyl substitution electrophilic substitution electrophilic aromatic substitution radical substitution Substitution reactions Dehydration Elimination reaction halognenation, hydrohalogenation and hydration Electrophilic Nucloephilic radical Addition reactions comments Sub-type Reaction Type
  • 9. Addition Reactions-Electrophilic addition • An electrophilic addition reaction is an addition reaction where, in a chemical compound, a π bond is broken and two new σ bonds are formed. The substrate of an electrophilic addition reaction must have a double bond or triple bond. • The driving force for this reaction is the formation of an electrophile X+ that forms a covalent bond with an electron-rich unsaturated C=C bond. The positive charge on X is transferred to the carbon-carbon bond, forming a carbocation.
  • 11. Addition Reactions-Electrophilic addition • In step 1, the positively charged intermediate combines with (Y) that is electron-rich and usually an anion to form the second covalent bond. • Step 2 is the same nucleophilic attack process found in an SN1 reaction. The exact nature of the electrophile and the nature of the positively charged intermediate are not always clear and depend on reactants and reaction conditions.
  • 12. Addition Reactions-Electrophilic addition • In all asymmetric addition reactions to carbon, regioselectivity is important and often determined by Markovnikov's rule. Organoborane compounds give anti- Markovnikov additions. Electrophilic attack to an aromatic system results in electrophilic aromatic substitution rather than an addition reaction. • Typical electrophilic additions to alkenes with reagents are: • dihalo addition reactions: X2 • Hydrohalogenations:HX • Hydration reactions: H2O • Hydrogenations H2 • Oxymercuration reactions: mercuric acetate, water • Hydroboration-oxidation reactions : diborane • the Prins reaction : formaldehyde, water
  • 13. Nucleophiic addition • A nucleophilic addition reaction is an addition reaction where in a chemical compound a π bond is removed by the creation of two new covalent bonds by the addition of a nucleophile. • Addition reactions are limited to chemical compounds that have multiple-bonded atoms • molecules with carbon - hetero multiple bonds like carbonyls, imines or nitriles • molecules with carbon - carbon double bonds or triple bonds
  • 14. Nucleophiic addition • An example of a nucleophilic addition reaction that occurs at the carbonyl group of a ketone by substitution with hydroxide-based compounds, denoted shorthand. In this example, an unstable hemiketal is formed.
  • 15. Nucleophilic Addition to carbon - hetero double bonds • Addition reactions of a nucleophile to carbon - hetero double bonds such as C=O or CN triple bond show a wide variety. These bonds are polar (have a large difference in electronegativity between the two atoms) consequently carbon carries a partial positive charge. This makes this atom the primary target for the nucleophile.
  • 16. Nucleophilic Addition to carbon - hetero double bonds • This type of reaction is also called a 1,2 nucleophilic addition. The stereochemistry of this type of nucleophilic attack is not an issue, when both alkyl substituents are dissimilar and there are not any other controlling issues such as chelation with a Lewis acid, the reaction product is a racemate. Addition reactions of this type are numerous. When the addition reaction is accompanied by an elimination, the reaction type is nucleophilic acyl substitution or an addition-elimination reaction.
  • 17. • Carbonyls • With a carbonyl compound as an electrophile, the nucleophile can be: • water in hydration to a geminal diol (hydrate) • an alcohol in acetalisation to an acetal • an hydride in reduction to an alcohol • an amine with formaldehyde and a carbonyl compound in the Mannich reaction • an enolate ion in an aldol reaction or Baylis-Hillman reaction • an organometallic nucleophile in the Grignard reaction or the related Barbier reaction or a Reformatskii reaction • ylides such as a Wittig reagent or the Corey-Chaykovsky reagent or α-silyl carbanions in the Peterson olefination • a phosphonate carbanion in the Horner-Wadsworth-Emmons reaction • a pyridine zwitterion in the Hammick reaction • an acetylide in the Favorskii reaction
  • 18. • Nitriles • With nitrile electrophiles nucleophilic addition take place by: • hydrolysis of a nitrile to an amide or a carboxylic acid • organozinc nucleophiles in the Blaise reaction • alcohols in the Pinner reaction. • the (same) nitrile α-carbon in the Thorpe reaction. The intramolecular version is called the Thorpe-Ziegler reaction.
  • 19. • Imines and other • With imine electrophiles nucleophilic addition take place by: • hydrides to amines in the Eschweiler-Clarke reaction • water to carbonyls in the Nef reaction. • With miscellaneous electrophiles: • addition of an alcohol to an isocyanate to form a carbamate. • Nucleophiles attack carbonyl centers from a specific angle called the Bürgi-Dunitz angle.
  • 20. Nucleophilic Addition to carbon - carbon double bonds • The driving force for the addition to alkenes is the formation of a nucleophile X- that forms a covalent bond with an electron-poor unsaturated system -C=C- (step 1). The negative charge on X is transferred to the carbon - carbon bond. • In step 2 the negatively charged carbanion combines with (Y) that is electron-poor to form the second covalent bond.
  • 21. Nucleophilic Addition to carbon - carbon double bonds • Ordinary alkenes are not susceptible to a nucleophilic attack (apolar bond). Styrene reacts in toluene with sodium to 1,3-diphenylpropane through the intermediate carbanion:
  • 22. Substitution Reactions The reactions in which an atom or group of atoms in a molecule is replaced or substituted by different atoms or group of atoms are called substitution reaction. For example,
  • 23. Nucleophilic Substitution • Nucleophilic substitution is a fundamental class of substitution reaction in which an "electron rich" nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom attached to a group or atom called the leaving group; the positive or partially positive atom is referred to as an electrophile. • Nucleophilic substitution reactions can be broadly classified as – Nucleophilic substitution at saturated carbon centres – Nucleophilic substitution at unsaturated carbon centres
  • 24. Nucleophilic substitution at saturated carbon centres • In 1935, Edward D. Hughes and Sir Christopher Ingold studied nucleophilic substitution reactions of alkyl halides and related compounds. They proposed that there were two main mechanisms at work, both of them competing with each other. The two main mechanisms are the SN1 reaction and the SN2 reaction. S stands for chemical substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction.
  • 25. • In the SN2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously. SN2 occurs where the central carbon atom is easily accessible to the nucleophile. By contrast the SN1 reaction involves two steps. SN1 reactions tend to be important when the central carbon atom of the substrate is surrounded by bulky groups, both because such groups interfere sterically with the SN2 reaction (discussed above) and because a highly substituted carbon forms a stable carbocation.
  • 26. Nucleophilic substitution at carbon atom SN1 Mechanism
  • 27. Nucleophilic substitution at carbon atom SN2 Mechanism
  • 28. Nucleophilic substitution at unsaturated carbon centres • Nucleophilic substitution via the SN1 or SN2 mechanism does not generally occur with vinyl or aryl halides or related compounds. • When the substitution occurs at the carbonyl group, the acyl group may undergo nucleophilic acyl substitution. This is the normal mode of substitution with carboxylic acid derivatives such as acyl chlorides, esters and amides.
  • 29. Nucleophilic Aromatic substitution • A nucleophilic aromatic substitution is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring.
  • 30. Nitration • Nitration is a general chemical process for the introduction of a nitro group into a chemical compound. Examples of nitrations are the conversion of glycerin to nitroglycerin and the conversion of toluene to trinitrotoluene. Both of these conversions use nitric acid and sulfuric acid. • In aromatic nitration, aromatic organic compounds are nitrated via an electrophilic aromatic substitution mechanism involving the attack of the electron-rich benzene ring by the nitronium ion.
  • 31. Aromatic nitro compounds are important intermediates to anilines by action of a reducing agent. Benzene is nitrated by refluxing with concentrated sulfuric acid and concentrated nitric acid at 50 °C.The sulfuric acid is regenerated and hence acts as a catalyst. It also absorbs water. • The formation of a nitronium ion (the electrophile) from nitric acid and sulfuric acid and subsequent reaction of the ion with benzene is shown below:
  • 32. Sulphonation • Electrophilic Aromatic Substitution • Overall transformation : Ar-H to Ar-SO3H, a sulfonic acid. • Reagent : for benzene, H2SO4 / heat or SO3 / H2SO4 / heat (= fuming sulfuric acid) • Electrophilic species : SO3 which can be formed by the loss of water from the sulfuric acid • Unlike the other electrophilic aromatic substitution reactions, sulfonation is reversible. • Removal of water from the system favours the formation of the sulfonation product. • Heating a sulfonic acid with aqueous sulfuric acid can result be the reverse reaction, desulfonation. • Sulfonation with fuming sulfuric acid strongly favours formation of the product the sulfonic acid.
  • 33. MECHANISM FOR SULFONATION OF BENZENE • Step 1: The p electrons of the aromatic C=C act as a nucleophile, attacking the electrophilic S, pushing charge out onto an electronegative O atom. This destroys the aromaticity giving the cyclohexadienyl cation intermediate. • Step 2: Loss of the proton from the sp3 C bearing the sulfonyl- group reforms the C=C and the aromatic system. • Step 3: Protonation of the conjugate base of the sulfonic acid by sulfuric acid produces the sulfonic acid
  • 34. Halogenation • An electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
  • 35. • A few types of aromatic compounds, such as phenol, will react without a catalyst, but for typical benzene derivatives with less reactive substrates, a Lewis acid catalyst is required. Typical Lewis acid catalysts include AlCl3, FeCl3, FeBr3, and ZnCl2. These work by forming a highly electrophilic complex which attacks the benzene ring.
  • 36. Reaction mechanism • The reaction mechanism for chlorination of benzene is the same as bromination of benzene. • The mechanism for iodination is slightly different: iodine (I2) is treated with an oxidizing agent such as nitric acid to obtain the electrophilic iodine (2 I+). Unlike the other halogens, iodine does not serve as a base since it is positive. • Halogenation of aromatic compounds differs from the halogenation of alkenes, which do not require a Lewis Acid catalyst.
  • 37. scope • If the ring contains a strongly activating substituent such as -OH, -OR or amines, a catalyst is not necessary, for example in the bromination of p-cresol • However, if a catalyst is used with excess bromine, then a tribromide will be formed.
  • 38. • Halogenation of phenols is faster in polar solvents due to the dissociation of phenol, with phenoxide ions being more susceptible to electrophilic attack as they are more electron-rich. • Chlorination of toluene with chlorine without catalyst requires a polar solvent as well such as acetic acid. The ortho to para selectivity is low:
  • 39. • No reaction takes place when the solvent is replaced by tetrachloromethane. In contrast, when the reactant is 2-phenyl- ethylamine, it is possible to employ relatively apolar solvents with exclusive ortho- regioselectivity due to the intermediate formation of a chloramine making the subsequent reaction step intramolecular.
  • 40. • The food dye erythrosine can be synthesized by iodination of another dye called fluorescein: • This reaction is driven by sodium bicarbonate.