Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                         Supplementary	
  Information	
  


                                                                                                                     Supplementary	
  Figures	
  

                                                                                                                                                                       3.0




                                                                                 Integrated intensity (arb. units)
                                                                                                                                                                       2.5




                                                                                                                                                                                 Linewidth (meV)
                                                                                                                                                                       2.0


                                                                                                                                                                       1.5


                                                                                                                                                                       1.0


                                                                                                                                                                       0.5


                                                                                                                                                                       0.0
                                                                                                                     1        10                 100
                                                                                                                            Power (mW)
                                                                                                                                                                                                    	
  
Supplementary	
   Figure	
   S1|	
   Condensation	
   phase-­‐transition.	
   When	
   incoherently	
   pumping	
   the	
   sample	
  
with	
  a	
  single	
  spot,	
  a	
  phase	
  transition	
  occurs	
  above	
  10mW.	
  In	
  this	
  Figure,	
  as	
  a	
  function	
  of	
  the	
  excitation	
  
power,	
  red	
  squares	
  show	
  the	
  polariton	
  luminescence	
  intensity	
  integrated	
  over	
  the	
  sample,	
  with	
  a	
  non-­‐
linear	
   increase	
   at	
   10𝑚𝑊,	
   whereas	
   blue	
   circles	
   account	
   for	
   the	
   emission	
   energy	
   linewidth,	
   showing	
   	
   a	
  
sudden	
   collapse	
   from	
   thermal	
   (with	
   broad	
   linewidth)	
   to	
   a	
   single	
   mode	
   at	
   10𝑚𝑊.	
   Red	
   and	
   blue	
   lines	
   are	
  
guides	
  to	
  the	
  eye.	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  

                                                                                                                                                                                                                        0
              8
                      a                                                                                                               1.540
                                                                                                                                                 d                                                      g




                                                                                                                        Energy (eV)
space (um)
              4                                                                                                                       1.539
              0         10mW                                                                      10mW                                1.538
             -4                                                                                                                       1.537                                                                         20
                                                                                                                                      1.536
             -8
              8                                                                                                                       1.540
                      b         -20             -10           0                    10              20                                       -4   e        -2      0      2                      4




                                                                                                                        Energy (eV)
space (um)




              4                                                                                                                       1.539                                                                         40
 y	
  (μm)




                                                                                                                                                                                                     time	
  (ps)
                                                          space (um)                                                                                       K vector (1/um)
              0         18mW                                                                     18mW                                 1.538
                                                                                                                                      1.537
             -4
                                                                                                                                      1.536                                                                         60
             -8
              8
                      c         -20             -10           0                    10              20
                                                                                                                                      1.540
                                                                                                                                            -4
                                                                                                                                                   f      -2      0      2                      4




                                                                                                                        Energy (eV)
space (um)




              4                                                                                                                       1.539
                                                          space (um)                                                                                       K vector (1/um)
              0                                                                                                                       1.538                                                                         80
                        22mW                                                                     30mW                                 1.537
             -4
                                                                                                                                      1.536                                                                                                                                                simulated
             -8
                                -20             -10           0                    10              20                                         -4          -2      0         2                   4            100 -­‐10	
  	
  	
  	
  	
  	
  -­‐5	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  5	
  	
  	
  	
  	
  	
  10
                                                                                                                                                           K vector (1/um)                                                                                  x	
  (μm)
                                                           x	
  (μm)
                                                          space (um)
                                                                                                                                                                kx (μm )
                                                                                                                                                                       -­‐1
                                                                                                                                                                                                                                                                                                                                                 	
  

 Supplementary	
   Figure	
   S2|	
   Conditions	
   for	
   observing	
   stable	
   condensate	
   interference.	
   (a-­‐c)	
   Polariton	
  
 emission	
   images	
   for	
   two	
   pump	
   spots	
   placed	
   40𝜇𝑚	
   apart,	
   with	
   power	
   at	
   each	
   spot	
   indicated.	
   (d-­‐f)	
  
 Polariton	
   dispersions	
   corresponding	
   to	
   a	
   spatially-­‐apertured	
   20𝜇𝑚-­‐diameter	
   circle	
   centred	
   between	
   the	
  
 two	
  spots	
  in	
  (a-­‐c)	
  respectively.	
  It	
  is	
  clear	
  that	
  phase	
  locking	
  occurs	
  and	
  a	
  coherent	
  standing	
  wave	
  forms	
  
 only	
   when	
   outflowing	
   polaritons	
   from	
   each	
   spot	
   are	
   condensed	
   and	
   have	
   the	
   same	
   energy	
   (b,e).	
   On	
   the	
  
 other	
  hand,	
  if	
  pumping	
  bellow	
  threshold	
  (a,d)	
  or	
  with	
  asymmetric	
  powers	
  (c,e),	
  no	
  interferences	
  appear.	
  
 (g)	
  Simulated	
  time	
  evolution	
  along	
  the	
  central	
  line	
  connecting	
  two	
  pumping	
  spots,	
  one	
  at	
  −10𝜇𝑚	
  with	
  
 twice	
   the	
   intensity	
   of	
   the	
   other	
   at	
   10𝜇𝑚.	
   When	
   the	
   discrepancy	
   between	
   pumping	
   strengths	
   is	
   too	
  
 large,	
  the	
  relative	
  phase	
  between	
  the	
  two	
  independent	
  condensates	
  continuously	
  evolves,	
  shifting	
  the	
  
 fringes	
  in	
  time	
  (g),	
  thus	
  making	
  it	
  impossible	
  to	
  observe	
  in	
  a	
  time-­‐integrated	
  measurement	
  (c).	
  Because	
  
 of	
   the	
   nonlinear	
   potential	
   landscape	
   caused	
   by	
   the	
   feedback	
   between	
   polariton	
   density	
   and	
   local	
  
 blueshifts,	
  the	
  condition	
  subtly	
  varies	
  with	
  excitation	
  conditions.	
  

 	
  

 	
  

 	
  

 	
  

 	
  

 	
  

 	
  

 	
  

 	
  


        G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2	
  
                                                                                                   	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  


                   a                                                       b                                                                c                                                               d

                                    𝒌𝒐
                                                                                                                                                                                                                                          20 µm


                                                                                                                                                                                                                                                            	
  

Supplementary	
   Figure	
   S3|	
   Hexagonal	
   lattice	
   wave-­‐function.	
   (a)	
   Measured	
   wavevector	
   distribution	
  
corresponding	
   to	
   region	
   inside	
   the	
   dashed	
   green	
   circle	
   in	
   Fig.	
   1a.	
   Purple	
   triangles	
   show	
   lattice	
  
momentum	
  at	
  the	
  spots	
  centroid,	
  𝑘! .	
  (b)	
  Estimated	
  spatially-­‐dependent	
  polariton	
  energy	
  blueshifts.	
  (c)	
  
Spatially-­‐dependent	
   radial	
   wavevector	
   calculated	
   from	
   the	
   inverse	
   dispersion	
   relation,	
   Eq.	
   (1),	
   using	
  
 𝛥 𝒓 	
   from	
   panel	
   (b).	
   (d)	
   Simulated	
   spatial	
   intensity	
   of	
   the	
   lattice	
   wave-­‐function,	
   𝜓 𝑟 ! ,	
   using	
   Eq.	
   S1	
  
and	
   panels	
   (b,c).	
   Simulated	
   data	
   correspond	
   to	
   an	
   experimental	
   excitation	
   power	
   equal	
   to	
   20mW	
   at	
  
each	
  spot.	
  Length	
  scale	
  in	
  (b-­‐d)	
  marked	
  in	
  (d).	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                160   170   180   190   200   210    220   230        240
                                                                                                                                                                                               Supplementary	
  Information	
  




                                                                                   160
                                                                                                                                                           20         30   40   50   60   70    80           90




                                                                                   170
                                                          a                                                           c                                                e




                                                                                   180




                                                                                                                                                      80
                                                                                   190




                                                                                                                                                      90
                                                                                   200




                                                                                                                                                      100
                                                                                   210




                                                                                                                                                      110
                                                                                                          160   170   180   190   200    210   220   230        240




                                                                                   180240 170230 160220




                                                                                                                                                      120
                                                                                                                                                                  30       40   50   2 µm
                                                                                                                                                                                     60   70     80          90




                                                                                                                                                      80 130
                                                          b#!                                 !                       d                                                f

                                                                                   190




                                                                                                                                                      90
                                                                  "                           "


                                                                                   200




                                                                                                                                                      100
                                                                                   210
                                                                 !               !




                                                                                                                                                      110
                                                                                #"
                                                                                   220
                                                                 "




                                                                                                                                                      120
                                                                                   230

                                                                                                                                                                                                      	
  
                                                                                   240




                                                                                                                                                      130
Supplementary	
   Figure	
   S4|	
   Ordered	
   square	
   lattices.	
   (a)	
   Intensity	
   and	
   (b)	
   phase	
   image	
   of	
   simulated	
  
interference	
   between	
   four	
   perpendicular	
   plane	
   waves	
   with	
   π-­‐phase	
   relative	
   shifts.	
   No	
   vortex	
   is	
  
observed;	
   instead,	
   square	
   intensity	
   lobes	
   of	
   constant	
   phase	
   appear	
   separated	
   by	
   dark-­‐soliton	
   stripes	
  
with	
   π-­‐phase	
   shifts.	
   Such	
   a	
   pattern	
   is	
   not	
   observed	
   experimentally	
   due	
   to	
   instabilities	
   that	
   generate	
  
vortices	
   at	
   random	
   positions	
   between	
   the	
   lobes.	
   (c)	
   Intensity	
   and	
   (d)	
   phase	
   image	
   of	
   simulated	
  
interference	
  between	
  four	
  perpendicular	
  plane	
  waves,	
  one	
  of	
  them	
  having	
  a	
  π-­‐phase	
  shift.	
  Here	
  vortices	
  
appear	
  regularly	
  placed	
  in	
  a	
  square	
  grid.	
  Such	
  a	
  pattern	
  is	
  also	
  observed	
  experimentaly	
  for	
  assymetric	
  
pumps	
  (e,f).	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  

                                                                                                                                        	
  




  G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  
                                                                                             	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  


                                                                              x (µm)                                                                       x (µm)
                                                                -2          -1 0 1                                 2                        -2           -1 0 1                                 2
                                                          -2      a                                                                    -2
                                                                                                                                             b




                                                                                                                                                                                                        Intensity
                                                          -1                  1                        2                               -1                  1                        2

                                                 y (µm)




                                                                                                                              y (µm)
                                                                                                                                                                                                                           1
                                                            0                                                                           0
                                                            1                 3                       4                                 1                  3                        4
                                                                                               Simulations                                                                 Experiments
                                                            2                                                                           2                                                                                  0

                                                                 c                                            d                                          e
                                                        π/2
                                                    Phase




                                                                            Spot 1                                      Lobe 1                                      Lobe 1
                                                             0              Spot 2
                                                                            Spot 3
                                                                                                                        Lobe 2
                                                                                                                        Lobe 3
                                                                                                                                                                    Lobe 2
                                                                                                                                                                    Lobe 3
                                                                            Spot 4                                      Lobe 4                                      Lobe 4



                                                      -π/2
                                                                                        Simulations                                 Simulations                               Experiments
                                                                 0        4 8 12 0                                     4 8 12 0                                   4 8 12
                                                                          Time (ps)                                    Time (ps)                                  Time (ps)                                         	
  

Supplementary	
   Figure	
   S5|	
   Non-­‐linear	
   square	
   lattice.	
   (a)	
   Simulated	
   and	
   (b)	
   measured	
   time-­‐averaged	
  
polariton	
  emission	
  of	
  AF	
  lattice	
  corresponding	
  to	
  Fig.	
  3i	
  and	
  Fig.	
  3f,g,	
  respectively.	
  (c)	
  Time	
  evolution	
  of	
  
the	
   simulated	
   wavefunction	
   phase	
   at	
   each	
   pump	
   spot	
   position.	
   (d)	
   Simulated	
   and	
   (e)	
   measured	
   time	
  
evolution	
  of	
  the	
  relative	
  wavefunction	
  phase	
  at	
  each	
  lobe	
  indicated	
  in	
  (a,b).	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  5	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                                  Supplementary	
  Information	
  
                                                  -2                     -1                             0
                                             0                                                                                           x (µm)




                                                                                                                    Vorticity
                                                           -2                         -1                            0
                                                     0                                                     -2                               -1             0




                                                                                                                                Vorticity
                                                                  -2                           -1                               0
                                                                                            -0.5 a




                                                                         y (µm) (µm) (µm)
                                             2                                                                                  1             Time (ps)
                                                                                                                                                 Time (ps)                                                         1
                                                            0                                                                            x (µm)




                                                                                                                                     10
                                                                                                                                     Vorticity
                                                                                                                                             10
                                                                                                                                              8

                                                                                                                                                           6

                                                                                                                                                                       4

                                                                                                                                                                                      2

                                                                                                                                                                                                     0
                                                                                                                                                          8

                                                                                                                                                                 6

                                                                                                                                                                                4

                                                                                                                                                                                            2

                                                                                                                                                                                                     0
                                                     2                                                                                 1                                                                           0
                                                                                             0.5 -2                                         -1             0




                                                                                                                    -2




                                                                                                                                                                                                            -2
                                                                                                                                          -2
                                                                                                                                                                                                             Intensity
                                           Time (ps)
                                             4




                                                                                   y
                                                            2                               -0.5 b
                                                                                                -2                              -1    -1 1     0
                                       Time (ps)
                                                     4                                                                                   x (µm)




                                                                                                            x (µm)


                                                                                                                                    x
                                                                                                    0




                                                                                                                                                                   Vorticity
                                                                                             0.5 -2                                         -1             0
                                                                                                                                       -1




                                                                                                                          (µm)
                                                                                                               -1µm-1)




                                                                                                                                                                                                            -1
                                                                                                                           -1
                                             6




                                                                                                                            dφ/dy
                                                                                                                 (
                                    Time (ps)


                                                                              y
                                                            4
                                                                                            -0.5 c                              -2               -1   -1                       0
                                                     6                                              2                                                                               V




                                                                                                                                 dφ/dy(µm )
                                                                                                                                                                               1




                                                                                                                                 (µm-1)
                                                                                                                    0            DS
                                                                                                                                10                     AV




                                                                                                                                                                                    Vorticity
                                             8
                                                            6                               0.5                                                                    DS


                                                                                                                    0




                                                                                                                                                                                                            0
                                                                                                                                      0
                                                                                                                                       dφ/dy -10
                                                                                                                                0        10




                                                                                                                                10



                                                                                                                                                       -10
                                                                                                                                           0
                                                                                               -1
                               8                    4 dφ/dy                                                                                               Circulation
                                                                                                                                                       (µm-1) (µm-1)
                                                                                       Time (ps)
                                                             1




                                                                                                                                                                                                Vorticity
                                                                                                                                                                                                Vorticity




                                                                                                                                          -1
                        Vorticity                          (µm ) -10 0 10                                               -1                             dφ/dy dφ/dy
                       10                                    2                             -1       1       	
  




                                                                                                                                                                   -1



                                                                                                                                                                                        1
                                                                                                                                             -10




                                                                                                                                                                               -1



                                                                                                                                                                                                1
                                                                                                                                              0

                                                                                                                                                  10
                                                                                                                                                      0

                                                                                                                                                           10
                                      8
                                0




                                                                                                                                                                0
                              -2
                              10           -1       60                -10 0
Supplementary	
  Figure	
  S6|	
  Vortex-­‐dark	
  soliton	
  trains.	
  Measured	
  (a)	
  emission	
  intensity,	
  (b)	
  phase-­‐map	
  




                                                                                                                                                                   dφ/dy
                                                                                                                                                                   (µm-1)
                                        x (µm)
                                                                                                        Time (ps)


and	
  (c)	
  circulation	
  and	
  10                       4
                                    phase-­‐derivative	
  corresponding	
  to	
  the	
  region	
  inside	
  dashed	
  blue	
  box	
  in	
  
                                     -2         -1           0           -10                        -1




                                                                                                                                                                x (µm)
                                             x (µm) 𝑡 = 0,	
  showing	
  dark-­‐solitons	
  (DS),	
  vortex	
  (V)	
  and	
  antivortex	
  (AV).	
  
Supplementary	
  Fig.	
  S5b	
  for	
  time	
  slice	
                                      10
                                -1




                                                                                                                                                                   -1
                                        -2          8
                                                   -1            0
                                                x (µm) 6



                                                                                                                                                                                    dφ/dy
                                                                                                                                                                                    (µm-1)
                                                                                            0
	
  
                                                   10                                      -10       10
                                -2




                                                                                                                                                                -2
	
                                                           8
                                                         -2          -1           0
                                          0

                                                             2

                                                                                  4

                                                                                                        6

                                                                                                                                    8

                                                                                                                                                       10


                                                                                  Time (ps)          0
                                                                  x (µm)
	
                                                          10                                      -10

	
                                                                                                                              -2                  -1                         0
                                                                                                                                                 x (µm)
	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  6	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  


                                                                             Simulations                                                          Experiments
                                                           a                       x (µm)
                                                                                                                                b                           x (µm)




                                                                                                                                                                                           p(vortex), Γ(𝒓)
                                                                            -2   -1 0 1                        2                              -2       -1      0 1                   2
                                                                    -2                                                                     -2




                                                                                                                                                                                               probability (%)
                                                                                                                                                                                                       vortex
                                                                    -1                                                                     -1




                                                                                                                                  y (µm)
                                                           y (µm)




                                                                                                                                                                                                        "
                                                                        0                                                                     0

                                                                        1                                                                     1                                                            10%
                                                                                                                                                                                                           1%
                                                                        2 -2              -1                   0                              2 -2              -1                  0
                                                         c                                                                      d0




                                                                                                                                                                                           Circulation
                                                                        0




                                                                                                                                                                                            Vorticity
                                                                        2                                                                     2                                                          1
                                                            Time (ps)




                                                                        4



                                                                                                                                  Time (ps)
                                                                                                                                              4
                                                                                                                                                                                                         -1

                                                                        6                                                                     6




                                                                                                                                                                                           dφ/dy
                                                                                                                                                                                           (µm-1)
                                                                                                                                                                                                            10
                                                                        8                                                                     8
                                                                                                                                                                                                            0

                                                                 10                                                                     10                                                               -10

                                                                            -2          -1                     0                                  -2           -1                   0
                                                                                     x (µm)                                       	
                        x (µm)
Supplementary	
   Figure	
   S7|	
   Vortex	
   and	
   dark-­‐soliton	
   nonlinear	
   dynamics	
   in	
   square	
   ‘waveguides’.	
   (a)	
  
Simulated	
   and	
   (b)	
   measured	
   time-­‐averaged	
   circulation	
   strength,	
   Γ(𝒓) .	
   (c)	
   Simulated	
   and	
   (d)	
   measured	
  
time	
   evolution	
   of	
   the	
   vorticity	
   and	
   phase-­‐gradient	
   of	
   the	
   region	
   inside	
   the	
   dashed	
   red	
   box	
   in	
   (a,b)	
  
integrated	
  along	
  the	
   𝑦-­‐axis	
  (see	
  Supplementary	
  Fig.	
  S6).	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  7	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  


                                                                                        Supplementary	
  Discussion	
  
Lattice	
   wave-­‐function.	
   Under	
   low	
   pump	
   power,	
   when	
   non-­‐linearities	
   do	
   not	
   play	
   a	
   significant	
   role,	
   each	
  
pump	
  spot	
  contributes	
  to	
  the	
  global	
  wave-­‐function	
  with	
  a	
  superposition	
  of	
  different	
   𝑘 -­‐states	
  at	
  different	
  
radial	
  positions5:	
  
                                                                                       !!"#$!
                                                          𝜓 𝑟, 𝑡 ≈                     !!!          𝑒!   ! !"! !!(𝒓) . 𝒓!𝒓 𝒏 !!!
                                                                                                                                                             𝑔! 𝒓 𝑒 !!                   𝒓!𝒓 𝒏      !!
                                                                                                                                                                                                             	
     	
               	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (S1)	
  

                                                                                                                           𝒓!𝒓 𝒏             !"(!!)
                                                                                   𝑡       𝒓− 𝒓𝒏               =       !
                                                                                                                                                                   𝑑𝑟′	
          	
                  	
                   	
                     	
  	
  	
  	
  	
  	
  (S2)	
  
                                                                                                                                              !"        !!


The	
  blueshift	
  𝛥(𝒓)	
  is	
  maximum	
  at	
  the	
  spot	
  positions	
  and	
  decays	
  parabolically	
  going	
  to	
  zero	
  after	
  10𝜇𝑚	
  
(Supplementary	
   Fig.	
   S3b).	
   The	
   radial	
   𝐾	
   wavevector	
   is	
   given	
   by	
   the	
   inverse	
   lower	
   polariton	
   branch	
  
dispersion	
  relation	
  (Fig.	
  2e,	
  Supplementary	
  Fig.	
  S3a)	
  and	
  depends	
  on	
  the	
  blueshift	
  (Supplementary	
  Fig.	
  
S3b).	
   The	
   expanding	
   density	
   decays	
   exponentially	
   according	
   to	
   the	
   polariton	
   lifetime	
   𝜏! 	
   and	
   the	
   local	
  
velocity	
  from	
  Eq.	
  (S2).	
  The	
  term	
  𝑔! 𝒓 	
  describes	
  local	
  amplification13.	
  Hexagonal	
  lattices	
  appear	
  in	
  this	
  
model	
  in	
  the	
  wavefunction	
  central	
  region,	
  reproducing	
  well	
  the	
  measured	
  pattern	
  (Supplementary	
  Fig.	
  
S3d).	
  

The	
   individual	
   condensate	
   phases	
   𝜑! ,	
   merely	
   spatially	
   shift	
   the	
   lattice	
   for	
   the	
   3	
   spot	
   case.	
   For	
   all	
   the	
  
measured	
  data,	
  the	
  relative	
  phases	
  between	
  the	
  three	
  condensates	
  are	
  close	
  to	
  zero	
  (F	
  offset	
  <	
  3°)	
  and	
  
are	
  well	
  described	
  by	
  the	
  linear	
  superposition	
  of	
  plane	
  waves.	
  Nonlinearities	
  and	
  relative	
  phases	
  play	
  a	
  
much	
   more	
   important	
   role	
   for	
   the	
   4	
   spot	
   excitations	
   and	
   higher	
   powers,	
   but	
   we	
   also	
   found	
   square	
  
lattices	
  that	
  can	
  be	
  well	
  reproduced	
  by	
  linear	
  interferences	
  (Supplementary	
  Fig.	
  S4c-­‐f).	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  8	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                                 Supplementary	
  Information	
  


Non-­‐linear	
   vortex	
   dynamics	
   in	
   the	
   square	
   lattice.	
   To	
   better	
   understand	
   the	
   nonlinear	
   dynamics,	
   the	
  
time-­‐evolution	
  of	
  the	
  lattice	
  wavefunction	
  is	
  tracked	
  in	
  simulations	
  and	
  experiments,	
  in	
  the	
  latter	
  case	
  
after	
   back	
   Fourier	
   transforming	
   the	
   complete	
   energy-­‐resolved	
   tomography	
   in	
   density	
   and	
   phase.	
  
Tomographic	
  reconstruction	
  is	
  taken	
  by	
  sequentially	
  translating	
  the	
  spatial	
  images	
  across	
  the	
  entrance	
  
slit	
   of	
   the	
   spectrometer,	
   thus	
   recording	
   spectra	
   for	
   each	
   line	
   scan	
   of	
   the	
   image.	
   The	
   phase	
   of	
   each	
  
energy	
  mode	
  is	
  then	
  retrieved	
  from	
  interferences	
  of	
  each	
  tomographically	
  reconstructed	
  spatial	
  mode,	
  
and	
   so	
   the	
   condensate	
   wave-­‐function	
   is	
   fully	
   characterized	
   in	
   terms	
   of	
   energy,	
   density	
   and	
   phase.	
   A	
  
simple	
   Fourier	
   transform	
   allows	
   the	
   condensate	
   phase	
   and	
   density	
   to	
   be	
   tracked	
   in	
   time:	
   𝜓 𝒓, 𝑡 =
       𝜓 𝒓, 𝐸   𝑒 !"#/ℏ!!(!) ,	
  with	
  𝜑(𝐸)	
  being	
  their	
  relative	
  phase	
  .	
  This	
  relative	
  phase	
  is	
  constrained	
  by	
  the	
  
       !
direct	
   images	
   of	
   polariton	
   density.	
   We	
   checked	
   also	
   that	
   𝜑(𝐸)	
   does	
   not	
   substantially	
   change	
   the	
  
reconstruction	
  of	
  the	
  dynamics.	
  The	
  2meV	
  spectral	
  bandwidth	
  leads	
  to	
  dynamical	
  observations	
  on	
  the	
  
 𝑝𝑠-­‐timescale.	
  

Even	
  though	
  the	
  AF-­‐coupled	
  lattice	
  is	
  stable	
  (Supplementary	
  Fig.	
  S5a-­‐c),	
  the	
  regions	
  between	
  the	
  bright	
  
spots	
   which	
   are	
   expected	
   to	
   contain	
   dark-­‐soliton	
   stripes	
   are	
   destabilised	
   by	
   the	
   strong	
   nonlinear	
  
interactions.	
   Under	
   high	
   pump	
   powers	
   non-­‐linear	
   dynamics	
   is	
   observed,	
   although	
   AF-­‐phase-­‐coupling	
  
between	
   spots	
   is	
   preserved	
   and	
   the	
   time-­‐averaged	
   wave-­‐function	
   of	
   the	
   central	
   region	
   shows	
   the	
  
characteristic	
  four	
  lobes	
  with	
   𝜋 	
  phase	
  relation	
  between	
  them.	
  

Under	
  high	
  polariton	
  densities,	
  dark-­‐solitons	
  breaks	
  up	
  into	
  vortex-­‐antivortex	
  pairs,	
  which	
  are	
  connected	
  
by	
  dark	
  solitons	
  (Supplementary	
  Fig.	
  S6).	
  The	
  probability	
  of	
  finding	
  a	
  vortex	
  at	
  a	
  specific	
  spatial	
  point	
  is	
  
given	
   by	
   the	
   normalised	
   time-­‐averaged	
   circulation,	
   Γ(𝒓) =                          𝛤(𝒓, 𝑡) 𝑑𝑡 /∆𝑡,	
   mapped	
   in	
  
Supplementary	
  Fig.	
  S7a,b.	
  We	
  note	
  that	
  the	
  experimental	
  spatial	
  resolution	
  for	
  the	
  accuracy	
  of	
  locating	
  
the	
  vorticity	
  centre	
  of	
  the	
  larger	
  topological	
  vortex	
  (∼ 0.7  𝜆/2𝑁𝐴)	
  is	
  almost	
  the	
  pixel	
  size	
  here.	
  

To	
  easily	
  visualize	
  such	
  vortex-­‐dark	
  soliton	
  trains,	
  we	
  extract	
  from	
  the	
  phase-­‐map	
  (Supplementary	
  Fig.	
  
S6b)	
  	
  and	
  plot	
  in	
  compatible	
  images	
  the	
  circulation	
  and	
  the	
  phase-­‐derivative	
  (Supplementary	
  Fig.	
  S6c),	
  
along	
   with	
   the	
   polariton	
   density	
   (Supplementary	
   Fig.	
   S6a).	
   Averaging	
   over	
   this	
   small	
   section	
   of	
   y	
  
between	
  two	
  bright	
  lobes,	
  allows	
  the	
  dynamics	
  of	
  these	
  vortices	
  and	
  the	
  phase-­‐gradient	
  to	
  be	
  observed.	
  

An	
   intricate	
   time	
   dynamics	
   results	
   (Supplementary	
   Fig.	
   S7c,d),	
   with	
   moving	
   vortices	
   (red)	
   and	
   anti-­‐
vortices	
  (blue)	
  linking	
  dark	
  solitons	
  of	
  oppositely	
  directed	
  phase-­‐gradient,	
  producing	
  phase	
  fluctuations	
  
between	
   the	
   bright	
   lobes	
   of	
   the	
   lattice	
   (Supplementary	
   Fig.	
   S5d,e).	
   Despite	
   their	
   non-­‐linear	
   time-­‐
dynamics,	
  the	
  topological	
  defects	
  remain	
  constrained	
  in	
  the	
  gaps	
  between	
  the	
  density	
  lobes,	
  which	
  form	
  
vortex	
  ‘waveguides’	
  (e.g.	
  Supplementary	
  Fig.	
  S7b).	
  	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  

       G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  9	
  
                                                                                                  	
  
Geometrically-­‐locked	
  vortex	
  lattices	
  in	
  semiconductor	
  quantum	
  fluids	
                                                                                           Supplementary	
  Information	
  


Influence	
   of	
   disorder	
   on	
   the	
   geometric	
   coupling.	
   The	
   effect	
   of	
   disorder	
   on	
   the	
   geometric	
   coupling	
  
robustness	
  is	
  studied	
  by	
  adding	
  a	
  random	
  potential	
  to	
  equation	
  (2):	
  	
  

                                                      !"                    ℏ!
                                                𝑖ℏ           = −                  ∇! + 𝑈! 𝜓                  !
                                                                                                                 + 𝑉!"# 𝒓 + 𝑖𝑃 𝒓, 𝜓 − 𝑖𝜅   𝜓	
                                                          	
                 	
                 (S3)	
  
                                                      !"                   !!

The	
  external	
  potential	
   𝑉!"# 	
  contains	
  disorder	
  and	
  is	
  modelled	
  by	
  a	
  random	
  distribution	
  of	
  Fourier	
  modes	
  
of	
  varying	
  amplitude	
  and	
  broadband	
  spatial	
  frequencies.	
  

The	
   numerical	
   solution	
   of	
   this	
   equation	
   for	
   three	
   equally	
   spaced	
   pump	
   spots	
   and	
   no	
   disorder	
   ( 𝑉!"# = 0)	
  
always	
   gives	
   a	
   wavefunction	
   with	
   the	
   same	
   phase	
   from	
   each	
   spot	
   position,	
   and	
   so	
   the	
   central	
   bright	
  
hexagon	
  appears	
  at	
  the	
  spots	
  centroid,	
   𝑂 .	
  	
  

When	
  pumping	
  with	
  four	
  equally-­‐spaced	
  spots	
  and	
  no	
  disorder,	
  two	
  stable	
  solutions	
  appear	
  depending	
  
on	
   the	
   initial	
   noise:	
   one	
   with	
   equal	
   phases	
   at	
   each	
   pump	
   spot,	
   leading	
   to	
   a	
   maximum	
   intensity	
   in	
   the	
  
centre,	
   and	
   the	
   other	
   with	
   a	
   π	
   phase	
   difference	
   between	
   neighbouring	
   spots,	
   leading	
   to	
   a	
   minimum	
  
intensity	
   in	
   the	
   centre.	
   We	
   have	
   checked	
   that	
   this	
   effect	
   is	
   not	
   due	
   to	
   the	
   square	
   geometry	
   of	
   the	
  
computational	
  grid	
  by	
  moving	
  the	
  positions	
  of	
  the	
  pumping	
  spots	
  around	
  the	
  centre.	
  	
  

Strong	
   disorder	
   introduces	
   phase-­‐shifts	
   during	
   propagation	
   out	
   from	
   each	
   spot,	
   and	
   so	
   the	
   lattice	
   is	
  
displaced	
   and	
   the	
   geometric	
   coupling	
   is	
   lost.	
   However,	
   for	
   the	
   low	
   disorder	
   values	
   of	
   our	
   sample13,	
  
geometric	
  coupling	
  is	
  preserved.	
  

	
  




G.	
  Tosi,	
  G.	
  Christmann,	
  N.G.	
  Berloff,	
  P.	
  Tsotsis,	
  T.	
  Gao,	
  Z.	
  Hatzopoulos,	
  P.G.	
  Savvidis,	
  J.J.	
  Baumberg	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  10	
  
                                                                                               	
  

Ncomms2255 s1

  • 1.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   Supplementary  Figures   3.0 Integrated intensity (arb. units) 2.5 Linewidth (meV) 2.0 1.5 1.0 0.5 0.0 1 10 100 Power (mW)   Supplementary   Figure   S1|   Condensation   phase-­‐transition.   When   incoherently   pumping   the   sample   with  a  single  spot,  a  phase  transition  occurs  above  10mW.  In  this  Figure,  as  a  function  of  the  excitation   power,  red  squares  show  the  polariton  luminescence  intensity  integrated  over  the  sample,  with  a  non-­‐ linear   increase   at   10𝑚𝑊,   whereas   blue   circles   account   for   the   emission   energy   linewidth,   showing     a   sudden   collapse   from   thermal   (with   broad   linewidth)   to   a   single   mode   at   10𝑚𝑊.   Red   and   blue   lines   are   guides  to  the  eye.                       G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                1    
  • 2.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   0 8 a 1.540 d g Energy (eV) space (um) 4 1.539 0 10mW 10mW 1.538 -4 1.537 20 1.536 -8 8 1.540 b -20 -10 0 10 20 -4 e -2 0 2 4 Energy (eV) space (um) 4 1.539 40 y  (μm) time  (ps) space (um) K vector (1/um) 0 18mW 18mW 1.538 1.537 -4 1.536 60 -8 8 c -20 -10 0 10 20 1.540 -4 f -2 0 2 4 Energy (eV) space (um) 4 1.539 space (um) K vector (1/um) 0 1.538 80 22mW 30mW 1.537 -4 1.536 simulated -8 -20 -10 0 10 20 -4 -2 0 2 4 100 -­‐10            -­‐5                0                5            10 K vector (1/um) x  (μm) x  (μm) space (um) kx (μm ) -­‐1   Supplementary   Figure   S2|   Conditions   for   observing   stable   condensate   interference.   (a-­‐c)   Polariton   emission   images   for   two   pump   spots   placed   40𝜇𝑚   apart,   with   power   at   each   spot   indicated.   (d-­‐f)   Polariton   dispersions   corresponding   to   a   spatially-­‐apertured   20𝜇𝑚-­‐diameter   circle   centred   between   the   two  spots  in  (a-­‐c)  respectively.  It  is  clear  that  phase  locking  occurs  and  a  coherent  standing  wave  forms   only   when   outflowing   polaritons   from   each   spot   are   condensed   and   have   the   same   energy   (b,e).   On   the   other  hand,  if  pumping  bellow  threshold  (a,d)  or  with  asymmetric  powers  (c,e),  no  interferences  appear.   (g)  Simulated  time  evolution  along  the  central  line  connecting  two  pumping  spots,  one  at  −10𝜇𝑚  with   twice   the   intensity   of   the   other   at   10𝜇𝑚.   When   the   discrepancy   between   pumping   strengths   is   too   large,  the  relative  phase  between  the  two  independent  condensates  continuously  evolves,  shifting  the   fringes  in  time  (g),  thus  making  it  impossible  to  observe  in  a  time-­‐integrated  measurement  (c).  Because   of   the   nonlinear   potential   landscape   caused   by   the   feedback   between   polariton   density   and   local   blueshifts,  the  condition  subtly  varies  with  excitation  conditions.                     G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                2    
  • 3.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   a b c d 𝒌𝒐 20 µm   Supplementary   Figure   S3|   Hexagonal   lattice   wave-­‐function.   (a)   Measured   wavevector   distribution   corresponding   to   region   inside   the   dashed   green   circle   in   Fig.   1a.   Purple   triangles   show   lattice   momentum  at  the  spots  centroid,  𝑘! .  (b)  Estimated  spatially-­‐dependent  polariton  energy  blueshifts.  (c)   Spatially-­‐dependent   radial   wavevector   calculated   from   the   inverse   dispersion   relation,   Eq.   (1),   using   𝛥 𝒓   from   panel   (b).   (d)   Simulated   spatial   intensity   of   the   lattice   wave-­‐function,   𝜓 𝑟 ! ,   using   Eq.   S1   and   panels   (b,c).   Simulated   data   correspond   to   an   experimental   excitation   power   equal   to   20mW   at   each  spot.  Length  scale  in  (b-­‐d)  marked  in  (d).                                 G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                3    
  • 4.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   160 170 180 190 200 210 220 230 240 Supplementary  Information   160 20 30 40 50 60 70 80 90 170 a c e 180 80 190 90 200 100 210 110 160 170 180 190 200 210 220 230 240 180240 170230 160220 120 30 40 50 2 µm 60 70 80 90 80 130 b#! ! d f 190 90 " " 200 100 210 ! ! 110 #" 220 " 120 230   240 130 Supplementary   Figure   S4|   Ordered   square   lattices.   (a)   Intensity   and   (b)   phase   image   of   simulated   interference   between   four   perpendicular   plane   waves   with   π-­‐phase   relative   shifts.   No   vortex   is   observed;   instead,   square   intensity   lobes   of   constant   phase   appear   separated   by   dark-­‐soliton   stripes   with   π-­‐phase   shifts.   Such   a   pattern   is   not   observed   experimentally   due   to   instabilities   that   generate   vortices   at   random   positions   between   the   lobes.   (c)   Intensity   and   (d)   phase   image   of   simulated   interference  between  four  perpendicular  plane  waves,  one  of  them  having  a  π-­‐phase  shift.  Here  vortices   appear  regularly  placed  in  a  square  grid.  Such  a  pattern  is  also  observed  experimentaly  for  assymetric   pumps  (e,f).                           G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                4    
  • 5.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   x (µm) x (µm) -2 -1 0 1 2 -2 -1 0 1 2 -2 a -2 b Intensity -1 1 2 -1 1 2 y (µm) y (µm) 1 0 0 1 3 4 1 3 4 Simulations Experiments 2 2 0 c d e π/2 Phase Spot 1 Lobe 1 Lobe 1 0 Spot 2 Spot 3 Lobe 2 Lobe 3 Lobe 2 Lobe 3 Spot 4 Lobe 4 Lobe 4 -π/2 Simulations Simulations Experiments 0 4 8 12 0 4 8 12 0 4 8 12 Time (ps) Time (ps) Time (ps)   Supplementary   Figure   S5|   Non-­‐linear   square   lattice.   (a)   Simulated   and   (b)   measured   time-­‐averaged   polariton  emission  of  AF  lattice  corresponding  to  Fig.  3i  and  Fig.  3f,g,  respectively.  (c)  Time  evolution  of   the   simulated   wavefunction   phase   at   each   pump   spot   position.   (d)   Simulated   and   (e)   measured   time   evolution  of  the  relative  wavefunction  phase  at  each  lobe  indicated  in  (a,b).                           G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                5    
  • 6.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   -2 -1 0 0 x (µm) Vorticity -2 -1 0 0 -2 -1 0 Vorticity -2 -1 0 -0.5 a y (µm) (µm) (µm) 2 1 Time (ps) Time (ps) 1 0 x (µm) 10 Vorticity 10 8 6 4 2 0 8 6 4 2 0 2 1 0 0.5 -2 -1 0 -2 -2 -2 Intensity Time (ps) 4 y 2 -0.5 b -2 -1 -1 1 0 Time (ps) 4 x (µm) x (µm) x 0 Vorticity 0.5 -2 -1 0 -1 (µm) -1µm-1) -1 -1 6 dφ/dy ( Time (ps) y 4 -0.5 c -2 -1 -1 0 6 2 V dφ/dy(µm ) 1 (µm-1) 0 DS 10 AV Vorticity 8 6 0.5 DS 0 0 0 dφ/dy -10 0 10 10 -10 0 -1 8 4 dφ/dy Circulation (µm-1) (µm-1) Time (ps) 1 Vorticity Vorticity -1 Vorticity (µm ) -10 0 10 -1 dφ/dy dφ/dy 10 2 -1 1   -1 1 -10 -1 1 0 10 0 10 8 0 0 -2 10 -1 60 -10 0 Supplementary  Figure  S6|  Vortex-­‐dark  soliton  trains.  Measured  (a)  emission  intensity,  (b)  phase-­‐map   dφ/dy (µm-1) x (µm) Time (ps) and  (c)  circulation  and  10 4 phase-­‐derivative  corresponding  to  the  region  inside  dashed  blue  box  in   -2 -1 0 -10 -1 x (µm) x (µm) 𝑡 = 0,  showing  dark-­‐solitons  (DS),  vortex  (V)  and  antivortex  (AV).   Supplementary  Fig.  S5b  for  time  slice   10 -1 -1 -2 8 -1 0 x (µm) 6 dφ/dy (µm-1) 0   10 -10 10 -2 -2   8 -2 -1 0 0 2 4 6 8 10 Time (ps) 0 x (µm)   10 -10   -2 -1 0 x (µm)                       G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                6    
  • 7.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   Simulations Experiments a x (µm) b x (µm) p(vortex), Γ(𝒓) -2 -1 0 1 2 -2 -1 0 1 2 -2 -2 probability (%) vortex -1 -1 y (µm) y (µm) " 0 0 1 1 10% 1% 2 -2 -1 0 2 -2 -1 0 c d0 Circulation 0 Vorticity 2 2 1 Time (ps) 4 Time (ps) 4 -1 6 6 dφ/dy (µm-1) 10 8 8 0 10 10 -10 -2 -1 0 -2 -1 0 x (µm)   x (µm) Supplementary   Figure   S7|   Vortex   and   dark-­‐soliton   nonlinear   dynamics   in   square   ‘waveguides’.   (a)   Simulated   and   (b)   measured   time-­‐averaged   circulation   strength,   Γ(𝒓) .   (c)   Simulated   and   (d)   measured   time   evolution   of   the   vorticity   and   phase-­‐gradient   of   the   region   inside   the   dashed   red   box   in   (a,b)   integrated  along  the   𝑦-­‐axis  (see  Supplementary  Fig.  S6).                       G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                7    
  • 8.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   Supplementary  Discussion   Lattice   wave-­‐function.   Under   low   pump   power,   when   non-­‐linearities   do   not   play   a   significant   role,   each   pump  spot  contributes  to  the  global  wave-­‐function  with  a  superposition  of  different   𝑘 -­‐states  at  different   radial  positions5:   !!"#$! 𝜓 𝑟, 𝑡 ≈ !!! 𝑒! ! !"! !!(𝒓) . 𝒓!𝒓 𝒏 !!! 𝑔! 𝒓 𝑒 !! 𝒓!𝒓 𝒏 !!                          (S1)   𝒓!𝒓 𝒏 !"(!!) 𝑡 𝒓− 𝒓𝒏 = !        𝑑𝑟′                    (S2)   !" !! The  blueshift  𝛥(𝒓)  is  maximum  at  the  spot  positions  and  decays  parabolically  going  to  zero  after  10𝜇𝑚   (Supplementary   Fig.   S3b).   The   radial   𝐾   wavevector   is   given   by   the   inverse   lower   polariton   branch   dispersion  relation  (Fig.  2e,  Supplementary  Fig.  S3a)  and  depends  on  the  blueshift  (Supplementary  Fig.   S3b).   The   expanding   density   decays   exponentially   according   to   the   polariton   lifetime   𝜏!   and   the   local   velocity  from  Eq.  (S2).  The  term  𝑔! 𝒓  describes  local  amplification13.  Hexagonal  lattices  appear  in  this   model  in  the  wavefunction  central  region,  reproducing  well  the  measured  pattern  (Supplementary  Fig.   S3d).   The   individual   condensate   phases   𝜑! ,   merely   spatially   shift   the   lattice   for   the   3   spot   case.   For   all   the   measured  data,  the  relative  phases  between  the  three  condensates  are  close  to  zero  (F  offset  <  3°)  and   are  well  described  by  the  linear  superposition  of  plane  waves.  Nonlinearities  and  relative  phases  play  a   much   more   important   role   for   the   4   spot   excitations   and   higher   powers,   but   we   also   found   square   lattices  that  can  be  well  reproduced  by  linear  interferences  (Supplementary  Fig.  S4c-­‐f).                           G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                8    
  • 9.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   Non-­‐linear   vortex   dynamics   in   the   square   lattice.   To   better   understand   the   nonlinear   dynamics,   the   time-­‐evolution  of  the  lattice  wavefunction  is  tracked  in  simulations  and  experiments,  in  the  latter  case   after   back   Fourier   transforming   the   complete   energy-­‐resolved   tomography   in   density   and   phase.   Tomographic  reconstruction  is  taken  by  sequentially  translating  the  spatial  images  across  the  entrance   slit   of   the   spectrometer,   thus   recording   spectra   for   each   line   scan   of   the   image.   The   phase   of   each   energy  mode  is  then  retrieved  from  interferences  of  each  tomographically  reconstructed  spatial  mode,   and   so   the   condensate   wave-­‐function   is   fully   characterized   in   terms   of   energy,   density   and   phase.   A   simple   Fourier   transform   allows   the   condensate   phase   and   density   to   be   tracked   in   time:   𝜓 𝒓, 𝑡 = 𝜓 𝒓, 𝐸  𝑒 !"#/ℏ!!(!) ,  with  𝜑(𝐸)  being  their  relative  phase  .  This  relative  phase  is  constrained  by  the   ! direct   images   of   polariton   density.   We   checked   also   that   𝜑(𝐸)   does   not   substantially   change   the   reconstruction  of  the  dynamics.  The  2meV  spectral  bandwidth  leads  to  dynamical  observations  on  the   𝑝𝑠-­‐timescale.   Even  though  the  AF-­‐coupled  lattice  is  stable  (Supplementary  Fig.  S5a-­‐c),  the  regions  between  the  bright   spots   which   are   expected   to   contain   dark-­‐soliton   stripes   are   destabilised   by   the   strong   nonlinear   interactions.   Under   high   pump   powers   non-­‐linear   dynamics   is   observed,   although   AF-­‐phase-­‐coupling   between   spots   is   preserved   and   the   time-­‐averaged   wave-­‐function   of   the   central   region   shows   the   characteristic  four  lobes  with   𝜋  phase  relation  between  them.   Under  high  polariton  densities,  dark-­‐solitons  breaks  up  into  vortex-­‐antivortex  pairs,  which  are  connected   by  dark  solitons  (Supplementary  Fig.  S6).  The  probability  of  finding  a  vortex  at  a  specific  spatial  point  is   given   by   the   normalised   time-­‐averaged   circulation,   Γ(𝒓) = 𝛤(𝒓, 𝑡) 𝑑𝑡 /∆𝑡,   mapped   in   Supplementary  Fig.  S7a,b.  We  note  that  the  experimental  spatial  resolution  for  the  accuracy  of  locating   the  vorticity  centre  of  the  larger  topological  vortex  (∼ 0.7  𝜆/2𝑁𝐴)  is  almost  the  pixel  size  here.   To  easily  visualize  such  vortex-­‐dark  soliton  trains,  we  extract  from  the  phase-­‐map  (Supplementary  Fig.   S6b)    and  plot  in  compatible  images  the  circulation  and  the  phase-­‐derivative  (Supplementary  Fig.  S6c),   along   with   the   polariton   density   (Supplementary   Fig.   S6a).   Averaging   over   this   small   section   of   y   between  two  bright  lobes,  allows  the  dynamics  of  these  vortices  and  the  phase-­‐gradient  to  be  observed.   An   intricate   time   dynamics   results   (Supplementary   Fig.   S7c,d),   with   moving   vortices   (red)   and   anti-­‐ vortices  (blue)  linking  dark  solitons  of  oppositely  directed  phase-­‐gradient,  producing  phase  fluctuations   between   the   bright   lobes   of   the   lattice   (Supplementary   Fig.   S5d,e).   Despite   their   non-­‐linear   time-­‐ dynamics,  the  topological  defects  remain  constrained  in  the  gaps  between  the  density  lobes,  which  form   vortex  ‘waveguides’  (e.g.  Supplementary  Fig.  S7b).                   G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                9    
  • 10.
    Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information   Influence   of   disorder   on   the   geometric   coupling.   The   effect   of   disorder   on   the   geometric   coupling   robustness  is  studied  by  adding  a  random  potential  to  equation  (2):     !" ℏ! 𝑖ℏ = − ∇! + 𝑈! 𝜓 ! + 𝑉!"# 𝒓 + 𝑖𝑃 𝒓, 𝜓 − 𝑖𝜅  𝜓       (S3)   !" !! The  external  potential   𝑉!"#  contains  disorder  and  is  modelled  by  a  random  distribution  of  Fourier  modes   of  varying  amplitude  and  broadband  spatial  frequencies.   The   numerical   solution   of   this   equation   for   three   equally   spaced   pump   spots   and   no   disorder   ( 𝑉!"# = 0)   always   gives   a   wavefunction   with   the   same   phase   from   each   spot   position,   and   so   the   central   bright   hexagon  appears  at  the  spots  centroid,   𝑂 .     When  pumping  with  four  equally-­‐spaced  spots  and  no  disorder,  two  stable  solutions  appear  depending   on   the   initial   noise:   one   with   equal   phases   at   each   pump   spot,   leading   to   a   maximum   intensity   in   the   centre,   and   the   other   with   a   π   phase   difference   between   neighbouring   spots,   leading   to   a   minimum   intensity   in   the   centre.   We   have   checked   that   this   effect   is   not   due   to   the   square   geometry   of   the   computational  grid  by  moving  the  positions  of  the  pumping  spots  around  the  centre.     Strong   disorder   introduces   phase-­‐shifts   during   propagation   out   from   each   spot,   and   so   the   lattice   is   displaced   and   the   geometric   coupling   is   lost.   However,   for   the   low   disorder   values   of   our   sample13,   geometric  coupling  is  preserved.     G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                10