SlideShare a Scribd company logo
1 of 33
Download to read offline
Optimization Methods
in Engineering Design
Day-2a
Course Objectives
โ€ข Learn basic optimization methods and how they are applied in
engineering design
โ€ข Use MATLAB to solve optimum engineering design problems
โ€“ Linear programming problems
โ€“ Nonlinear programming problems
โ€“ Mixed integer programing problems
Course Materials
โ€ข Arora, Introduction to Optimum Design, 3e, Elsevier,
(https://www.researchgate.net/publication/273120102_Introductio
n_to_Optimum_design)
โ€ข Parkinson, Optimization Methods for Engineering Design, Brigham
Young University
(http://apmonitor.com/me575/index.php/Main/BookChapters)
โ€ข Iqbal, Fundamental Engineering Optimization Methods, BookBoon
(https://bookboon.com/en/fundamental-engineering-optimization-
methods-ebook)
Engineering Design Examples
โ€ข Soda can design
โ€ข Insulated spherical tank
โ€ข Two-bar truss
โ€ข Three-bar overhead truss
โ€ข Cantilever column
โ€ข Stepped cantilever beam
โ€ข Coil spring
โ€ข Heat pump
Design Example: Soda Can Design
Problem: A soda can of 125 ๐‘š๐‘™ capacity is to be designed to minimize
material costs (proportional to surface area. For esthetic reasons,
the height to diameter ratio should be at least 2.
Design variables: height (โ„Ž), diameter (๐‘‘)
Objective: ๐‘š๐‘–๐‘›โ„Ž,๐‘‘ ๐‘“ =
1
2
๐œ‹๐‘‘2
+ ๐œ‹๐‘‘โ„Ž
Subject to: ๐‘”1:
1
4
๐œ‹๐‘‘2โ„Ž โˆ’ 125 = 0 (volume)
๐‘”2: 2๐‘‘ โˆ’ โ„Ž โ‰ค 0
Trial design:
Let ๐‘‘ = 4๐‘๐‘š, โ„Ž = 8๐‘๐‘š
Then ๐‘“ = 125.66 ๐‘๐‘š2
๐‘”1 ๐‘ฅ = โˆ’24.47; ๐‘”2 ๐‘ฅ = 0
Design Example: Insulated Spherical Tank
Problem: choose the insulation thickness (๐‘ก) to minimize the life-cycle
costs of a spherical tank of radius ๐‘….
Life cycle costs: ๐‘2๐ด๐‘ก + ๐‘3๐บ + ๐‘4๐บ โˆ— ๐‘๐‘ค๐‘“
Annual heat gain: ๐บ = 365 ร— 24 ร— ฮ”๐‘‡ ร—
๐ด
๐œŒร—๐‘ก
Surface area: ๐ด = 4๐œ‹๐‘…2 [๐‘š2
]
Thermal resistivity: ๐œŒ ๐‘š โ‹… ๐‘ ๐‘’๐‘ โ‹… ยฐ๐ถ/๐ฝ
Equipment insulation cost: ๐‘2 $/๐‘š3
Equipment refrigeration cost: ๐‘3 $/๐‘Šโ„Ž
Annual operating cost: ๐‘4 $/๐‘Šโ„Ž
Present worth factor: ๐‘๐‘ค๐‘“ =
๐ด
๐‘–
1 โˆ’
1
1+๐‘– ๐‘›
Note, there are no constraints in this problem
Design Example: Rectangular Beam
Problem: design a rectangular beam of minimum cross-section area to
withstand specified bending moment (๐‘€) and shear load (๐‘‰).
Design variables: width (๐‘), depth (๐‘‘)
Objective: ๐‘“ ๐‘, ๐‘‘ = ๐‘๐‘‘
Constraints:
Bending stress: ๐œŽ =
6๐‘€
๐‘๐‘‘2 โ‰ค ๐œŽ๐‘Ž
Shear stress: ๐œ =
3๐‘‰
2๐‘๐‘‘
โ‰ค ๐œ๐‘Ž
Aspect ratio:
๐‘‘
๐‘
โ‰ค 2
Problem specific data
๐‘€ = 140 ๐‘˜๐‘; ๐‘‰ = 24 ๐‘˜๐‘;
๐œŽ๐‘Ž = 165 ๐‘€๐‘ƒ๐‘Ž; ๐œ๐‘Ž = 50๐‘€๐‘ƒ๐‘Ž
Design Example: Hollow Cantilever Beam
Problem: design a hollow cantilever beam of length ๐ฟ of square cross-
section to support a load ๐‘ƒ with minimum mass (Ref: Arora, p. 18)
Design variables: width ๐‘ค , thickness ๐‘ก
Objective: minimum ๐‘š๐‘Ž๐‘ ๐‘  = ๐œŒ๐‘™๐ด [๐พ๐‘”]
Cross-section area: ๐ด = 4๐‘ก ๐‘ค โˆ’ ๐‘ก [๐‘š๐‘š2]
Moment of inertia: ๐ผ =
1
12
๐‘ค4 โˆ’ ๐‘ค โˆ’ 2๐‘ก 4 [๐‘š๐‘š4]
Moment about neutral axis: ๐‘„ =
1
8
๐‘ค3 โˆ’ ๐‘ค โˆ’ 2๐‘ก 3 [๐‘š๐‘š3]
Bending stress: ๐œŽ =
๐‘ƒ๐‘™๐‘ค
2๐ผ
[๐‘ โ‹… ๐‘š๐‘šโˆ’2]
Shear stress: ๐œ =
๐‘ƒ๐‘„
2๐ผ๐‘ก
[๐‘ โ‹… ๐‘š๐‘šโˆ’2]
End deflection: ๐‘ž =
๐‘ƒ๐ฟ3
3๐ธ๐ผ
[๐‘š๐‘š]
Design Example: Hollow Cantilever Beam
Assume the following parameter values:
๐‘ƒ = 20,000 ๐‘; ๐ฟ = 2 ๐‘š; ๐ธ = 21 ร— 104
๐‘ โ‹… ๐‘š๐‘šโˆ’2
; ๐บ = 8 ร— 104
๐‘ โ‹… ๐‘š๐‘šโˆ’2
;
๐œŽ๐‘Ž = 165 ๐‘ โ‹… ๐‘š๐‘šโˆ’2; ๐œ๐‘Ž = 90 ๐‘ โ‹… ๐‘š๐‘šโˆ’2; ๐‘ž๐‘Ž = 10 ๐‘š๐‘š
The design optimization problem is stated as:
Objective: min
๐‘ค,๐‘ก
4๐‘ก(๐‘ค โˆ’ ๐‘ก)
Subject to:
๐‘ƒ๐‘™๐‘ค
2๐ผ
โˆ’ ๐œŽ๐‘Ž โ‰ค 0
๐‘ƒ๐‘„
2๐ผ๐‘ก
โˆ’ ๐œ๐‘Ž โ‰ค 0
๐‘ƒ๐ฟ3
3๐ธ๐ผ
โˆ’ ๐‘ž๐‘Ž โ‰ค 0
๐‘ค โˆ’ 15๐‘ก โ‰ค 0
Variable bounds:
50 โ‰ค ๐‘ค โ‰ค 200, 5 โ‰ค ๐‘ก โ‰ค 20
Design Example: Minimum Mass Tubular Column
Problem: Design a minimum mass tubular column of length ๐‘™ to
support a load ๐‘ƒ without buckling or overstressing (Ref: Arora, p. 40)
Design variables: outer and inner radii ๐‘…0, ๐‘…๐‘– , alternatively, (๐‘…, ๐‘ก)
Objective: min ๐œŒ๐‘™๐ด, where ๐ด = ๐œ‹ ๐‘…0
2
โˆ’ ๐‘…๐‘–
2
= 2๐œ‹๐‘…๐‘ก
Moment of Inertia: ๐ผ =
๐œ‹
4
๐‘…0
4
โˆ’ ๐‘…๐‘–
4
= ๐œ‹๐‘…3
๐‘ก
Constraints: ๐‘ƒ < ๐‘ƒcr, ๐œŽ โ‰ค ๐œŽ๐‘Ž,
๐‘…
๐‘ก
โ‰ค ๐‘˜
Axial stress: ๐œŽ =
๐‘ƒ
๐ด
Buckling load: ๐‘ƒcr =
๐œ‹2๐ธ๐ผ
4๐‘™2
Allowable stress: ๐œŽ๐‘Ž
Design Example: Tubular Column
Assume the following parameter values:
๐‘ƒ = 10 ๐‘€๐‘; ๐ฟ = 5๐‘š; ๐ธ = 210๐บ๐‘ƒ๐‘Ž; ๐œŽ๐‘Ž = 250๐‘€๐‘ƒ๐‘Ž
The resulting optimization problem is formulated as:
Objective: min
๐‘…๐‘œ,๐‘…๐‘–
๐œ‹ ๐‘…๐‘œ
2 โˆ’ ๐‘…๐‘–
2
Subject to:
๐‘ƒ
๐œ‹ ๐‘…๐‘œ
2โˆ’๐‘…๐‘–
2 ๐œŽ๐‘Ž
โˆ’ 1 โ‰ค 0,
16๐‘ƒ๐ฟ2
๐œ‹3๐ธ ๐‘…๐‘œ
4โˆ’๐‘…๐‘–
4 โˆ’ 1 โ‰ค 0,
๐‘…๐‘œ+๐‘…๐‘–
2๐‘˜ ๐‘…๐‘œโˆ’๐‘…๐‘–
โˆ’ 1 โ‰ค 0
Alternative problem formulation:
Objective: min
๐‘…,๐‘ก
2๐œ‹๐‘…๐‘ก
Subject to:
๐‘ƒ
2๐œ‹๐‘…๐‘ก๐œŽ๐‘Ž
โˆ’ 1 โ‰ค 0,
4๐‘ƒ๐ฟ2
๐œ‹3๐ธ๐‘…3๐‘ก
โˆ’ 1 โ‰ค 0,
๐‘…
๐‘˜๐‘ก
โˆ’ 1 โ‰ค 0
Variable bounds: 50 โ‰ค ๐‘… โ‰ค 200, 5 โ‰ค ๐‘ก โ‰ค 20
Design Example: Coil Spring
Problem: design a minimum mass spring to carry a given axial load ๐‘ƒ without
material failure while satisfying minimum deflection and minimum surge
wave frequency requirements
Design variables: mean coil diameter ๐ท , wire diameter ๐‘‘ , number of
active coils (๐‘)
Design equations:
Spring mass: ๐‘š =
1
4
๐‘ + ๐‘„ ๐œ‹2
๐ท๐‘‘2
๐œŒ
Load deflection: ๐‘ƒ = ๐พ๐›ฟ, where ๐พ =
๐‘‘4๐บ
8๐ท3๐‘
Shear stress: ๐œ =
8๐‘˜๐‘ƒ๐ท
๐œ‹๐‘‘3
Stress concentration factor: ๐‘˜ =
4๐ทโˆ’๐‘‘
4(๐ทโˆ’๐‘‘)
+ 0.615
๐‘‘
๐ท
Frequency of surge waves: ๐œ” =
๐‘‘
2๐œ‹๐‘๐ท2
๐บ
2๐œŒ
Design Example: Coil Spring
The optimization problem is formulated as:
Objective: min ๐‘“ ๐‘, ๐‘‘, ๐ท = ๐‘ + ๐‘„ ๐ท๐‘‘2
Constraints: ๐œ โ‰ค ๐œ๐‘Ž, ๐œ” โ‰ฅ ๐œ”0, ๐ท + ๐‘‘ โ‰ค ๐ท0, ๐›ฟ =
๐‘ƒ
๐พ
โ‰ฅ ฮ”,
Variable bounds:
๐‘‘๐‘š๐‘–๐‘› โ‰ค ๐‘‘ โ‰ค ๐‘‘๐‘š๐‘Ž๐‘ฅ, ๐ท๐‘š๐‘–๐‘› โ‰ค ๐ท โ‰ค ๐ท๐‘š๐‘Ž๐‘ฅ, ๐‘๐‘š๐‘–๐‘› โ‰ค ๐‘ โ‰ค ๐‘๐‘š๐‘Ž๐‘ฅ
Assume the following parameter values:
๐‘ƒ = 10 ๐‘™๐‘, ฮ” = 0.5 ๐‘–๐‘›, ๐›พ = 0.285
๐‘™๐‘
๐‘–๐‘›3 , ๐œ”0 = 100 ๐ป๐‘ง,
๐ท0 = 1.5 ๐‘–๐‘›, ๐œ๐‘Ž = 80,000
๐‘™๐‘
๐‘–๐‘›2 , ๐บ = 1.15 ร— 107
๐‘™๐‘
๐‘–๐‘›2 , ๐‘„ = 2
0.01 โ‰ค ๐‘‘ โ‰ค 0.15, 0.5 โ‰ค ๐ท โ‰ค 1.5, 1 โ‰ค ๐‘ โ‰ค 10
Design Example: Stepped Cantilever Beam
A fixed load ๐‘ƒ = 50๐‘˜๐‘ is supported at the end of a stepped cantilever
beam of ๐ฟ = 500๐‘๐‘š. The sections are of equal length (๐‘™ = 100๐‘๐‘š).
The design objective is to minimize the mass of the beam by
reducing its total volume.
Design variables: ๐‘๐‘–, โ„Ž๐‘–, ๐‘– = 1, โ€ฆ , 5
Objective: min ๐‘‰ = ๐‘™ ๐‘1โ„Ž1 + ๐‘2โ„Ž2 + ๐‘3โ„Ž3 + ๐‘4โ„Ž4 + ๐‘5โ„Ž5
Design Example: Stepped Cantilever Beam
Design constraints:
Bending stress: ๐œŽ๐‘๐‘–
< ๐œŽ๐‘š๐‘Ž๐‘ฅ = 14000
๐‘
๐‘๐‘š2 , ๐‘– = 1, โ€ฆ , 5
where ๐œŽ๐‘5
=
6๐‘ƒ๐‘™
๐‘5โ„Ž5
2 , ๐œŽ๐‘4
=
12๐‘ƒ๐‘™
๐‘4โ„Ž4
2 , ๐œŽ๐‘3
=
18๐‘ƒ๐‘™
๐‘3โ„Ž3
2 , ๐œŽ๐‘2
=
24๐‘ƒ๐‘™
๐‘2โ„Ž2
2 , ๐œŽ๐‘1
=
30๐‘ƒ๐‘™
๐‘1โ„Ž1
2
End deflection: ๐›ฟ =
๐‘ƒ๐‘™3
3๐ธ
61
๐ผ1
+
37
๐ผ2
+
19
๐ผ3
+
7
๐ผ4
+
1
๐ผ5
โ‰ค ๐›ฟ๐‘š๐‘Ž๐‘ฅ = 2.7๐‘๐‘š
where ๐ผ๐‘– =
๐‘๐‘–โ„Ž๐‘–
3
12
, ๐‘– = 1, โ€ฆ , 5; ๐ธ = 2 ร— 107 ๐‘
๐‘๐‘š2
Aspect ratio:
โ„Ž๐‘–
๐‘๐‘–
โ‰ค ๐‘Ž๐‘š๐‘Ž๐‘ฅ = 20, ๐‘– = 1, โ€ฆ , 5
Discrete variable ranges:
๐‘1 โˆˆ 1: 5 , โ„Ž1 โˆˆ 30: 5: 55 , ๐‘2, ๐‘3 โˆˆ 2.4, 2.6, 2.8, 3.1 ,
โ„Ž2, โ„Ž3 โˆˆ 45, 50, 55, 60 ,
Continuous variable bounds: 1 โ‰ค ๐‘4, ๐‘5 โ‰ค 5, 30 โ‰ค โ„Ž4, โ„Ž5 โ‰ค 55
Design Example: Symmetric Two-Bar Truss
Problem: a symmetrical two-bar truss is to be designed with hollow
tubes to support a fixed load ๐‘ƒ. The truss has height ๐ป, and span ๐ต.
Objective: minimum weight structure that will withstand ๐‘ƒ, and not
yield, buckle, or deflect excessively.
Design variables: diameter ๐‘‘ , thickness ๐‘ก
Alternately, choose: diameter ๐‘‘ , height ๐ป
๐‘™ = (๐ต/2)2+๐ป2, ๐ด = ๐œ‹๐‘‘๐‘ก
Total weight: ๐‘Š = 2๐œŒ๐‘™๐ด,
Axial stress: ๐œŽ =
๐‘ƒ๐‘™
2๐œ‹๐‘‘๐‘ก๐ป
Buckling stress: ๐œŽ๐‘ =
๐œ‹2 ๐‘‘2+๐‘ก2 ๐ธ
8๐‘™2
Deflection: ๐œ€ =
๐‘ƒ๐‘™3
2๐œ‹๐‘‘๐‘ก๐ป2๐ธ
Design Example: Symmetric Two-Bar Truss
The optimum design problem is defined as:
Objective: min
d,t
๐‘Š = 2๐œ‹๐‘‘๐‘ก๐œŒ (๐ต/2)2+๐ป2
Subject to: ๐œŽ๐‘ โ‰ค ๐œŽ โ‰ค ๐œŽ๐‘Ž; ๐œ€ โ‰ค ๐œ€๐‘š๐‘Ž๐‘ฅ;
Simplify objective and scale the constraints:
Objective: min
d,t
๐‘“ = ๐‘‘ ร— ๐‘ก
Subject to:
๐œŽ๐‘
๐œŽ
โˆ’ 1 โ‰ค 0,
๐œŽ
๐œŽ๐‘Ž
โˆ’ 1 โ‰ค 0 ,
๐œ€
๐œ€๐‘š๐‘Ž๐‘ฅ
โˆ’ 1 โ‰ค 0,
For a particular problem, let ๐‘ƒ = 66,000 ๐‘™๐‘; ๐ป = 30 ๐‘–๐‘›; ๐ต = 60 ๐‘–๐‘›;
๐œŒ = 0.3
๐‘™๐‘
๐‘–๐‘›3
; ๐ธ = 30 ร— 106
๐‘™๐‘
๐‘–๐‘›2
; ๐œŽ๐‘Ž = 1 ร— 105
๐‘๐‘ ๐‘–; ๐œ€๐‘š๐‘Ž๐‘ฅ = 0.25 ๐‘–๐‘›
Then ๐‘Š = 79.97 ๐‘‘ ร— ๐‘ก, ๐œŽ = 14,855 ๐‘‘ ร— ๐‘ก, ๐œŽ๐‘ = 20,562 ๐‘‘2
+ ๐‘ก2
, ๐œ€ =
0.0297
๐‘‘ร—๐‘ก
;
Design Example: Three-Bar Overhead Truss
Problem: A minimum-weight symmetric three-bar overhead truss is to
be designed to support a load applied at an angle (Ref: Arora, p. 46).
The truss has height ๐‘™ and span 2๐‘™; member 1 and 3 have length 2๐‘™
and area ๐ด1; member 2 has length ๐‘™ and area ๐ด2.
Load ๐‘ƒ is applied at the joint at an angle ๐œƒ; the horizontal and vertical
components of the applied load are: ๐‘ƒ๐‘ข = ๐‘ƒ cos ๐œƒ , ๐‘ƒ๐‘ฃ = ๐‘ƒ sin ๐œƒ.
Design variables:
cross-sectional areas, ๐ด1 and ๐ด2
Design objective:
minimize ๐‘Š = ๐œŒ๐‘™๐‘”(2 2๐ด1 + ๐ด2)
Design constraints:
Stress, deflection, buckling, resonance
Design Example: Three-Bar Overhead Truss
The stresses in the three structural members are given as:
๐œŽ1 =
1
2
๐‘ƒ๐‘ข
๐ด1
+
๐‘ƒ๐‘ฃ
(๐ด1+ 2๐ด2)
; ๐œŽ2 =
2๐‘ƒ๐‘ฃ
(๐ด1+ 2๐ด2)
; ๐œŽ3 =
1
2
โˆ’
๐‘ƒ๐‘ข
๐ด1
+
๐‘ƒ๐‘ฃ
(๐ด1+ 2๐ด2)
The horizontal and vertical deflections of the load point are:
๐‘ข =
2๐‘™๐‘ƒ๐‘ข
๐ด1๐ธ
, ๐‘ฃ =
2๐‘™๐‘ƒ๐‘ฃ
(๐ด1+ 2๐ด2)๐ธ
The buckling load for the members in compression is given as:
๐œ‹2๐ธ๐ผ
๐‘™๐‘–
2 ,
where the moment of inertia is: ๐ผ๐‘– = ๐›ฝ๐ด๐‘–
2
, where ๐›ฝ = constant.
The lowest resonance frequency of the structure is given as:
๐œ =
3๐ธ๐ด1
๐œŒ๐‘™2(4๐ด1+ 2๐ด2)
, where ๐œŒ is the mass density.
Design Example: Three-Bar Overhead Truss
The optimization problem is formulated as:
Objective: Minimize ๐‘“ ๐ด1, ๐ด2 = 2 2๐ด1 + ๐ด2
Design constraints:
Axial stress: ๐œŽ๐‘– โ‰ค ๐œŽ๐‘Ž, ๐‘– = 1,2,3
Buckling stress: โˆ’๐œŽ3 โ‰ค
๐œ‹2๐ธ๐›ฝ๐ด1
๐‘™3
2 โ‰ค ๐œŽ๐‘Ž
End deflections: ๐‘ข โ‰ค โˆ†๐‘ข, ๐‘ฃ โ‰ค โˆ†๐‘ฃ
Resonance frequency: ๐œ โ‰ฅ 2๐œ‹๐œ”0
2
Variable bounds: ๐ด1, ๐ด2 โ‰ฅ ๐ด๐‘š๐‘–๐‘›
Design Example: Three-Bar Overhead Truss
For a particular problem, let ๐‘™ = 1.0๐‘š, ๐‘ƒ = 50๐‘˜๐‘, ๐œƒ = 30ยฐ, ๐œŒ = 7850
๐‘˜๐‘”
๐‘š3 ,
๐ธ = 210๐บ๐‘ƒ๐‘Ž, ๐œŽ๐‘Ž = 150๐‘€๐‘ƒ๐‘Ž, โˆ†๐‘ข= โˆ†๐‘ฃ= 0.5 ๐‘๐‘š, ๐œ”0 = 50๐ป๐‘ง, ๐›ฝ = 1.0,
and ๐ด๐‘š๐‘–๐‘› = 2๐‘๐‘š2
. Then, ๐‘ƒ๐‘ข =
3๐‘ƒ
2
, ๐‘ƒ๐‘ฃ =
๐‘ƒ
2
; after normalizing the
constraints, the optimal design problem is stated as:
Minimize ๐‘“ ๐ด1, ๐ด2 = 2 2๐ด1 + ๐ด2
Subject to: 2.357 ร— 10โˆ’4 0.866
๐ด1
+
0.5
๐ด1+ 2๐ด2
โˆ’ 1 โ‰ค 0,
2.357ร—10โˆ’4
๐ด1+ 2๐ด2
โˆ’ 1 โ‰ค 0, 2.357 ร— 10โˆ’4 โˆ’
0.866
๐ด1
+
0.5
๐ด1+ 2๐ด2
โˆ’ 1 โ‰ค 0,
6.9077 ร— 104
๐ด1 โˆ’ 1 โ‰ค 0, 3.4117 ร— 10โˆ’4 0.866
๐ด1
โˆ’
0.5
๐ด1+ 2๐ด2
โˆ’ 1 โ‰ค 0,
5.8321ร—10โˆ’5
๐ด1
โˆ’ 1 โ‰ค 0,
3.3672ร—10โˆ’5
๐ด1+ 2๐ด2
โˆ’ 1 โ‰ค 0,
0.0012 4๐ด1+ 2๐ด2
๐ด1
โˆ’ 1 โ‰ค 0,
๐ด1, ๐ด2 โ‰ฅ 0.01
Design Example: Heat Pump
A heat pump is to be designed to extract residual heat from outside air
and supply it indoor. Electric resistance heating is used as backup.
Design variables: ๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘๐‘œ, ๐‘ก๐‘Ž๐‘’๐‘œ
Design Example: Heat Pump
The design problem is to choose the size of the compressor, condenser
and evaporator to minimize the life-cycle costs over 10 years.
The following assumptions are made:
โ€“ The average outside air temperature is 0ยฐ๐ถ
โ€“ Evaporator inlet air temperature is 24ยฐ๐ถ
โ€“ The approach temperature in the exchanger should be at least 4ยฐ๐ถ.
โ€“ The airflow rate through the coils is ๐‘š = 5 ๐‘˜๐‘”/๐‘ ๐‘’๐‘
โ€“ The pump operates for 4000 hours every year
โ€“ Compressor cost is $220/๐‘˜๐‘Š of motor
โ€“ Cost of coils is $100/๐‘š2
of the air-side area
โ€“ Power cost is $0.10/๐พ๐‘Šโ„Ž๐‘Ÿ
Design Example: Heat Pump
The variables are defined as:
Condenser inlet air temperature, ๐‘ก๐‘Ž๐‘๐‘– = 0ยฐ๐ถ
Condenser outlet air temperature, ๐‘ก๐‘Ž๐‘๐‘œ
Evaporator inlet air temperature, ๐‘ก๐‘Ž๐‘’๐‘– = 24ยฐ๐ถ
Evaporator outlet air temperature, ๐‘ก๐‘Ž๐‘๐‘œ
Temperature of approach for condenser, ๐‘ก๐‘Ž๐‘๐‘๐‘ = ๐‘ก๐‘ โˆ’ ๐‘ก๐‘Ž๐‘๐‘œ
Temperature of approach for evaporator, ๐‘ก๐‘Ž๐‘๐‘๐‘’ = ๐‘ก๐‘Ž๐‘’๐‘œ โˆ’ ๐‘ก๐‘’
Heat transferred in condenser, ๐‘„๐‘ = ๐‘š๐ถ๐‘ ๐‘ก๐‘Ž๐‘๐‘œ โˆ’ ๐‘ก๐‘Ž๐‘๐‘– = ๐‘ˆ๐ด๐‘ฮ”๐‘‡๐‘
Heat transferred in evaporator, ๐‘„๐‘’ = ๐‘š๐ถ๐‘ ๐‘ก๐‘Ž๐‘’๐‘– โˆ’ ๐‘ก๐‘Ž๐‘’๐‘œ = ๐‘ˆ๐ด๐‘’ฮ”๐‘‡๐‘’
Log mean temperature difference across condenser,
ฮ”๐‘‡๐‘ =
๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘– โˆ’ ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘œ
ln ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘– / ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘œ
Log mean temperature difference across evaporator,
ฮ”๐‘‡๐‘’ =
๐‘ก๐‘Ž๐‘’๐‘–โˆ’๐‘ก๐‘’ โˆ’ ๐‘ก๐‘Ž๐‘’๐‘œโˆ’๐‘ก๐‘’
ln ๐‘ก๐‘Ž๐‘’๐‘–โˆ’๐‘ก๐‘’ / ๐‘ก๐‘Ž๐‘’๐‘œโˆ’๐‘ก๐‘’
Design Example: Heat Pump
Variable definitions:
Heat transfer coefficient, ๐‘ˆ = .025
๐‘˜๐‘Š
๐‘š2ยฐ๐ถ
Heat supplied by the electric heater, ๐‘„๐‘Ÿ = ๐‘š๐ถ๐‘ 35 โˆ’ ๐‘ก๐‘Ž๐‘๐‘œ
Electrical energy input to the compressor, ๐‘Š = ๐‘„๐‘ โˆ’ ๐‘„๐‘’
Coefficient of performance for compressor,
๐ถ๐‘‚๐‘ƒ =
๐‘„๐‘’
๐‘Š
= 7.24 + 0.352๐‘ก๐‘’ โˆ’ 0.096๐‘ก๐‘ โˆ’ 0.0055๐‘ก๐‘๐‘ก๐‘’
Capital cost of the heat pump, ๐ถโ„Ž๐‘ = 100 ๐ด๐‘ + ๐ด๐‘’ + 220๐‘Š
Operating cost of the heat pump, ๐ถ๐‘’โ„Ž๐‘ = 0.06 ร— 4000 ร— ๐‘ƒ๐‘Š๐น ร— ๐‘Š
Operating cost of the heater, ๐ถ๐‘’๐‘Ÿโ„Ž = 0.06 ร— 4000 ร— ๐‘ƒ๐‘Š๐น ร— ๐‘„๐‘Ÿ
Present worth factor, ๐‘ƒ๐‘Š๐น(๐ด, ๐‘–) =
๐ด
๐‘–
1 โˆ’
1
1+๐‘– ๐‘›
Total cost, ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = ๐ถโ„Ž๐‘ + ๐ถ๐‘’โ„Ž๐‘ + ๐ถ๐‘’๐‘Ÿโ„Ž
Design Example: Heat Pump
Using three independent variables, an unconstrained optimization
problem is defined as:
Objective: min ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™(๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘’๐‘œ)
Alternatively, the constrained optimization problem is defined as:
Objective: min ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™(๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘๐‘œ, ๐‘ก๐‘Ž๐‘’๐‘œ)
Subject to: ๐‘„๐‘ โˆ’ ๐‘„๐‘’ โˆ’ ๐‘Š = 0
Variable bounds:
35ยฐ๐ถ โ‰ค ๐‘ก๐‘ โ‰ค 70ยฐ๐ถ, โˆ’20ยฐ๐ถ โ‰ค ๐‘ก๐‘’ โ‰ค 20ยฐ๐ถ,
0ยฐ๐ถ = ๐‘ก๐‘Ž๐‘๐‘– โ‰ค ๐‘ก๐‘Ž๐‘๐‘œ โ‰ค 35ยฐ๐ถ, 0ยฐ๐ถ โ‰ค ๐‘ก๐‘Ž๐‘’๐‘œ โ‰ค ๐‘ก๐‘Ž๐‘’๐‘– = 24ยฐ๐ถ
Graphical Optimization Method
โ€ข Before delving into the formal optimization methods, letโ€™s examine
the graphical optimization method, which is applicable for problems
formulated with one or two variables
โ€ข The graphical method involves the following steps:
โ€“ Establish a (2D) grid for variable ranges considered
โ€“ Plot the constraint boundaries and establish the feasible region
โ€“ Using the grid plot contours (level curves) of the cost function
โ€“ Identify the minimum by inspection
Graphical Method for Problems in Two Variables
โ€ข Assume that the optimization problem is given as:
Objective: min
๐‘ฅ1,๐‘ฅ2
๐‘“(๐‘ฅ1, ๐‘ฅ2)
Subject to: ๐‘”๐‘– โ‰ค 0, โ„Ž๐‘— = 0
Variable bounds: ๐‘ฅ๐‘–
๐ฟ
โ‰ค ๐‘ฅ๐‘– โ‰ค ๐‘ฅ๐‘–
๐‘ˆ
, ๐‘– = 1,2
โ€ข We use MATLAB to
โ€“ Define a grid of pairs of values over the ranges of variables
โ€“ Plot the constraint boundaries and locate the feasible region
โ€“ Plot the contours of the objective function to graphically locate a
minimum
Example: Soda Can Design
Optimization Problem:
Objective: ๐‘š๐‘–๐‘›โ„Ž,๐‘‘ ๐‘“ โ„Ž, ๐‘‘ =
1
2
๐œ‹๐‘‘2
+ ๐œ‹๐‘‘โ„Ž
Subject to: ๐‘”1:
1
4
๐œ‹๐‘‘2
โ„Ž = 125, ๐‘”2: 2๐‘‘ โˆ’ โ„Ž โ‰ค 0
Select variable bounds: 1 โ‰ค ๐‘‘ โ‰ค 8; 2 โ‰ค โ„Ž โ‰ค 16
Example: Soda Can Design
MATLAB Commands:
>> d=1:.05:8; h=2:.1:16;
>> [D,H]=meshgrid(d,h);
>> f=pi*D.*(D/2+H);
>> g1=pi/4*D.*D.*H-125;
>> g2=2*D-H;
>> figure, xlabel('D'), ylabel('H'), hold
>> contour(d,h, g1,[0 0],'r'),
>> contour(d,h, g2,[0 0],'r'), pause
>> [c,h]=contour(d,h,f);
clabel(c,h), hold
Design Example: Hollow Cylindrical Cantilever Beam
Problem: Design a minimum-mass cantilever beam of length ๐ฟ with
circular cross-section (outer radius ๐‘…๐‘œ, inner radius ๐‘…๐‘–), such that:
Bending stress: ๐œŽ =
๐‘ƒ๐ฟ๐‘…๐‘œ
๐ผ
โ‰ค ๐œŽ๐‘Ž,
Shear stress: ๐œ =
๐‘ƒ
3๐ผ
๐‘…๐‘œ
2 + ๐‘…0๐‘…๐‘– + ๐‘…๐‘–
2
โ‰ค ๐œ๐‘Ž,
where ๐ผ =
๐œ‹
4
(๐‘…๐‘œ
4
โˆ’ ๐‘…๐‘–
4
) is the cross-section moment of inertia
Design variables: outer radius ๐‘…๐‘œ, inner radius ๐‘…๐‘–
The optimization problem is defined as:
Minimize ๐‘“ ๐‘…0, ๐‘…๐‘– = ๐œ‹๐œŒ๐ฟ(๐‘…0
2
โˆ’ ๐‘…๐‘–
2
)
Subject to:
๐œŽ
๐œŽ๐‘Ž
โˆ’ 1 โ‰ค 0,
๐œ
๐œ๐‘Ž
โˆ’ 1 โ‰ค 0; ๐‘…0, ๐‘…๐‘– โ‰ค 0.2๐‘š
Design Example: Hollow Cylindrical Cantilever Beam
The following parameter values are assumed:
๐‘ƒ = 10๐‘˜๐‘, ๐ฟ = 5๐‘š, ๐œŽ๐‘Ž = 250๐‘€๐‘ƒ๐‘Ž, ๐œ๐‘Ž = 90๐‘€๐‘ƒ๐‘Ž,
๐ธ = 210๐บ๐‘ƒ๐‘Ž, ๐œŒ = 7850 ๐‘˜๐‘”/๐‘š3
After dropping the constant terms in ๐‘“, the problem is stated as:
Minimize ๐‘“ ๐‘…0, ๐‘…๐‘– = ๐‘…0
2
โˆ’ ๐‘…๐‘–
2
Subject to:
๐‘”1:
8ร—10โˆ’4๐‘…๐‘œ
๐œ‹(๐‘…0
4โˆ’๐‘…๐‘–
4
)
โˆ’ 1 โ‰ค 0; ๐‘”2:
4 ๐‘…๐‘œ
2+๐‘…0๐‘…๐‘–+๐‘…๐‘–
2
27๐œ‹ ๐‘…0
4โˆ’๐‘…๐‘–
4 โˆ’ 1 โ‰ค 0; ๐‘…0, ๐‘…๐‘– โ‰ค 20๐‘๐‘š
The graphical solution obtained from the Matlab plot is: ๐‘…๐‘œ = 12๐‘๐‘š,
๐‘…๐‘– = 11.5๐‘๐‘š, ๐‘“โˆ—
= 11.75 ๐‘๐‘š2
Graphical Solution
Hollow Cylindrical Cantilever Beam Design
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0
.
0
0
1
0.001
0.001
0.001
0
.
0
0
2
0.002
0.002
0.002
0
.
0
0
3
0.003
0.003
0
.
0
0
4
0.004
0.004
0
.
0
0
5
0.005
0.005
0
.
0
0
6
0.006
0.006
0
.
0
0
7
0.007
0.007
0
.
0
0
8
0
.
0
0
8
0.008
0
.
0
0
9
0
.
0
0
9
0.009
0
.
0
1
0
.
0
1
0.01
X= 0.12
Y= 0.115
Level= 0.001175
Ro
Ri
Hollow Cylindrical Cantilever Beam Design
Optimal solution: ๐‘…๐‘œ = 0.12๐‘š, ๐‘…๐‘– = 0.115๐‘š, ๐‘“โˆ— = 0.001175
View publication stats
View publication stats

More Related Content

Similar to OptimumEngineeringDesign-Day2a.pdf

Concept of save max boiler design
Concept of save max boiler designConcept of save max boiler design
Concept of save max boiler designArchana Prajapati
ย 
Design of machine elements- unit 1.pptx
Design of machine elements- unit 1.pptxDesign of machine elements- unit 1.pptx
Design of machine elements- unit 1.pptxgopinathcreddy
ย 
Presentation on Design of DT.pptx
Presentation on Design of DT.pptxPresentation on Design of DT.pptx
Presentation on Design of DT.pptxssuserb14ebc
ย 
Lecture-3-1.pptx
Lecture-3-1.pptxLecture-3-1.pptx
Lecture-3-1.pptxSavaizHannan
ย 
presentation1_28.pptx
presentation1_28.pptxpresentation1_28.pptx
presentation1_28.pptxSumitSaha80142
ย 
357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptxRajeshJavali2
ย 
Radiator design
Radiator designRadiator design
Radiator designAhmed Rezk
ย 
Cad based shape optimization
Cad based shape optimizationCad based shape optimization
Cad based shape optimizationAbhay Gore
ย 
Footing design
Footing designFooting design
Footing designShubham .
ย 
AAE550_Final_LuQi
AAE550_Final_LuQiAAE550_Final_LuQi
AAE550_Final_LuQiLU QI
ย 
Staircase Design Report
Staircase Design ReportStaircase Design Report
Staircase Design ReportRyland Ballingham
ย 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
ย 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog Latifs Chile
ย 
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiVincenzo Roberti
ย 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdfephrem53
ย 
A Project on Transformer Design.pdf
A Project on Transformer Design.pdfA Project on Transformer Design.pdf
A Project on Transformer Design.pdfMohammadAtaurRahmanA
ย 
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...IJERA Editor
ย 

Similar to OptimumEngineeringDesign-Day2a.pdf (20)

Concept of save max boiler design
Concept of save max boiler designConcept of save max boiler design
Concept of save max boiler design
ย 
Design of machine elements- unit 1.pptx
Design of machine elements- unit 1.pptxDesign of machine elements- unit 1.pptx
Design of machine elements- unit 1.pptx
ย 
Presentation on Design of DT.pptx
Presentation on Design of DT.pptxPresentation on Design of DT.pptx
Presentation on Design of DT.pptx
ย 
Lecture-3-1.pptx
Lecture-3-1.pptxLecture-3-1.pptx
Lecture-3-1.pptx
ย 
presentation1_28.pptx
presentation1_28.pptxpresentation1_28.pptx
presentation1_28.pptx
ย 
Graduation project presentation
Graduation project presentationGraduation project presentation
Graduation project presentation
ย 
357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx357502268-C-clamp-ppt.pptx
357502268-C-clamp-ppt.pptx
ย 
Slender columnn and two-way slabs
Slender columnn and two-way slabsSlender columnn and two-way slabs
Slender columnn and two-way slabs
ย 
Radiator design
Radiator designRadiator design
Radiator design
ย 
Cad based shape optimization
Cad based shape optimizationCad based shape optimization
Cad based shape optimization
ย 
Footing design
Footing designFooting design
Footing design
ย 
AAE550_Final_LuQi
AAE550_Final_LuQiAAE550_Final_LuQi
AAE550_Final_LuQi
ย 
Staircase Design Report
Staircase Design ReportStaircase Design Report
Staircase Design Report
ย 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
ย 
1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog 1.4 latifs 17 dramix sog
1.4 latifs 17 dramix sog
ย 
Module 5.pdf
Module 5.pdfModule 5.pdf
Module 5.pdf
ย 
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
ย 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf
ย 
A Project on Transformer Design.pdf
A Project on Transformer Design.pdfA Project on Transformer Design.pdf
A Project on Transformer Design.pdf
ย 
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...
Conventional Design Calculation &3D Modeling of Metal Forming Heavy duty Hydr...
ย 

More from SantiagoGarridoBulln

Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.
Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.
Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.SantiagoGarridoBulln
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsSantiagoGarridoBulln
ย 
Optimum engineering design - Day 6. Classical optimization methods
Optimum engineering design - Day 6. Classical optimization methodsOptimum engineering design - Day 6. Classical optimization methods
Optimum engineering design - Day 6. Classical optimization methodsSantiagoGarridoBulln
ย 
Optimum engineering design - Day 5. Clasical optimization methods
Optimum engineering design - Day 5. Clasical optimization methodsOptimum engineering design - Day 5. Clasical optimization methods
Optimum engineering design - Day 5. Clasical optimization methodsSantiagoGarridoBulln
ย 
Optimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimizationOptimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimizationSantiagoGarridoBulln
ย 
CI_L02_Optimization_ag2_eng.pdf
CI_L02_Optimization_ag2_eng.pdfCI_L02_Optimization_ag2_eng.pdf
CI_L02_Optimization_ag2_eng.pdfSantiagoGarridoBulln
ย 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfSantiagoGarridoBulln
ย 
CI_L11_Optimization_ag2_eng.pptx
CI_L11_Optimization_ag2_eng.pptxCI_L11_Optimization_ag2_eng.pptx
CI_L11_Optimization_ag2_eng.pptxSantiagoGarridoBulln
ย 
CI L11 Optimization 3 GlobalOptimization.pdf
CI L11 Optimization 3 GlobalOptimization.pdfCI L11 Optimization 3 GlobalOptimization.pdf
CI L11 Optimization 3 GlobalOptimization.pdfSantiagoGarridoBulln
ย 
optmizationtechniques.pdf
optmizationtechniques.pdfoptmizationtechniques.pdf
optmizationtechniques.pdfSantiagoGarridoBulln
ย 
complete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfcomplete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfSantiagoGarridoBulln
ย 
slides-linear-programming-introduction.pdf
slides-linear-programming-introduction.pdfslides-linear-programming-introduction.pdf
slides-linear-programming-introduction.pdfSantiagoGarridoBulln
ย 

More from SantiagoGarridoBulln (15)

Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.
Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.
Genetic Algorithms. Algoritmos Genรฉticos y cรณmo funcionan.
ย 
Optimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methodsOptimum Engineering Design - Day 2b. Classical Optimization methods
Optimum Engineering Design - Day 2b. Classical Optimization methods
ย 
Optimum engineering design - Day 6. Classical optimization methods
Optimum engineering design - Day 6. Classical optimization methodsOptimum engineering design - Day 6. Classical optimization methods
Optimum engineering design - Day 6. Classical optimization methods
ย 
Optimum engineering design - Day 5. Clasical optimization methods
Optimum engineering design - Day 5. Clasical optimization methodsOptimum engineering design - Day 5. Clasical optimization methods
Optimum engineering design - Day 5. Clasical optimization methods
ย 
Optimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimizationOptimum Engineering Design - Day 4 - Clasical methods of optimization
Optimum Engineering Design - Day 4 - Clasical methods of optimization
ย 
CI_L01_Optimization.pdf
CI_L01_Optimization.pdfCI_L01_Optimization.pdf
CI_L01_Optimization.pdf
ย 
CI_L02_Optimization_ag2_eng.pdf
CI_L02_Optimization_ag2_eng.pdfCI_L02_Optimization_ag2_eng.pdf
CI_L02_Optimization_ag2_eng.pdf
ย 
Lecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdfLecture_Slides_Mathematics_06_Optimization.pdf
Lecture_Slides_Mathematics_06_Optimization.pdf
ย 
CI_L11_Optimization_ag2_eng.pptx
CI_L11_Optimization_ag2_eng.pptxCI_L11_Optimization_ag2_eng.pptx
CI_L11_Optimization_ag2_eng.pptx
ย 
CI L11 Optimization 3 GlobalOptimization.pdf
CI L11 Optimization 3 GlobalOptimization.pdfCI L11 Optimization 3 GlobalOptimization.pdf
CI L11 Optimization 3 GlobalOptimization.pdf
ย 
optmizationtechniques.pdf
optmizationtechniques.pdfoptmizationtechniques.pdf
optmizationtechniques.pdf
ย 
complete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdfcomplete-manual-of-multivariable-optimization.pdf
complete-manual-of-multivariable-optimization.pdf
ย 
slides-linear-programming-introduction.pdf
slides-linear-programming-introduction.pdfslides-linear-programming-introduction.pdf
slides-linear-programming-introduction.pdf
ย 
bv_cvxslides (1).pdf
bv_cvxslides (1).pdfbv_cvxslides (1).pdf
bv_cvxslides (1).pdf
ย 
Optim_methods.pdf
Optim_methods.pdfOptim_methods.pdf
Optim_methods.pdf
ย 

Recently uploaded

Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
ย 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
ย 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .DerechoLaboralIndivi
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
ย 
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoordharasingh5698
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
ย 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service9953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsArindam Chakraborty, Ph.D., P.E. (CA, TX)
ย 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
ย 

Recently uploaded (20)

Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar  โ‰ผ๐Ÿ” Delhi door step de...
Call Now โ‰ฝ 9953056974 โ‰ผ๐Ÿ” Call Girls In New Ashok Nagar โ‰ผ๐Ÿ” Delhi door step de...
ย 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
ย 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
ย 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
ย 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
ย 
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor ๐Ÿ“ฑ {7001035870} VIP Escorts chittoor
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
ย 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
ย 
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort ServiceCall Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
Call Girls in Netaji Nagar, Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9953056974 ๐Ÿ” Escort Service
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
ย 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
ย 

OptimumEngineeringDesign-Day2a.pdf

  • 2. Course Objectives โ€ข Learn basic optimization methods and how they are applied in engineering design โ€ข Use MATLAB to solve optimum engineering design problems โ€“ Linear programming problems โ€“ Nonlinear programming problems โ€“ Mixed integer programing problems
  • 3. Course Materials โ€ข Arora, Introduction to Optimum Design, 3e, Elsevier, (https://www.researchgate.net/publication/273120102_Introductio n_to_Optimum_design) โ€ข Parkinson, Optimization Methods for Engineering Design, Brigham Young University (http://apmonitor.com/me575/index.php/Main/BookChapters) โ€ข Iqbal, Fundamental Engineering Optimization Methods, BookBoon (https://bookboon.com/en/fundamental-engineering-optimization- methods-ebook)
  • 4. Engineering Design Examples โ€ข Soda can design โ€ข Insulated spherical tank โ€ข Two-bar truss โ€ข Three-bar overhead truss โ€ข Cantilever column โ€ข Stepped cantilever beam โ€ข Coil spring โ€ข Heat pump
  • 5. Design Example: Soda Can Design Problem: A soda can of 125 ๐‘š๐‘™ capacity is to be designed to minimize material costs (proportional to surface area. For esthetic reasons, the height to diameter ratio should be at least 2. Design variables: height (โ„Ž), diameter (๐‘‘) Objective: ๐‘š๐‘–๐‘›โ„Ž,๐‘‘ ๐‘“ = 1 2 ๐œ‹๐‘‘2 + ๐œ‹๐‘‘โ„Ž Subject to: ๐‘”1: 1 4 ๐œ‹๐‘‘2โ„Ž โˆ’ 125 = 0 (volume) ๐‘”2: 2๐‘‘ โˆ’ โ„Ž โ‰ค 0 Trial design: Let ๐‘‘ = 4๐‘๐‘š, โ„Ž = 8๐‘๐‘š Then ๐‘“ = 125.66 ๐‘๐‘š2 ๐‘”1 ๐‘ฅ = โˆ’24.47; ๐‘”2 ๐‘ฅ = 0
  • 6. Design Example: Insulated Spherical Tank Problem: choose the insulation thickness (๐‘ก) to minimize the life-cycle costs of a spherical tank of radius ๐‘…. Life cycle costs: ๐‘2๐ด๐‘ก + ๐‘3๐บ + ๐‘4๐บ โˆ— ๐‘๐‘ค๐‘“ Annual heat gain: ๐บ = 365 ร— 24 ร— ฮ”๐‘‡ ร— ๐ด ๐œŒร—๐‘ก Surface area: ๐ด = 4๐œ‹๐‘…2 [๐‘š2 ] Thermal resistivity: ๐œŒ ๐‘š โ‹… ๐‘ ๐‘’๐‘ โ‹… ยฐ๐ถ/๐ฝ Equipment insulation cost: ๐‘2 $/๐‘š3 Equipment refrigeration cost: ๐‘3 $/๐‘Šโ„Ž Annual operating cost: ๐‘4 $/๐‘Šโ„Ž Present worth factor: ๐‘๐‘ค๐‘“ = ๐ด ๐‘– 1 โˆ’ 1 1+๐‘– ๐‘› Note, there are no constraints in this problem
  • 7. Design Example: Rectangular Beam Problem: design a rectangular beam of minimum cross-section area to withstand specified bending moment (๐‘€) and shear load (๐‘‰). Design variables: width (๐‘), depth (๐‘‘) Objective: ๐‘“ ๐‘, ๐‘‘ = ๐‘๐‘‘ Constraints: Bending stress: ๐œŽ = 6๐‘€ ๐‘๐‘‘2 โ‰ค ๐œŽ๐‘Ž Shear stress: ๐œ = 3๐‘‰ 2๐‘๐‘‘ โ‰ค ๐œ๐‘Ž Aspect ratio: ๐‘‘ ๐‘ โ‰ค 2 Problem specific data ๐‘€ = 140 ๐‘˜๐‘; ๐‘‰ = 24 ๐‘˜๐‘; ๐œŽ๐‘Ž = 165 ๐‘€๐‘ƒ๐‘Ž; ๐œ๐‘Ž = 50๐‘€๐‘ƒ๐‘Ž
  • 8. Design Example: Hollow Cantilever Beam Problem: design a hollow cantilever beam of length ๐ฟ of square cross- section to support a load ๐‘ƒ with minimum mass (Ref: Arora, p. 18) Design variables: width ๐‘ค , thickness ๐‘ก Objective: minimum ๐‘š๐‘Ž๐‘ ๐‘  = ๐œŒ๐‘™๐ด [๐พ๐‘”] Cross-section area: ๐ด = 4๐‘ก ๐‘ค โˆ’ ๐‘ก [๐‘š๐‘š2] Moment of inertia: ๐ผ = 1 12 ๐‘ค4 โˆ’ ๐‘ค โˆ’ 2๐‘ก 4 [๐‘š๐‘š4] Moment about neutral axis: ๐‘„ = 1 8 ๐‘ค3 โˆ’ ๐‘ค โˆ’ 2๐‘ก 3 [๐‘š๐‘š3] Bending stress: ๐œŽ = ๐‘ƒ๐‘™๐‘ค 2๐ผ [๐‘ โ‹… ๐‘š๐‘šโˆ’2] Shear stress: ๐œ = ๐‘ƒ๐‘„ 2๐ผ๐‘ก [๐‘ โ‹… ๐‘š๐‘šโˆ’2] End deflection: ๐‘ž = ๐‘ƒ๐ฟ3 3๐ธ๐ผ [๐‘š๐‘š]
  • 9. Design Example: Hollow Cantilever Beam Assume the following parameter values: ๐‘ƒ = 20,000 ๐‘; ๐ฟ = 2 ๐‘š; ๐ธ = 21 ร— 104 ๐‘ โ‹… ๐‘š๐‘šโˆ’2 ; ๐บ = 8 ร— 104 ๐‘ โ‹… ๐‘š๐‘šโˆ’2 ; ๐œŽ๐‘Ž = 165 ๐‘ โ‹… ๐‘š๐‘šโˆ’2; ๐œ๐‘Ž = 90 ๐‘ โ‹… ๐‘š๐‘šโˆ’2; ๐‘ž๐‘Ž = 10 ๐‘š๐‘š The design optimization problem is stated as: Objective: min ๐‘ค,๐‘ก 4๐‘ก(๐‘ค โˆ’ ๐‘ก) Subject to: ๐‘ƒ๐‘™๐‘ค 2๐ผ โˆ’ ๐œŽ๐‘Ž โ‰ค 0 ๐‘ƒ๐‘„ 2๐ผ๐‘ก โˆ’ ๐œ๐‘Ž โ‰ค 0 ๐‘ƒ๐ฟ3 3๐ธ๐ผ โˆ’ ๐‘ž๐‘Ž โ‰ค 0 ๐‘ค โˆ’ 15๐‘ก โ‰ค 0 Variable bounds: 50 โ‰ค ๐‘ค โ‰ค 200, 5 โ‰ค ๐‘ก โ‰ค 20
  • 10. Design Example: Minimum Mass Tubular Column Problem: Design a minimum mass tubular column of length ๐‘™ to support a load ๐‘ƒ without buckling or overstressing (Ref: Arora, p. 40) Design variables: outer and inner radii ๐‘…0, ๐‘…๐‘– , alternatively, (๐‘…, ๐‘ก) Objective: min ๐œŒ๐‘™๐ด, where ๐ด = ๐œ‹ ๐‘…0 2 โˆ’ ๐‘…๐‘– 2 = 2๐œ‹๐‘…๐‘ก Moment of Inertia: ๐ผ = ๐œ‹ 4 ๐‘…0 4 โˆ’ ๐‘…๐‘– 4 = ๐œ‹๐‘…3 ๐‘ก Constraints: ๐‘ƒ < ๐‘ƒcr, ๐œŽ โ‰ค ๐œŽ๐‘Ž, ๐‘… ๐‘ก โ‰ค ๐‘˜ Axial stress: ๐œŽ = ๐‘ƒ ๐ด Buckling load: ๐‘ƒcr = ๐œ‹2๐ธ๐ผ 4๐‘™2 Allowable stress: ๐œŽ๐‘Ž
  • 11. Design Example: Tubular Column Assume the following parameter values: ๐‘ƒ = 10 ๐‘€๐‘; ๐ฟ = 5๐‘š; ๐ธ = 210๐บ๐‘ƒ๐‘Ž; ๐œŽ๐‘Ž = 250๐‘€๐‘ƒ๐‘Ž The resulting optimization problem is formulated as: Objective: min ๐‘…๐‘œ,๐‘…๐‘– ๐œ‹ ๐‘…๐‘œ 2 โˆ’ ๐‘…๐‘– 2 Subject to: ๐‘ƒ ๐œ‹ ๐‘…๐‘œ 2โˆ’๐‘…๐‘– 2 ๐œŽ๐‘Ž โˆ’ 1 โ‰ค 0, 16๐‘ƒ๐ฟ2 ๐œ‹3๐ธ ๐‘…๐‘œ 4โˆ’๐‘…๐‘– 4 โˆ’ 1 โ‰ค 0, ๐‘…๐‘œ+๐‘…๐‘– 2๐‘˜ ๐‘…๐‘œโˆ’๐‘…๐‘– โˆ’ 1 โ‰ค 0 Alternative problem formulation: Objective: min ๐‘…,๐‘ก 2๐œ‹๐‘…๐‘ก Subject to: ๐‘ƒ 2๐œ‹๐‘…๐‘ก๐œŽ๐‘Ž โˆ’ 1 โ‰ค 0, 4๐‘ƒ๐ฟ2 ๐œ‹3๐ธ๐‘…3๐‘ก โˆ’ 1 โ‰ค 0, ๐‘… ๐‘˜๐‘ก โˆ’ 1 โ‰ค 0 Variable bounds: 50 โ‰ค ๐‘… โ‰ค 200, 5 โ‰ค ๐‘ก โ‰ค 20
  • 12. Design Example: Coil Spring Problem: design a minimum mass spring to carry a given axial load ๐‘ƒ without material failure while satisfying minimum deflection and minimum surge wave frequency requirements Design variables: mean coil diameter ๐ท , wire diameter ๐‘‘ , number of active coils (๐‘) Design equations: Spring mass: ๐‘š = 1 4 ๐‘ + ๐‘„ ๐œ‹2 ๐ท๐‘‘2 ๐œŒ Load deflection: ๐‘ƒ = ๐พ๐›ฟ, where ๐พ = ๐‘‘4๐บ 8๐ท3๐‘ Shear stress: ๐œ = 8๐‘˜๐‘ƒ๐ท ๐œ‹๐‘‘3 Stress concentration factor: ๐‘˜ = 4๐ทโˆ’๐‘‘ 4(๐ทโˆ’๐‘‘) + 0.615 ๐‘‘ ๐ท Frequency of surge waves: ๐œ” = ๐‘‘ 2๐œ‹๐‘๐ท2 ๐บ 2๐œŒ
  • 13. Design Example: Coil Spring The optimization problem is formulated as: Objective: min ๐‘“ ๐‘, ๐‘‘, ๐ท = ๐‘ + ๐‘„ ๐ท๐‘‘2 Constraints: ๐œ โ‰ค ๐œ๐‘Ž, ๐œ” โ‰ฅ ๐œ”0, ๐ท + ๐‘‘ โ‰ค ๐ท0, ๐›ฟ = ๐‘ƒ ๐พ โ‰ฅ ฮ”, Variable bounds: ๐‘‘๐‘š๐‘–๐‘› โ‰ค ๐‘‘ โ‰ค ๐‘‘๐‘š๐‘Ž๐‘ฅ, ๐ท๐‘š๐‘–๐‘› โ‰ค ๐ท โ‰ค ๐ท๐‘š๐‘Ž๐‘ฅ, ๐‘๐‘š๐‘–๐‘› โ‰ค ๐‘ โ‰ค ๐‘๐‘š๐‘Ž๐‘ฅ Assume the following parameter values: ๐‘ƒ = 10 ๐‘™๐‘, ฮ” = 0.5 ๐‘–๐‘›, ๐›พ = 0.285 ๐‘™๐‘ ๐‘–๐‘›3 , ๐œ”0 = 100 ๐ป๐‘ง, ๐ท0 = 1.5 ๐‘–๐‘›, ๐œ๐‘Ž = 80,000 ๐‘™๐‘ ๐‘–๐‘›2 , ๐บ = 1.15 ร— 107 ๐‘™๐‘ ๐‘–๐‘›2 , ๐‘„ = 2 0.01 โ‰ค ๐‘‘ โ‰ค 0.15, 0.5 โ‰ค ๐ท โ‰ค 1.5, 1 โ‰ค ๐‘ โ‰ค 10
  • 14. Design Example: Stepped Cantilever Beam A fixed load ๐‘ƒ = 50๐‘˜๐‘ is supported at the end of a stepped cantilever beam of ๐ฟ = 500๐‘๐‘š. The sections are of equal length (๐‘™ = 100๐‘๐‘š). The design objective is to minimize the mass of the beam by reducing its total volume. Design variables: ๐‘๐‘–, โ„Ž๐‘–, ๐‘– = 1, โ€ฆ , 5 Objective: min ๐‘‰ = ๐‘™ ๐‘1โ„Ž1 + ๐‘2โ„Ž2 + ๐‘3โ„Ž3 + ๐‘4โ„Ž4 + ๐‘5โ„Ž5
  • 15. Design Example: Stepped Cantilever Beam Design constraints: Bending stress: ๐œŽ๐‘๐‘– < ๐œŽ๐‘š๐‘Ž๐‘ฅ = 14000 ๐‘ ๐‘๐‘š2 , ๐‘– = 1, โ€ฆ , 5 where ๐œŽ๐‘5 = 6๐‘ƒ๐‘™ ๐‘5โ„Ž5 2 , ๐œŽ๐‘4 = 12๐‘ƒ๐‘™ ๐‘4โ„Ž4 2 , ๐œŽ๐‘3 = 18๐‘ƒ๐‘™ ๐‘3โ„Ž3 2 , ๐œŽ๐‘2 = 24๐‘ƒ๐‘™ ๐‘2โ„Ž2 2 , ๐œŽ๐‘1 = 30๐‘ƒ๐‘™ ๐‘1โ„Ž1 2 End deflection: ๐›ฟ = ๐‘ƒ๐‘™3 3๐ธ 61 ๐ผ1 + 37 ๐ผ2 + 19 ๐ผ3 + 7 ๐ผ4 + 1 ๐ผ5 โ‰ค ๐›ฟ๐‘š๐‘Ž๐‘ฅ = 2.7๐‘๐‘š where ๐ผ๐‘– = ๐‘๐‘–โ„Ž๐‘– 3 12 , ๐‘– = 1, โ€ฆ , 5; ๐ธ = 2 ร— 107 ๐‘ ๐‘๐‘š2 Aspect ratio: โ„Ž๐‘– ๐‘๐‘– โ‰ค ๐‘Ž๐‘š๐‘Ž๐‘ฅ = 20, ๐‘– = 1, โ€ฆ , 5 Discrete variable ranges: ๐‘1 โˆˆ 1: 5 , โ„Ž1 โˆˆ 30: 5: 55 , ๐‘2, ๐‘3 โˆˆ 2.4, 2.6, 2.8, 3.1 , โ„Ž2, โ„Ž3 โˆˆ 45, 50, 55, 60 , Continuous variable bounds: 1 โ‰ค ๐‘4, ๐‘5 โ‰ค 5, 30 โ‰ค โ„Ž4, โ„Ž5 โ‰ค 55
  • 16. Design Example: Symmetric Two-Bar Truss Problem: a symmetrical two-bar truss is to be designed with hollow tubes to support a fixed load ๐‘ƒ. The truss has height ๐ป, and span ๐ต. Objective: minimum weight structure that will withstand ๐‘ƒ, and not yield, buckle, or deflect excessively. Design variables: diameter ๐‘‘ , thickness ๐‘ก Alternately, choose: diameter ๐‘‘ , height ๐ป ๐‘™ = (๐ต/2)2+๐ป2, ๐ด = ๐œ‹๐‘‘๐‘ก Total weight: ๐‘Š = 2๐œŒ๐‘™๐ด, Axial stress: ๐œŽ = ๐‘ƒ๐‘™ 2๐œ‹๐‘‘๐‘ก๐ป Buckling stress: ๐œŽ๐‘ = ๐œ‹2 ๐‘‘2+๐‘ก2 ๐ธ 8๐‘™2 Deflection: ๐œ€ = ๐‘ƒ๐‘™3 2๐œ‹๐‘‘๐‘ก๐ป2๐ธ
  • 17. Design Example: Symmetric Two-Bar Truss The optimum design problem is defined as: Objective: min d,t ๐‘Š = 2๐œ‹๐‘‘๐‘ก๐œŒ (๐ต/2)2+๐ป2 Subject to: ๐œŽ๐‘ โ‰ค ๐œŽ โ‰ค ๐œŽ๐‘Ž; ๐œ€ โ‰ค ๐œ€๐‘š๐‘Ž๐‘ฅ; Simplify objective and scale the constraints: Objective: min d,t ๐‘“ = ๐‘‘ ร— ๐‘ก Subject to: ๐œŽ๐‘ ๐œŽ โˆ’ 1 โ‰ค 0, ๐œŽ ๐œŽ๐‘Ž โˆ’ 1 โ‰ค 0 , ๐œ€ ๐œ€๐‘š๐‘Ž๐‘ฅ โˆ’ 1 โ‰ค 0, For a particular problem, let ๐‘ƒ = 66,000 ๐‘™๐‘; ๐ป = 30 ๐‘–๐‘›; ๐ต = 60 ๐‘–๐‘›; ๐œŒ = 0.3 ๐‘™๐‘ ๐‘–๐‘›3 ; ๐ธ = 30 ร— 106 ๐‘™๐‘ ๐‘–๐‘›2 ; ๐œŽ๐‘Ž = 1 ร— 105 ๐‘๐‘ ๐‘–; ๐œ€๐‘š๐‘Ž๐‘ฅ = 0.25 ๐‘–๐‘› Then ๐‘Š = 79.97 ๐‘‘ ร— ๐‘ก, ๐œŽ = 14,855 ๐‘‘ ร— ๐‘ก, ๐œŽ๐‘ = 20,562 ๐‘‘2 + ๐‘ก2 , ๐œ€ = 0.0297 ๐‘‘ร—๐‘ก ;
  • 18. Design Example: Three-Bar Overhead Truss Problem: A minimum-weight symmetric three-bar overhead truss is to be designed to support a load applied at an angle (Ref: Arora, p. 46). The truss has height ๐‘™ and span 2๐‘™; member 1 and 3 have length 2๐‘™ and area ๐ด1; member 2 has length ๐‘™ and area ๐ด2. Load ๐‘ƒ is applied at the joint at an angle ๐œƒ; the horizontal and vertical components of the applied load are: ๐‘ƒ๐‘ข = ๐‘ƒ cos ๐œƒ , ๐‘ƒ๐‘ฃ = ๐‘ƒ sin ๐œƒ. Design variables: cross-sectional areas, ๐ด1 and ๐ด2 Design objective: minimize ๐‘Š = ๐œŒ๐‘™๐‘”(2 2๐ด1 + ๐ด2) Design constraints: Stress, deflection, buckling, resonance
  • 19. Design Example: Three-Bar Overhead Truss The stresses in the three structural members are given as: ๐œŽ1 = 1 2 ๐‘ƒ๐‘ข ๐ด1 + ๐‘ƒ๐‘ฃ (๐ด1+ 2๐ด2) ; ๐œŽ2 = 2๐‘ƒ๐‘ฃ (๐ด1+ 2๐ด2) ; ๐œŽ3 = 1 2 โˆ’ ๐‘ƒ๐‘ข ๐ด1 + ๐‘ƒ๐‘ฃ (๐ด1+ 2๐ด2) The horizontal and vertical deflections of the load point are: ๐‘ข = 2๐‘™๐‘ƒ๐‘ข ๐ด1๐ธ , ๐‘ฃ = 2๐‘™๐‘ƒ๐‘ฃ (๐ด1+ 2๐ด2)๐ธ The buckling load for the members in compression is given as: ๐œ‹2๐ธ๐ผ ๐‘™๐‘– 2 , where the moment of inertia is: ๐ผ๐‘– = ๐›ฝ๐ด๐‘– 2 , where ๐›ฝ = constant. The lowest resonance frequency of the structure is given as: ๐œ = 3๐ธ๐ด1 ๐œŒ๐‘™2(4๐ด1+ 2๐ด2) , where ๐œŒ is the mass density.
  • 20. Design Example: Three-Bar Overhead Truss The optimization problem is formulated as: Objective: Minimize ๐‘“ ๐ด1, ๐ด2 = 2 2๐ด1 + ๐ด2 Design constraints: Axial stress: ๐œŽ๐‘– โ‰ค ๐œŽ๐‘Ž, ๐‘– = 1,2,3 Buckling stress: โˆ’๐œŽ3 โ‰ค ๐œ‹2๐ธ๐›ฝ๐ด1 ๐‘™3 2 โ‰ค ๐œŽ๐‘Ž End deflections: ๐‘ข โ‰ค โˆ†๐‘ข, ๐‘ฃ โ‰ค โˆ†๐‘ฃ Resonance frequency: ๐œ โ‰ฅ 2๐œ‹๐œ”0 2 Variable bounds: ๐ด1, ๐ด2 โ‰ฅ ๐ด๐‘š๐‘–๐‘›
  • 21. Design Example: Three-Bar Overhead Truss For a particular problem, let ๐‘™ = 1.0๐‘š, ๐‘ƒ = 50๐‘˜๐‘, ๐œƒ = 30ยฐ, ๐œŒ = 7850 ๐‘˜๐‘” ๐‘š3 , ๐ธ = 210๐บ๐‘ƒ๐‘Ž, ๐œŽ๐‘Ž = 150๐‘€๐‘ƒ๐‘Ž, โˆ†๐‘ข= โˆ†๐‘ฃ= 0.5 ๐‘๐‘š, ๐œ”0 = 50๐ป๐‘ง, ๐›ฝ = 1.0, and ๐ด๐‘š๐‘–๐‘› = 2๐‘๐‘š2 . Then, ๐‘ƒ๐‘ข = 3๐‘ƒ 2 , ๐‘ƒ๐‘ฃ = ๐‘ƒ 2 ; after normalizing the constraints, the optimal design problem is stated as: Minimize ๐‘“ ๐ด1, ๐ด2 = 2 2๐ด1 + ๐ด2 Subject to: 2.357 ร— 10โˆ’4 0.866 ๐ด1 + 0.5 ๐ด1+ 2๐ด2 โˆ’ 1 โ‰ค 0, 2.357ร—10โˆ’4 ๐ด1+ 2๐ด2 โˆ’ 1 โ‰ค 0, 2.357 ร— 10โˆ’4 โˆ’ 0.866 ๐ด1 + 0.5 ๐ด1+ 2๐ด2 โˆ’ 1 โ‰ค 0, 6.9077 ร— 104 ๐ด1 โˆ’ 1 โ‰ค 0, 3.4117 ร— 10โˆ’4 0.866 ๐ด1 โˆ’ 0.5 ๐ด1+ 2๐ด2 โˆ’ 1 โ‰ค 0, 5.8321ร—10โˆ’5 ๐ด1 โˆ’ 1 โ‰ค 0, 3.3672ร—10โˆ’5 ๐ด1+ 2๐ด2 โˆ’ 1 โ‰ค 0, 0.0012 4๐ด1+ 2๐ด2 ๐ด1 โˆ’ 1 โ‰ค 0, ๐ด1, ๐ด2 โ‰ฅ 0.01
  • 22. Design Example: Heat Pump A heat pump is to be designed to extract residual heat from outside air and supply it indoor. Electric resistance heating is used as backup. Design variables: ๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘๐‘œ, ๐‘ก๐‘Ž๐‘’๐‘œ
  • 23. Design Example: Heat Pump The design problem is to choose the size of the compressor, condenser and evaporator to minimize the life-cycle costs over 10 years. The following assumptions are made: โ€“ The average outside air temperature is 0ยฐ๐ถ โ€“ Evaporator inlet air temperature is 24ยฐ๐ถ โ€“ The approach temperature in the exchanger should be at least 4ยฐ๐ถ. โ€“ The airflow rate through the coils is ๐‘š = 5 ๐‘˜๐‘”/๐‘ ๐‘’๐‘ โ€“ The pump operates for 4000 hours every year โ€“ Compressor cost is $220/๐‘˜๐‘Š of motor โ€“ Cost of coils is $100/๐‘š2 of the air-side area โ€“ Power cost is $0.10/๐พ๐‘Šโ„Ž๐‘Ÿ
  • 24. Design Example: Heat Pump The variables are defined as: Condenser inlet air temperature, ๐‘ก๐‘Ž๐‘๐‘– = 0ยฐ๐ถ Condenser outlet air temperature, ๐‘ก๐‘Ž๐‘๐‘œ Evaporator inlet air temperature, ๐‘ก๐‘Ž๐‘’๐‘– = 24ยฐ๐ถ Evaporator outlet air temperature, ๐‘ก๐‘Ž๐‘๐‘œ Temperature of approach for condenser, ๐‘ก๐‘Ž๐‘๐‘๐‘ = ๐‘ก๐‘ โˆ’ ๐‘ก๐‘Ž๐‘๐‘œ Temperature of approach for evaporator, ๐‘ก๐‘Ž๐‘๐‘๐‘’ = ๐‘ก๐‘Ž๐‘’๐‘œ โˆ’ ๐‘ก๐‘’ Heat transferred in condenser, ๐‘„๐‘ = ๐‘š๐ถ๐‘ ๐‘ก๐‘Ž๐‘๐‘œ โˆ’ ๐‘ก๐‘Ž๐‘๐‘– = ๐‘ˆ๐ด๐‘ฮ”๐‘‡๐‘ Heat transferred in evaporator, ๐‘„๐‘’ = ๐‘š๐ถ๐‘ ๐‘ก๐‘Ž๐‘’๐‘– โˆ’ ๐‘ก๐‘Ž๐‘’๐‘œ = ๐‘ˆ๐ด๐‘’ฮ”๐‘‡๐‘’ Log mean temperature difference across condenser, ฮ”๐‘‡๐‘ = ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘– โˆ’ ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘œ ln ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘– / ๐‘ก๐‘โˆ’๐‘ก๐‘Ž๐‘๐‘œ Log mean temperature difference across evaporator, ฮ”๐‘‡๐‘’ = ๐‘ก๐‘Ž๐‘’๐‘–โˆ’๐‘ก๐‘’ โˆ’ ๐‘ก๐‘Ž๐‘’๐‘œโˆ’๐‘ก๐‘’ ln ๐‘ก๐‘Ž๐‘’๐‘–โˆ’๐‘ก๐‘’ / ๐‘ก๐‘Ž๐‘’๐‘œโˆ’๐‘ก๐‘’
  • 25. Design Example: Heat Pump Variable definitions: Heat transfer coefficient, ๐‘ˆ = .025 ๐‘˜๐‘Š ๐‘š2ยฐ๐ถ Heat supplied by the electric heater, ๐‘„๐‘Ÿ = ๐‘š๐ถ๐‘ 35 โˆ’ ๐‘ก๐‘Ž๐‘๐‘œ Electrical energy input to the compressor, ๐‘Š = ๐‘„๐‘ โˆ’ ๐‘„๐‘’ Coefficient of performance for compressor, ๐ถ๐‘‚๐‘ƒ = ๐‘„๐‘’ ๐‘Š = 7.24 + 0.352๐‘ก๐‘’ โˆ’ 0.096๐‘ก๐‘ โˆ’ 0.0055๐‘ก๐‘๐‘ก๐‘’ Capital cost of the heat pump, ๐ถโ„Ž๐‘ = 100 ๐ด๐‘ + ๐ด๐‘’ + 220๐‘Š Operating cost of the heat pump, ๐ถ๐‘’โ„Ž๐‘ = 0.06 ร— 4000 ร— ๐‘ƒ๐‘Š๐น ร— ๐‘Š Operating cost of the heater, ๐ถ๐‘’๐‘Ÿโ„Ž = 0.06 ร— 4000 ร— ๐‘ƒ๐‘Š๐น ร— ๐‘„๐‘Ÿ Present worth factor, ๐‘ƒ๐‘Š๐น(๐ด, ๐‘–) = ๐ด ๐‘– 1 โˆ’ 1 1+๐‘– ๐‘› Total cost, ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = ๐ถโ„Ž๐‘ + ๐ถ๐‘’โ„Ž๐‘ + ๐ถ๐‘’๐‘Ÿโ„Ž
  • 26. Design Example: Heat Pump Using three independent variables, an unconstrained optimization problem is defined as: Objective: min ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™(๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘’๐‘œ) Alternatively, the constrained optimization problem is defined as: Objective: min ๐ถ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™(๐‘ก๐‘, ๐‘ก๐‘’, ๐‘ก๐‘Ž๐‘๐‘œ, ๐‘ก๐‘Ž๐‘’๐‘œ) Subject to: ๐‘„๐‘ โˆ’ ๐‘„๐‘’ โˆ’ ๐‘Š = 0 Variable bounds: 35ยฐ๐ถ โ‰ค ๐‘ก๐‘ โ‰ค 70ยฐ๐ถ, โˆ’20ยฐ๐ถ โ‰ค ๐‘ก๐‘’ โ‰ค 20ยฐ๐ถ, 0ยฐ๐ถ = ๐‘ก๐‘Ž๐‘๐‘– โ‰ค ๐‘ก๐‘Ž๐‘๐‘œ โ‰ค 35ยฐ๐ถ, 0ยฐ๐ถ โ‰ค ๐‘ก๐‘Ž๐‘’๐‘œ โ‰ค ๐‘ก๐‘Ž๐‘’๐‘– = 24ยฐ๐ถ
  • 27. Graphical Optimization Method โ€ข Before delving into the formal optimization methods, letโ€™s examine the graphical optimization method, which is applicable for problems formulated with one or two variables โ€ข The graphical method involves the following steps: โ€“ Establish a (2D) grid for variable ranges considered โ€“ Plot the constraint boundaries and establish the feasible region โ€“ Using the grid plot contours (level curves) of the cost function โ€“ Identify the minimum by inspection
  • 28. Graphical Method for Problems in Two Variables โ€ข Assume that the optimization problem is given as: Objective: min ๐‘ฅ1,๐‘ฅ2 ๐‘“(๐‘ฅ1, ๐‘ฅ2) Subject to: ๐‘”๐‘– โ‰ค 0, โ„Ž๐‘— = 0 Variable bounds: ๐‘ฅ๐‘– ๐ฟ โ‰ค ๐‘ฅ๐‘– โ‰ค ๐‘ฅ๐‘– ๐‘ˆ , ๐‘– = 1,2 โ€ข We use MATLAB to โ€“ Define a grid of pairs of values over the ranges of variables โ€“ Plot the constraint boundaries and locate the feasible region โ€“ Plot the contours of the objective function to graphically locate a minimum
  • 29. Example: Soda Can Design Optimization Problem: Objective: ๐‘š๐‘–๐‘›โ„Ž,๐‘‘ ๐‘“ โ„Ž, ๐‘‘ = 1 2 ๐œ‹๐‘‘2 + ๐œ‹๐‘‘โ„Ž Subject to: ๐‘”1: 1 4 ๐œ‹๐‘‘2 โ„Ž = 125, ๐‘”2: 2๐‘‘ โˆ’ โ„Ž โ‰ค 0 Select variable bounds: 1 โ‰ค ๐‘‘ โ‰ค 8; 2 โ‰ค โ„Ž โ‰ค 16
  • 30. Example: Soda Can Design MATLAB Commands: >> d=1:.05:8; h=2:.1:16; >> [D,H]=meshgrid(d,h); >> f=pi*D.*(D/2+H); >> g1=pi/4*D.*D.*H-125; >> g2=2*D-H; >> figure, xlabel('D'), ylabel('H'), hold >> contour(d,h, g1,[0 0],'r'), >> contour(d,h, g2,[0 0],'r'), pause >> [c,h]=contour(d,h,f); clabel(c,h), hold
  • 31. Design Example: Hollow Cylindrical Cantilever Beam Problem: Design a minimum-mass cantilever beam of length ๐ฟ with circular cross-section (outer radius ๐‘…๐‘œ, inner radius ๐‘…๐‘–), such that: Bending stress: ๐œŽ = ๐‘ƒ๐ฟ๐‘…๐‘œ ๐ผ โ‰ค ๐œŽ๐‘Ž, Shear stress: ๐œ = ๐‘ƒ 3๐ผ ๐‘…๐‘œ 2 + ๐‘…0๐‘…๐‘– + ๐‘…๐‘– 2 โ‰ค ๐œ๐‘Ž, where ๐ผ = ๐œ‹ 4 (๐‘…๐‘œ 4 โˆ’ ๐‘…๐‘– 4 ) is the cross-section moment of inertia Design variables: outer radius ๐‘…๐‘œ, inner radius ๐‘…๐‘– The optimization problem is defined as: Minimize ๐‘“ ๐‘…0, ๐‘…๐‘– = ๐œ‹๐œŒ๐ฟ(๐‘…0 2 โˆ’ ๐‘…๐‘– 2 ) Subject to: ๐œŽ ๐œŽ๐‘Ž โˆ’ 1 โ‰ค 0, ๐œ ๐œ๐‘Ž โˆ’ 1 โ‰ค 0; ๐‘…0, ๐‘…๐‘– โ‰ค 0.2๐‘š
  • 32. Design Example: Hollow Cylindrical Cantilever Beam The following parameter values are assumed: ๐‘ƒ = 10๐‘˜๐‘, ๐ฟ = 5๐‘š, ๐œŽ๐‘Ž = 250๐‘€๐‘ƒ๐‘Ž, ๐œ๐‘Ž = 90๐‘€๐‘ƒ๐‘Ž, ๐ธ = 210๐บ๐‘ƒ๐‘Ž, ๐œŒ = 7850 ๐‘˜๐‘”/๐‘š3 After dropping the constant terms in ๐‘“, the problem is stated as: Minimize ๐‘“ ๐‘…0, ๐‘…๐‘– = ๐‘…0 2 โˆ’ ๐‘…๐‘– 2 Subject to: ๐‘”1: 8ร—10โˆ’4๐‘…๐‘œ ๐œ‹(๐‘…0 4โˆ’๐‘…๐‘– 4 ) โˆ’ 1 โ‰ค 0; ๐‘”2: 4 ๐‘…๐‘œ 2+๐‘…0๐‘…๐‘–+๐‘…๐‘– 2 27๐œ‹ ๐‘…0 4โˆ’๐‘…๐‘– 4 โˆ’ 1 โ‰ค 0; ๐‘…0, ๐‘…๐‘– โ‰ค 20๐‘๐‘š The graphical solution obtained from the Matlab plot is: ๐‘…๐‘œ = 12๐‘๐‘š, ๐‘…๐‘– = 11.5๐‘๐‘š, ๐‘“โˆ— = 11.75 ๐‘๐‘š2
  • 33. Graphical Solution Hollow Cylindrical Cantilever Beam Design 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 . 0 0 1 0.001 0.001 0.001 0 . 0 0 2 0.002 0.002 0.002 0 . 0 0 3 0.003 0.003 0 . 0 0 4 0.004 0.004 0 . 0 0 5 0.005 0.005 0 . 0 0 6 0.006 0.006 0 . 0 0 7 0.007 0.007 0 . 0 0 8 0 . 0 0 8 0.008 0 . 0 0 9 0 . 0 0 9 0.009 0 . 0 1 0 . 0 1 0.01 X= 0.12 Y= 0.115 Level= 0.001175 Ro Ri Hollow Cylindrical Cantilever Beam Design Optimal solution: ๐‘…๐‘œ = 0.12๐‘š, ๐‘…๐‘– = 0.115๐‘š, ๐‘“โˆ— = 0.001175 View publication stats View publication stats