Chapter 42:
Molecules and Solids
Molecular Bonds
    
n m
A B
U r
r r
Molecular Bonds
Ionic Bonding
2 2 6 1
Na: 1 2 2 3
s s p s 2 2 5
Cl: 1 2 2
s s p
ionize 5.1 eV
E  electron affinity: 3.6 eV
Covalent Bonding
  0
/
1
3
0
1



 r a
s r e
a
Van der Waals Bonding
Hydrogen Bonding
Hydrogen Bonding
Quick Quiz 42.1
For each of the following atoms or molecules, identify
the most likely type of bonding that occurs between the
atoms or between the molecules. Choose from the
following list: ionic, covalent, van der Waals, hydrogen.
(a) atoms of krypton
(b) potassium and chlorine atoms
(c) hydrogen fluoride (HF) molecules
(d) chlorine and oxygen atoms in a hypochlorite ion
(ClO2)
Quick Quiz 42.1
For each of the following atoms or molecules, identify
the most likely type of bonding that occurs between the
atoms or between the molecules. Choose from the
following list: ionic, covalent, van der Waals, hydrogen.
(a) atoms of krypton: van der Waals
(b) potassium and chlorine atoms: ionic
(c) hydrogen fluoride (HF) molecules: hydrogen
(d) chlorine and oxygen atoms in a hypochlorite ion
(ClO2): covalent
Rotational Motion of Molecules
2
rot
1
2


E I 2
1 2
1 2
m m
I r r
m m

 
 
 

 
1 2
1 2
 

m m
m m
 
1
0,1,2,...
L J J
J
 

el trans rot vib
   
E E E E E
L I

Rotational Motion of Molecules
 
1 0,1,2,...
  
L J J J
 
 
 
 
2
2
2
2
rot
2
rot
1
1 1
2 2 2 2
1 0,1,2,...
2
J
J J
L
E I I
I I I
E E J J J
I
 

   
   
Rotational Motion of Molecules
   
2
photon rot 1
2 2
photon 2
1 1
2
1,2,3,...
4
J J
E E E E J J J J
I
h
E J J J
I I


       
 
 
  
1
J
   1 1,2,3,...
J J
E E J

 
photon
E hf

2
1 /4
f h I


Quick Quiz 42.2
A gas of identical diatomic molecules absorbs
electromagnetic radiation over a wide range of
frequencies. Molecule 1 is in the J = 0 rotation state and
makes a transition to the J = 1 state. Molecule 2 is in the J
= 2 state and makes a transition to the J = 3 state. The
ratio of the frequency of the photon that excited molecule
2 to that of the photon that excited molecule 1 is equal to
(a) 1
(b) 2
(c) 3
(d) 4
(e) impossible to determine?
Quick Quiz 42.2
A gas of identical diatomic molecules absorbs
electromagnetic radiation over a wide range of
frequencies. Molecule 1 is in the J = 0 rotation state and
makes a transition to the J = 1 state. Molecule 2 is in the J
= 2 state and makes a transition to the J = 3 state. The
ratio of the frequency of the photon that excited molecule
2 to that of the photon that excited molecule 1 is equal to
(a) 1
(b) 2
(c) 3
(d) 4
(e) impossible to determine?
Example 42.1:
Rotation of the CO Molecule
The J = 0 to J = 1 rotational transition of the CO
molecule occurs at a frequency of 1.15  1011 Hz.
(A) Use this information to calculate the moment of
inertia of the molecule.
 
2 2
photon 2 2
1
4 4
 
 
h h
E
I I
2
2 2
4 4
 
  
h h
hf I
I f
 
34
46 2
2 11 1
6.626 10 J s
1.46 10 kg m
4 1.15 10 s
I




 
   

Example 42.1:
Rotation of the CO Molecule
(B) Calculate the bond length of the molecule.
  
 
1 2
1 2
27
26
12.0 u 16.0 u
6.86 u
12.0 u 16.0 u
1.66 10 kg
= 6.86 u 1.14 10 kg
1 u
m m
m m



  
 
 

 
 
 
46 2
26
10
1.46 10 kg m
1.14 10 kg
1.13 10 m 0.113 nm




 
 

  
I
r
Example 42.1:
Rotation of the CO Molecule
What if another photon of frequency 1.15  1011 Hz is
incident on the CO molecule while that molecule is in
the J = 1 state? What happens?
Vibrational Motion of Molecules
1
2 

k
f
vib
1
0,1,2,...
2
 
  
 
 
E v hf v
vib
1
0,1,2,...
2 2 
 
  
 
 
h k
E v v
1
v
   photon vib
2 
  
h h
E E
Vibrational Motion of Molecules
Quick Quiz 42.3
A gas of identical diatomic molecules absorbs
electromagnetic radiation over a wide range of frequencies.
Molecule 1, initially in the v = 0 vibrational state, makes a
transition to the v = 1 state. Molecule 2, initially in the v =
2 state, makes a transition to the v = 3 state. What is the
ratio of the frequency of the photon that excited molecule 2
to that of the photon that excited molecule 1?
(a) 1
(b) 2
(c) 3
(d) 4
(e) impossible to determine
Quick Quiz 42.3
A gas of identical diatomic molecules absorbs
electromagnetic radiation over a wide range of frequencies.
Molecule 1, initially in the v = 0 vibrational state, makes a
transition to the v = 1 state. Molecule 2, initially in the v =
2 state, makes a transition to the v = 3 state. What is the
ratio of the frequency of the photon that excited molecule 2
to that of the photon that excited molecule 1?
(a) 1
(b) 2
(c) 3
(d) 4
(e) impossible to determine
Example 42.2:
Vibration of the CO Molecule
The frequency of the photon that
causes the v = 0 to v = 1 transition
in the CO molecule is 6.42  1013 Hz.
We ignore any changes in the rotational
energy for this example.
(A) Calculate the force constant k for this molecule.
2 2
4
2
 
 
  
h k
hf k f
  
2
2 26 13 1
3
4 1.14 10 kg 6.42 10 s
1.85 10 N/m
  
  
 
k
Example 42.2:
Vibration of the CO Molecule
(B) What is the classical amplitude
A of vibration for this molecule in
the v = 0 vibrational state?
1/4
2
1 1
2 4 2
   
 
    
 
h k h
kA A
k
  
1/4
34
26 3
12
6.626 10 J s 1
2 1.14 10 kg 1.85 10 N/m
4.79 10 m 0.00479 nm




 
 
 

 
 
 
  
A
Molecular Spectra
 
2
1
1
2 2
 
   
 
 
E v hf J J
I
Molecular Spectra
   
2
photon 1 0,1,2,... 1
E E hf J J J
I
        
 
2
photon
1,2,3,... 1
E E hf J
I
J J
   
   
Molecular Spectra
   
2
B
1 / 2
0
 
 J J Ik T
n n e
     
2
B
1 / 2
2 1  
  J J Ik T
I J e
Carbon Dioxide and Global Warming
Conceptual Example 42.3:
Comparing the Two Figures
In the figure on the top right, the transitions
indicated correspond to spectral lines that are
equally spaced as shown in the lower right-
hand figure. The actual spectrum in the
bottom figure, however, shows lines that
move closer together as the frequency
increases. Why does the spacing of the actual
spectral lines differ from the diagram?
 
2
1
1
2 2
 
   
 
 
E v hf J J
I
Ionic Solids
2
attractive 
  e
e
U k
r
2
6 e
k e
U
r
 
Covalent Solids
2 2 2
C: 1 2 2
s s p
Diamond
Graphite
Buckmisterfullerene
Graphene
Metallic Solids
Free-Electron Theory of Metals
   
F B
/
1
1



E E k T
f E
e
Free-Electron Theory of Metals
2 2 2
2 2
2 2
1,2,3,...
8 2

   
  
   
   
n
h
E n n n
mL mL
 
2 2
2 2 2
2
2

  
x y z
e
E n n n
m L
2 2
2
3
2 e
E
m L


Density of States
 
3/2
1/2
3
8 2
 e
m
g E dE E dE
h
     
N E dE g E f E dE

 
 
F B
3/2
1/2
3 /
8 2 1
1
e
E E k T
N E dE
m
E dE
h e


  
   
  
 
 
Fermi Energy
   
F B
3/2 1/2
3 /
0 0
8 2
1

 

 

 
e
e E E k T
m E dE
n N E dE
h e
F
3/2 3/2
1/2 3/2
F
3 3
0
8 2 8 2
2
for 0:
3
E
e e
e
m m
T n E dE E
h h
 
  

2/3
2
F
3
2 8
e
e
n
h
E
m 
 
  
 
avg F
3
5

E E
Example 42.4:
The Fermi Energy of Gold
Each atom of gold (Au) contributes one free electron to
the metal. Compute the Fermi energy for gold.
 
 
 
 
2/3
2
34 28 3
F 19
19
6.626 10 J s 3 5.90 10 m
0
8
2 9.11 10 J
8.85 10 J 5.53 eV
E

 


 
  
 

  
 
  
Band Theory of Solids
   
   
0
0
/
/
Zr na
s
Zr na
s
r Af r e
r Af r e






 
 
Band Theory of Solids
 
2 2 1

Metals
Insulators
Semiconductors
Semiconductors
Quick Quiz 42.4
Consider the data on three materials given in the table.
Identify each material as a conductor, and insulator, or a
semiconductor.
Material Conduction Band Eg
A Empty 1.2 eV
B Half full 1.2 eV
C Empty 8.0 eV
Quick Quiz 42.4
Consider the data on three materials given in the table.
Identify each material as a conductor, and insulator, or a
semiconductor.
A: semiconductor; B: conductor; C: insulator
Material Conduction Band Eg
A Empty 1.2 eV
B Half full 1.2 eV
C Empty 8.0 eV
Doped Semiconductors
Doped Semiconductors
Semiconductor Devices
The Junction Diode
Diodes
 
B
/
0 1
e V k T
I I e 
 
Light-Emitting and
Light-Absorbing Diodes
Photovoltaic Solar Cells
Example 42.6:
Where’s the Remote?
Estimate the band gap of the semiconductor in the
infrared LED of a typical television remote control.
1240 eV nm
1000 nm
1.2 eV
hc
E hf

 



The Transistor
Resonant Tunneling Transistors
The Integrated Circuit

Molecules a general description_Solids.pptx

  • 1.
  • 2.
    Molecular Bonds     n m A B U r r r
  • 3.
  • 4.
    Ionic Bonding 2 26 1 Na: 1 2 2 3 s s p s 2 2 5 Cl: 1 2 2 s s p ionize 5.1 eV E  electron affinity: 3.6 eV
  • 5.
    Covalent Bonding  0 / 1 3 0 1     r a s r e a
  • 6.
  • 7.
  • 8.
  • 9.
    Quick Quiz 42.1 Foreach of the following atoms or molecules, identify the most likely type of bonding that occurs between the atoms or between the molecules. Choose from the following list: ionic, covalent, van der Waals, hydrogen. (a) atoms of krypton (b) potassium and chlorine atoms (c) hydrogen fluoride (HF) molecules (d) chlorine and oxygen atoms in a hypochlorite ion (ClO2)
  • 10.
    Quick Quiz 42.1 Foreach of the following atoms or molecules, identify the most likely type of bonding that occurs between the atoms or between the molecules. Choose from the following list: ionic, covalent, van der Waals, hydrogen. (a) atoms of krypton: van der Waals (b) potassium and chlorine atoms: ionic (c) hydrogen fluoride (HF) molecules: hydrogen (d) chlorine and oxygen atoms in a hypochlorite ion (ClO2): covalent
  • 11.
    Rotational Motion ofMolecules 2 rot 1 2   E I 2 1 2 1 2 m m I r r m m           1 2 1 2    m m m m   1 0,1,2,... L J J J    el trans rot vib     E E E E E L I 
  • 12.
    Rotational Motion ofMolecules   1 0,1,2,...    L J J J         2 2 2 2 rot 2 rot 1 1 1 2 2 2 2 1 0,1,2,... 2 J J J L E I I I I I E E J J J I           
  • 13.
    Rotational Motion ofMolecules     2 photon rot 1 2 2 photon 2 1 1 2 1,2,3,... 4 J J E E E E J J J J I h E J J J I I                  1 J    1 1,2,3,... J J E E J    photon E hf  2 1 /4 f h I  
  • 14.
    Quick Quiz 42.2 Agas of identical diatomic molecules absorbs electromagnetic radiation over a wide range of frequencies. Molecule 1 is in the J = 0 rotation state and makes a transition to the J = 1 state. Molecule 2 is in the J = 2 state and makes a transition to the J = 3 state. The ratio of the frequency of the photon that excited molecule 2 to that of the photon that excited molecule 1 is equal to (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine?
  • 15.
    Quick Quiz 42.2 Agas of identical diatomic molecules absorbs electromagnetic radiation over a wide range of frequencies. Molecule 1 is in the J = 0 rotation state and makes a transition to the J = 1 state. Molecule 2 is in the J = 2 state and makes a transition to the J = 3 state. The ratio of the frequency of the photon that excited molecule 2 to that of the photon that excited molecule 1 is equal to (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine?
  • 16.
    Example 42.1: Rotation ofthe CO Molecule The J = 0 to J = 1 rotational transition of the CO molecule occurs at a frequency of 1.15  1011 Hz. (A) Use this information to calculate the moment of inertia of the molecule.   2 2 photon 2 2 1 4 4     h h E I I 2 2 2 4 4      h h hf I I f   34 46 2 2 11 1 6.626 10 J s 1.46 10 kg m 4 1.15 10 s I           
  • 17.
    Example 42.1: Rotation ofthe CO Molecule (B) Calculate the bond length of the molecule.      1 2 1 2 27 26 12.0 u 16.0 u 6.86 u 12.0 u 16.0 u 1.66 10 kg = 6.86 u 1.14 10 kg 1 u m m m m                  46 2 26 10 1.46 10 kg m 1.14 10 kg 1.13 10 m 0.113 nm             I r
  • 18.
    Example 42.1: Rotation ofthe CO Molecule What if another photon of frequency 1.15  1011 Hz is incident on the CO molecule while that molecule is in the J = 1 state? What happens?
  • 19.
    Vibrational Motion ofMolecules 1 2   k f vib 1 0,1,2,... 2          E v hf v vib 1 0,1,2,... 2 2           h k E v v 1 v    photon vib 2     h h E E
  • 20.
  • 21.
    Quick Quiz 42.3 Agas of identical diatomic molecules absorbs electromagnetic radiation over a wide range of frequencies. Molecule 1, initially in the v = 0 vibrational state, makes a transition to the v = 1 state. Molecule 2, initially in the v = 2 state, makes a transition to the v = 3 state. What is the ratio of the frequency of the photon that excited molecule 2 to that of the photon that excited molecule 1? (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine
  • 22.
    Quick Quiz 42.3 Agas of identical diatomic molecules absorbs electromagnetic radiation over a wide range of frequencies. Molecule 1, initially in the v = 0 vibrational state, makes a transition to the v = 1 state. Molecule 2, initially in the v = 2 state, makes a transition to the v = 3 state. What is the ratio of the frequency of the photon that excited molecule 2 to that of the photon that excited molecule 1? (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine
  • 23.
    Example 42.2: Vibration ofthe CO Molecule The frequency of the photon that causes the v = 0 to v = 1 transition in the CO molecule is 6.42  1013 Hz. We ignore any changes in the rotational energy for this example. (A) Calculate the force constant k for this molecule. 2 2 4 2        h k hf k f    2 2 26 13 1 3 4 1.14 10 kg 6.42 10 s 1.85 10 N/m         k
  • 24.
    Example 42.2: Vibration ofthe CO Molecule (B) What is the classical amplitude A of vibration for this molecule in the v = 0 vibrational state? 1/4 2 1 1 2 4 2              h k h kA A k    1/4 34 26 3 12 6.626 10 J s 1 2 1.14 10 kg 1.85 10 N/m 4.79 10 m 0.00479 nm                     A
  • 25.
    Molecular Spectra   2 1 1 22           E v hf J J I
  • 26.
    Molecular Spectra    2 photon 1 0,1,2,... 1 E E hf J J J I            2 photon 1,2,3,... 1 E E hf J I J J        
  • 27.
    Molecular Spectra    2 B 1 / 2 0    J J Ik T n n e       2 B 1 / 2 2 1     J J Ik T I J e
  • 28.
    Carbon Dioxide andGlobal Warming
  • 29.
    Conceptual Example 42.3: Comparingthe Two Figures In the figure on the top right, the transitions indicated correspond to spectral lines that are equally spaced as shown in the lower right- hand figure. The actual spectrum in the bottom figure, however, shows lines that move closer together as the frequency increases. Why does the spacing of the actual spectral lines differ from the diagram?   2 1 1 2 2           E v hf J J I
  • 30.
    Ionic Solids 2 attractive   e e U k r 2 6 e k e U r  
  • 31.
    Covalent Solids 2 22 C: 1 2 2 s s p
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
    Free-Electron Theory ofMetals     F B / 1 1    E E k T f E e
  • 38.
    Free-Electron Theory ofMetals 2 2 2 2 2 2 2 1,2,3,... 8 2                 n h E n n n mL mL   2 2 2 2 2 2 2     x y z e E n n n m L 2 2 2 3 2 e E m L  
  • 39.
    Density of States  3/2 1/2 3 8 2  e m g E dE E dE h       N E dE g E f E dE      F B 3/2 1/2 3 / 8 2 1 1 e E E k T N E dE m E dE h e                
  • 40.
    Fermi Energy    F B 3/2 1/2 3 / 0 0 8 2 1          e e E E k T m E dE n N E dE h e F 3/2 3/2 1/2 3/2 F 3 3 0 8 2 8 2 2 for 0: 3 E e e e m m T n E dE E h h       2/3 2 F 3 2 8 e e n h E m         avg F 3 5  E E
  • 41.
    Example 42.4: The FermiEnergy of Gold Each atom of gold (Au) contributes one free electron to the metal. Compute the Fermi energy for gold.         2/3 2 34 28 3 F 19 19 6.626 10 J s 3 5.90 10 m 0 8 2 9.11 10 J 8.85 10 J 5.53 eV E                     
  • 42.
    Band Theory ofSolids         0 0 / / Zr na s Zr na s r Af r e r Af r e          
  • 43.
    Band Theory ofSolids   2 2 1 
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
    Quick Quiz 42.4 Considerthe data on three materials given in the table. Identify each material as a conductor, and insulator, or a semiconductor. Material Conduction Band Eg A Empty 1.2 eV B Half full 1.2 eV C Empty 8.0 eV
  • 49.
    Quick Quiz 42.4 Considerthe data on three materials given in the table. Identify each material as a conductor, and insulator, or a semiconductor. A: semiconductor; B: conductor; C: insulator Material Conduction Band Eg A Empty 1.2 eV B Half full 1.2 eV C Empty 8.0 eV
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
    Diodes   B / 0 1 eV k T I I e   
  • 55.
  • 56.
  • 57.
    Example 42.6: Where’s theRemote? Estimate the band gap of the semiconductor in the infrared LED of a typical television remote control. 1240 eV nm 1000 nm 1.2 eV hc E hf      
  • 58.
  • 59.
  • 60.