SlideShare a Scribd company logo
Neural networks in the
brain
Ilya Zakharov
Research associate
Developmental behavioral genetics lab
Psychological Institute
Russian Academy of Education
Neural networks
Networks on different levels.
Spikes
Networks on different levels.
Brain areas
Networks on different levels.
Electrophysiology
Neural coupling
Measures
Phase synchrony
Perfect synchronization
Synchronization with
time lag
No synchronization
Coherence coefficient
Coherence - the frequency domain
equivalent to the time domain cross-
correlation function.
*Phase Locking Value
Coherence for normalized Fourier-
transformed signals
Phase lag index
The PLI is a metric that evaluates the distribution of phase
differences across observations.
Stam et al., 2007
the PPC is computed from the distribution of all pairwise
differences (between pairs of observations) of the relative
phases.
Pairwise phase consistency
Vinck et al., 2010
Non-directed
Phase slope index
Granger causality
Computed from the complex-valued coherency, and
quantifies the consistency of the direction of the change
in the phase difference across. The sign of the PSI
informs about which signal is temporally leading the
other
Nolte et al., 2008
Directed
Represents the result of a model comparison. It is rooted in the autoregressive
modeling framework, where future values of time series are modeled as a
weighted combination of past values of time series. Specifically, the quality of an
AR-model can be quantified by the variance of the model’s residuals, and Granger
causality is defined as the natural logarithm of a ratio of residual variances,
obtained from two different AR-models.
Ding et al., 2006
Common reference problem
Bipolar referencing?
Common input problem
Partial out third input?
Granger causality?
Common source problem/
Volume conduction/field spread
Current source density?
Imanigary coherence?
Source localization?
Back to graph analysis
Back to graph analysis
Your suggestions?
References
• Bastos, André M., and Jan-Mathijs Schoffelen. “A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls.” Frontiers in
Systems Neuroscience, 2016, 175. doi:10.3389/fnsys.2015.00175.
• Durand, Dominique M., Eun-Hyoung Park, and Alicia L. Jensen. “Potassium Diffusive Coupling in Neural Networks.” Philosophical Transactions of the Royal
Society of London B: Biological Sciences 365, no. 1551 (August 12, 2010): 2347–62. doi:10.1098/rstb.2010.0050.
• Finn, Emily S., Xilin Shen, Dustin Scheinost, Monica D. Rosenberg, Jessica Huang, Marvin M. Chun, Xenophon Papademetris, and R. Todd Constable.
“Functional Connectome Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity.” Nature Neuroscience 18, no. 11 (November 2015):
1664–71. doi:10.1038/nn.4135.
• Fraga González, G., M. J. W. Van der Molen, G. Žarić, M. Bonte, J. Tijms, L. Blomert, C. J. Stam, and M. W. Van der Molen. “Graph Analysis of EEG Resting
State Functional Networks in Dyslexic Readers.” Clinical Neurophysiology. Accessed July 15, 2016. doi:10.1016/j.clinph.2016.06.023.
• Hardmeier, Martin, Florian Hatz, Habib Bousleiman, Christian Schindler, Cornelis Jan Stam, and Peter Fuhr. “Reproducibility of Functional Connectivity and
Graph Measures Based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) Derived from High Resolution EEG.” PloS One 9, no. 10
(2014): e108648. doi:10.1371/journal.pone.0108648.
• Lachaux, J. P., E. Rodriguez, J. Martinerie, and F. J. Varela. “Measuring Phase Synchrony in Brain Signals.” Human Brain Mapping 8, no. 4 (1999): 194–208.
• Neubauer, Aljoscha C., and Andreas Fink. “Intelligence and Neural Efficiency: Measures of Brain Activation versus Measures of Functional Connectivity in
the Brain.” Intelligence, Intelligence and the Brain, 37, no. 2 (March 2009): 223–29. doi:10.1016/j.intell.2008.10.008.
• Nolte, Guido, Andreas Ziehe, Vadim V. Nikulin, Alois Schlögl, Nicole Krämer, Tom Brismar, and Klaus-Robert Müller. “Robustly Estimating the Flow Direction
of Information in Complex Physical Systems.” Physical Review Letters 100, no. 23 (June 10, 2008): 234101. doi:10.1103/PhysRevLett.100.234101.
• Rashid, Barnaly, Mohammad R. Arbabshirani, Eswar Damaraju, Mustafa S. Cetin, Robyn Miller, Godfrey D. Pearlson, and Vince D. Calhoun. “Classification
of Schizophrenia and Bipolar Patients Using Static and Dynamic Resting-State fMRI Brain Connectivity.” NeuroImage 134 (July 1, 2016): 645–57. doi:
10.1016/j.neuroimage.2016.04.051.
• Stam, Cornelis J., Guido Nolte, and Andreas Daffertshofer. “Phase Lag Index: Assessment of Functional Connectivity from Multi Channel EEG and MEG with
Diminished Bias from Common Sources.” Human Brain Mapping 28, no. 11 (November 1, 2007): 1178–93. doi:10.1002/hbm.20346.
• Termenon, M., A. Jaillard, C. Delon-Martin, and S. Achard. “Reliability of Graph Analysis of Resting State fMRI Using Test-Retest Dataset from the Human
Connectome Project.” NeuroImage. Accessed June 18, 2016. doi:10.1016/j.neuroimage.2016.05.062.
• Trongnetrpunya, Amy, Bijurika Nandi, Daesung Kang, Bernat Kocsis, Charles E. Schroeder, and Mingzhou Ding. “Assessing Granger Causality in
Electrophysiological Data: Removing the Adverse Effects of Common Signals via Bipolar Derivations.” Frontiers in Systems Neuroscience, 2016, 189. doi:
10.3389/fnsys.2015.00189.
• Vinck, Martin, Marijn van Wingerden, Thilo Womelsdorf, Pascal Fries, and Cyriel M. A. Pennartz. “The Pairwise Phase Consistency: A Bias-Free Measure of
Rhythmic Neuronal Synchronization.” NeuroImage 51, no. 1 (May 15, 2010): 112–22. doi:10.1016/j.neuroimage.2010.01.073.
• Wang, Xiangpeng, Ting Wang, Zhencai Chen, Glenn Hitchman, Yijun Liu, and Antao Chen. “Functional Connectivity Patterns Reflect Individual Differences
in Conflict Adaptation.” Neuropsychologia 70 (April 2015): 177–84. doi:10.1016/j.neuropsychologia.2015.02.031.
• Ding, M., Chen, Y., & Bressler, S. L. (2006). 17 Granger causality: basic theory and application to neuroscience. Handbook of time series analysis: recent
theoretical developments and applications, 437.
Thanks for your attention!
We are always ready to
cooperate!
iliazaharov@gmail.com

More Related Content

What's hot

Scaffolds Presentation-UW
Scaffolds Presentation-UWScaffolds Presentation-UW
Scaffolds Presentation-UW
Dane Dewees
 
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
InsideScientific
 
Hailey_Evans NAc VTA Poster 2014
Hailey_Evans NAc VTA Poster 2014Hailey_Evans NAc VTA Poster 2014
Hailey_Evans NAc VTA Poster 2014
Hailey Zie Evans
 
Optogenetics
OptogeneticsOptogenetics
Optogenetics
stowe11c
 
Jama's DNA Profiling Revision Powerpoint
Jama's DNA Profiling Revision PowerpointJama's DNA Profiling Revision Powerpoint
Jama's DNA Profiling Revision Powerpoint
Teresa Briercliffe
 

What's hot (20)

Scaffolds Presentation-UW
Scaffolds Presentation-UWScaffolds Presentation-UW
Scaffolds Presentation-UW
 
Optogenetics a light switch for brain
Optogenetics a light switch for brainOptogenetics a light switch for brain
Optogenetics a light switch for brain
 
STRING - Cross-species integration of known and predicted protein-protein int...
STRING - Cross-species integration of known and predicted protein-protein int...STRING - Cross-species integration of known and predicted protein-protein int...
STRING - Cross-species integration of known and predicted protein-protein int...
 
Connectomics_Journal Club
Connectomics_Journal ClubConnectomics_Journal Club
Connectomics_Journal Club
 
Antisense and RNAi
Antisense and RNAiAntisense and RNAi
Antisense and RNAi
 
Unraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integrationUnraveling signal transduction networks through data integration
Unraveling signal transduction networks through data integration
 
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
Studying Epilepsy in Awake Head-Fixed Mice Using Microscopy, Electrophysiolog...
 
Kfactor_BOE
Kfactor_BOEKfactor_BOE
Kfactor_BOE
 
Anita E CV 09022016
Anita E CV 09022016Anita E CV 09022016
Anita E CV 09022016
 
Hailey_Evans NAc VTA Poster 2014
Hailey_Evans NAc VTA Poster 2014Hailey_Evans NAc VTA Poster 2014
Hailey_Evans NAc VTA Poster 2014
 
Carrie Bearden: Studying Psychosis in 22q11 Deletion Syndrome
Carrie Bearden: Studying Psychosis in 22q11 Deletion SyndromeCarrie Bearden: Studying Psychosis in 22q11 Deletion Syndrome
Carrie Bearden: Studying Psychosis in 22q11 Deletion Syndrome
 
Optogenetics
OptogeneticsOptogenetics
Optogenetics
 
Functional segregation
Functional segregationFunctional segregation
Functional segregation
 
BDSRA 2015 Gene Therapy for the Eye, Mole
BDSRA 2015 Gene Therapy for the Eye, MoleBDSRA 2015 Gene Therapy for the Eye, Mole
BDSRA 2015 Gene Therapy for the Eye, Mole
 
STRING - Prediction of protein networks through integration of diverse large-...
STRING - Prediction of protein networks through integration of diverse large-...STRING - Prediction of protein networks through integration of diverse large-...
STRING - Prediction of protein networks through integration of diverse large-...
 
Gene mapping / Genetic map vs Physical Map | determination of map distance a...
Gene mapping / Genetic map vs Physical Map |  determination of map distance a...Gene mapping / Genetic map vs Physical Map |  determination of map distance a...
Gene mapping / Genetic map vs Physical Map | determination of map distance a...
 
Jama's DNA Profiling Revision Powerpoint
Jama's DNA Profiling Revision PowerpointJama's DNA Profiling Revision Powerpoint
Jama's DNA Profiling Revision Powerpoint
 
Brief Detail on Genetic Mapping
Brief Detail on Genetic MappingBrief Detail on Genetic Mapping
Brief Detail on Genetic Mapping
 
Frontiers in nerve surgery sept 2019 chiengmai v6
Frontiers in nerve surgery sept 2019 chiengmai v6Frontiers in nerve surgery sept 2019 chiengmai v6
Frontiers in nerve surgery sept 2019 chiengmai v6
 
Frontiers in nerve surgery.
Frontiers in nerve surgery.  Frontiers in nerve surgery.
Frontiers in nerve surgery.
 

Similar to Neural networks in the brain

Prefrontal Parvalbumin Neurons in Control of Attention
Prefrontal Parvalbumin Neurons in Control of AttentionPrefrontal Parvalbumin Neurons in Control of Attention
Prefrontal Parvalbumin Neurons in Control of Attention
Xinming Wang
 
MonicaGiraldoChica_Vanderbilt
MonicaGiraldoChica_VanderbiltMonicaGiraldoChica_Vanderbilt
MonicaGiraldoChica_Vanderbilt
Monica Giraldo
 
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
bigdatabm
 

Similar to Neural networks in the brain (20)

Neuroscience: Transforming Visual Percepts into Memories
Neuroscience: Transforming Visual Percepts into MemoriesNeuroscience: Transforming Visual Percepts into Memories
Neuroscience: Transforming Visual Percepts into Memories
 
Prefrontal Parvalbumin Neurons in Control of Attention
Prefrontal Parvalbumin Neurons in Control of AttentionPrefrontal Parvalbumin Neurons in Control of Attention
Prefrontal Parvalbumin Neurons in Control of Attention
 
Edgardo Arroyo CV
Edgardo Arroyo CVEdgardo Arroyo CV
Edgardo Arroyo CV
 
Consciousness Research and Explanations
Consciousness Research and ExplanationsConsciousness Research and Explanations
Consciousness Research and Explanations
 
MonicaGiraldoChica_Vanderbilt
MonicaGiraldoChica_VanderbiltMonicaGiraldoChica_Vanderbilt
MonicaGiraldoChica_Vanderbilt
 
Sherlock.pdf
Sherlock.pdfSherlock.pdf
Sherlock.pdf
 
CV_Allen_Jan2016
CV_Allen_Jan2016CV_Allen_Jan2016
CV_Allen_Jan2016
 
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
Осадчий А.Е. Анализ многомерных магнито- и электроэнцефалографических данных ...
 
Bryden CV_
Bryden CV_Bryden CV_
Bryden CV_
 
TRANSCRANIAL PHOTOBIOMODULATION IN PARKINSON. SPEECH AND LANGUAGE THERAPY
TRANSCRANIAL PHOTOBIOMODULATION IN PARKINSON. SPEECH AND LANGUAGE THERAPYTRANSCRANIAL PHOTOBIOMODULATION IN PARKINSON. SPEECH AND LANGUAGE THERAPY
TRANSCRANIAL PHOTOBIOMODULATION IN PARKINSON. SPEECH AND LANGUAGE THERAPY
 
Analyzing Complex Problem Solving by Dynamic Brain Networks.pdf
Analyzing Complex Problem Solving by Dynamic Brain Networks.pdfAnalyzing Complex Problem Solving by Dynamic Brain Networks.pdf
Analyzing Complex Problem Solving by Dynamic Brain Networks.pdf
 
signals ppt.pptx
signals ppt.pptxsignals ppt.pptx
signals ppt.pptx
 
1190
11901190
1190
 
From Brains to BRAINs: Neuroscience at the Cutting Edge
From Brains to BRAINs: Neuroscience at the Cutting EdgeFrom Brains to BRAINs: Neuroscience at the Cutting Edge
From Brains to BRAINs: Neuroscience at the Cutting Edge
 
What happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_marsWhat happens to_your_brain_on_the_way_to_mars
What happens to_your_brain_on_the_way_to_mars
 
STTP_POSTER
STTP_POSTERSTTP_POSTER
STTP_POSTER
 
EEG resting state correlates of intelligence
EEG resting state correlates of intelligenceEEG resting state correlates of intelligence
EEG resting state correlates of intelligence
 
High Precision And Fast Functional Mapping Of Cortical Circuitry Through A No...
High Precision And Fast Functional Mapping Of Cortical Circuitry Through A No...High Precision And Fast Functional Mapping Of Cortical Circuitry Through A No...
High Precision And Fast Functional Mapping Of Cortical Circuitry Through A No...
 
CLASSIFICATION OF ALZHEIMER USING fMRI DATA AND BRAIN NETWORK
CLASSIFICATION OF ALZHEIMER USING fMRI DATA AND BRAIN NETWORKCLASSIFICATION OF ALZHEIMER USING fMRI DATA AND BRAIN NETWORK
CLASSIFICATION OF ALZHEIMER USING fMRI DATA AND BRAIN NETWORK
 
Network biology
Network biologyNetwork biology
Network biology
 

Recently uploaded

ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
Sérgio Sacani
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
PirithiRaju
 

Recently uploaded (20)

ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
FAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS imagesFAIRSpectra - Towards a common data file format for SIMS images
FAIRSpectra - Towards a common data file format for SIMS images
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 
Microbial Type Culture Collection (MTCC)
Microbial Type Culture Collection (MTCC)Microbial Type Culture Collection (MTCC)
Microbial Type Culture Collection (MTCC)
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
Topography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of BengalTopography and sediments of the floor of the Bay of Bengal
Topography and sediments of the floor of the Bay of Bengal
 
biotech-regenration of plants, pharmaceutical applications.pptx
biotech-regenration of plants, pharmaceutical applications.pptxbiotech-regenration of plants, pharmaceutical applications.pptx
biotech-regenration of plants, pharmaceutical applications.pptx
 
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptxGLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
GLOBAL AND LOCAL SCENARIO OF FOOD AND NUTRITION.pptx
 
INSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere UniversityINSIGHT Partner Profile: Tampere University
INSIGHT Partner Profile: Tampere University
 
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
Constraints on Neutrino Natal Kicks from Black-Hole Binary VFTS 243
 
NuGOweek 2024 full programme - hosted by Ghent University
NuGOweek 2024 full programme - hosted by Ghent UniversityNuGOweek 2024 full programme - hosted by Ghent University
NuGOweek 2024 full programme - hosted by Ghent University
 

Neural networks in the brain

  • 1. Neural networks in the brain Ilya Zakharov Research associate Developmental behavioral genetics lab Psychological Institute Russian Academy of Education
  • 3.
  • 4. Networks on different levels. Spikes
  • 5. Networks on different levels. Brain areas
  • 6. Networks on different levels. Electrophysiology
  • 11. Coherence coefficient Coherence - the frequency domain equivalent to the time domain cross- correlation function. *Phase Locking Value Coherence for normalized Fourier- transformed signals
  • 12. Phase lag index The PLI is a metric that evaluates the distribution of phase differences across observations. Stam et al., 2007 the PPC is computed from the distribution of all pairwise differences (between pairs of observations) of the relative phases. Pairwise phase consistency Vinck et al., 2010 Non-directed
  • 13. Phase slope index Granger causality Computed from the complex-valued coherency, and quantifies the consistency of the direction of the change in the phase difference across. The sign of the PSI informs about which signal is temporally leading the other Nolte et al., 2008 Directed Represents the result of a model comparison. It is rooted in the autoregressive modeling framework, where future values of time series are modeled as a weighted combination of past values of time series. Specifically, the quality of an AR-model can be quantified by the variance of the model’s residuals, and Granger causality is defined as the natural logarithm of a ratio of residual variances, obtained from two different AR-models. Ding et al., 2006
  • 15. Common input problem Partial out third input? Granger causality?
  • 16. Common source problem/ Volume conduction/field spread Current source density? Imanigary coherence? Source localization?
  • 17. Back to graph analysis
  • 18. Back to graph analysis Your suggestions?
  • 19. References • Bastos, André M., and Jan-Mathijs Schoffelen. “A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls.” Frontiers in Systems Neuroscience, 2016, 175. doi:10.3389/fnsys.2015.00175. • Durand, Dominique M., Eun-Hyoung Park, and Alicia L. Jensen. “Potassium Diffusive Coupling in Neural Networks.” Philosophical Transactions of the Royal Society of London B: Biological Sciences 365, no. 1551 (August 12, 2010): 2347–62. doi:10.1098/rstb.2010.0050. • Finn, Emily S., Xilin Shen, Dustin Scheinost, Monica D. Rosenberg, Jessica Huang, Marvin M. Chun, Xenophon Papademetris, and R. Todd Constable. “Functional Connectome Fingerprinting: Identifying Individuals Using Patterns of Brain Connectivity.” Nature Neuroscience 18, no. 11 (November 2015): 1664–71. doi:10.1038/nn.4135. • Fraga González, G., M. J. W. Van der Molen, G. Žarić, M. Bonte, J. Tijms, L. Blomert, C. J. Stam, and M. W. Van der Molen. “Graph Analysis of EEG Resting State Functional Networks in Dyslexic Readers.” Clinical Neurophysiology. Accessed July 15, 2016. doi:10.1016/j.clinph.2016.06.023. • Hardmeier, Martin, Florian Hatz, Habib Bousleiman, Christian Schindler, Cornelis Jan Stam, and Peter Fuhr. “Reproducibility of Functional Connectivity and Graph Measures Based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) Derived from High Resolution EEG.” PloS One 9, no. 10 (2014): e108648. doi:10.1371/journal.pone.0108648. • Lachaux, J. P., E. Rodriguez, J. Martinerie, and F. J. Varela. “Measuring Phase Synchrony in Brain Signals.” Human Brain Mapping 8, no. 4 (1999): 194–208. • Neubauer, Aljoscha C., and Andreas Fink. “Intelligence and Neural Efficiency: Measures of Brain Activation versus Measures of Functional Connectivity in the Brain.” Intelligence, Intelligence and the Brain, 37, no. 2 (March 2009): 223–29. doi:10.1016/j.intell.2008.10.008. • Nolte, Guido, Andreas Ziehe, Vadim V. Nikulin, Alois Schlögl, Nicole Krämer, Tom Brismar, and Klaus-Robert Müller. “Robustly Estimating the Flow Direction of Information in Complex Physical Systems.” Physical Review Letters 100, no. 23 (June 10, 2008): 234101. doi:10.1103/PhysRevLett.100.234101. • Rashid, Barnaly, Mohammad R. Arbabshirani, Eswar Damaraju, Mustafa S. Cetin, Robyn Miller, Godfrey D. Pearlson, and Vince D. Calhoun. “Classification of Schizophrenia and Bipolar Patients Using Static and Dynamic Resting-State fMRI Brain Connectivity.” NeuroImage 134 (July 1, 2016): 645–57. doi: 10.1016/j.neuroimage.2016.04.051. • Stam, Cornelis J., Guido Nolte, and Andreas Daffertshofer. “Phase Lag Index: Assessment of Functional Connectivity from Multi Channel EEG and MEG with Diminished Bias from Common Sources.” Human Brain Mapping 28, no. 11 (November 1, 2007): 1178–93. doi:10.1002/hbm.20346. • Termenon, M., A. Jaillard, C. Delon-Martin, and S. Achard. “Reliability of Graph Analysis of Resting State fMRI Using Test-Retest Dataset from the Human Connectome Project.” NeuroImage. Accessed June 18, 2016. doi:10.1016/j.neuroimage.2016.05.062. • Trongnetrpunya, Amy, Bijurika Nandi, Daesung Kang, Bernat Kocsis, Charles E. Schroeder, and Mingzhou Ding. “Assessing Granger Causality in Electrophysiological Data: Removing the Adverse Effects of Common Signals via Bipolar Derivations.” Frontiers in Systems Neuroscience, 2016, 189. doi: 10.3389/fnsys.2015.00189. • Vinck, Martin, Marijn van Wingerden, Thilo Womelsdorf, Pascal Fries, and Cyriel M. A. Pennartz. “The Pairwise Phase Consistency: A Bias-Free Measure of Rhythmic Neuronal Synchronization.” NeuroImage 51, no. 1 (May 15, 2010): 112–22. doi:10.1016/j.neuroimage.2010.01.073. • Wang, Xiangpeng, Ting Wang, Zhencai Chen, Glenn Hitchman, Yijun Liu, and Antao Chen. “Functional Connectivity Patterns Reflect Individual Differences in Conflict Adaptation.” Neuropsychologia 70 (April 2015): 177–84. doi:10.1016/j.neuropsychologia.2015.02.031. • Ding, M., Chen, Y., & Bressler, S. L. (2006). 17 Granger causality: basic theory and application to neuroscience. Handbook of time series analysis: recent theoretical developments and applications, 437.
  • 20. Thanks for your attention! We are always ready to cooperate! iliazaharov@gmail.com