COUNTERSTRIKE kick-off seminar
April 22, 2015 Copenhagen
Natal van Riel
Eindhoven University of Technology, the Netherlands
Dept. of Biomedical Engineering
Systems Biology and Metabolic Diseases
n.a.w.v.riel@tue.nl
@nvanriel
Lipoprotein metabolism
• 3 types of lipoproteins
• Chylomicrons
• Very low density lipoproteins
(VLDL), apoB
• High density lipoproteins (HDL),
apoA
• A continuum of particles of
different size, different
composition of TG,
cholesterol and CE
• With distinct apo-
lipoproteins
• Lipoprotein distribution (LPD)
codetermines metabolic and
cardiovascular disease risks
0 10 20 30 40 50
FPLC(arbitrary
units)
Fraction number
VLDL
IDL/LDL
HDL
Plasma lipoprotein cholesterol profiles
• Fast protein liquid chromatography
Rigotti et al, 1997, PNAS 94: 12610-12615 PLTP
Jiang et al, J. Clin. Invest.
103:907–914 (1999).scavenger receptor class B type I (SR-B1)
plasma phospholipid transfer protein (PLTP)
Concept
• Fasted condition, no chylomicrons
Concept
• Particle size and heterogeneity
• Fasted condition, no chylomicrons
selective uptake
CE index
Triglycerides
Cholesteryl ester
Sips, et al. (2014) PLoS Comput Biol 10(5): e1003579.
Relating TG and CE content (model) to particle
diameter
• …and diameter to fraction number (FPLC)
Processes in the model
• ApoB-containing lipoprotein
metabolism (VLDL, LDL)
• ApoA-containing lipoprotein
metabolism (HDL)
CETP
PLTP
PLTP: phospholipid transfer protein
CETP: cholesteryl ester transport protein
Model-based data analysis
• Integration of model and data
• Inference of model parameters
(parameter estimation)
• Dealing with imperfect data
(noisy, missing, inconsistent)
• Data for model development
and calibration
• Independent data to validate
model predictions
In silico cholesterol FPLC profiles of
transgenic mice
SR-B1 -/-
PLTP -/-
 WT
 PLTP +/-
 PLTP -/-
LDLr -/-
WT LDLr -/-
Modelling and monitoring of intervention
• Liver X Receptor (LXR, nuclear receptor),
induces transcription of multiple genes
modulating metabolism of fatty acids,
triglycerides, and lipoproteins
• LXR agonists increase plasma high
density lipoprotein cholesterol (HDLc)
• LXR as target for anti-
atherosclerotic therapy?
Levin et al, (2005) Arterioscler
Thromb Vasc Biol. 25(1):135-42
LDLR-/-
RXR: retinoid X receptor Calkin & Tontonoz 2012
Pharmaceutical intervention
• Extending the model
• Hypotheses
• E1: extra cholesterol accumulation in
HDL
• E2: extra HDL lipoprotein uptake
• E3: additional large nascent HDL
/ biomedical engineering PAGE 1122-4-2015
Grefhorst et al. (2002) J Biol
Chem 277(37):34182
Quantitative distinction between hypotheses:
fluxes
• Although the three different models yield equivalent lipoprotein
profiles, there are clear differences in the predictions of lipid
fluxes and lipoprotein metabolism
Sips, et al. (2014) PLoS Comput Biol 10(5): e1003579.
Modelling progressive changes in
metabolic fluxes
Modelling and monitoring of intervention
• Treated with T0901317 for 1, 2, 4, 7, 14, and 21 days
• Hypothesis 1: increase in HDLc is the result of increased
peripheral cholesterol efflux to HDL
Grefhorst et al. Atherosclerosis, 2012, 222: 382– 389
0 10 20
0
100
200
Hepatic TG
Time [days]
[umol/g]
0 10 20
0
1
2
3
Hepatic CE
Time [days]
[umol/g]
0 10 20
0
2
4
6
Hepatic FC
Time [days]
[umol/g]
0 10 20
0
50
100
Hepatic TG
Time [days]
[umol]
0 10 20
0
0.5
1
1.5
Hepatic CE
Time [days]
[umol]
0 10 20
0
2
4
Hepatic FC
Time [days]
[umol]
0 10 20
0
1000
2000
3000
Plasma CE
Time [days]
[umol/L]
0 10 20
0
1000
2000
3000
HDL-CE
Time [days]
[umol/L]
0 10 20
0
500
1000
1500
Plasma TG
Time [days]
[umol/L]
0 10 20
6
8
10
12
VLDL clearance
Time [days]
[-]
0 10 20
100
200
300
400
ratio TG/CE
Time [days]
[-]
0 10 20
0
5
10
15
VLDL diameter
Time [days]
[nm]
0 10 20
0
1
2
3
VLDL-TG production
Time [days]
[umol/h]
0 10 20
1
2
3
Hepatic mass
Time [days]
[gram]
0 10 20
0
0.2
0.4
DNL
Time [days]
[-]
Mechanism-based model
• Differential equations
• Interconnected system (network)
• Model parameters have biological meaning
Data integration
• Estimation of unobserved metabolic parameters
• At unobserved time points
1. Metabolite concentrations
-Hepatic free cholesterol (FC)
-Hepatic cholesteryl ester (CE)
-Hepatic triglyceride (TG)
-Plasma free fatty acids (FFA)
-Plasma TG
-Plasma total cholesterol
-HDL cholesterol
-VLDL (very low density lipoprotein) TG/C ratio
-Nascent VLDL particle diameter
2. Fluxes
-VLDL-TG production
-Hepatic cholesterol synthesis
-VLDL catabolism/clearance from the plasma
Tiemann et al. (2013) PLOS Comput Biol. 9(8):e1003166
ADAPT: Analysis of Dynamic Adaptations in Parameter Trajectories
• Model parameters inferred from data
• Mathematical model + ADAPT computation connects and
describes the data accurately
• Data: black bars and white dots
• Model: the darker the more
likely
• Variability in data 
differences in
accuracy of
mathematical
parameters 
quantification of
uncertainty in
predictions
Analysis: HDL cholesterol
Analysis: increased excretion of cholesterol
Observation: increased HDLc
• SR-B1 (Scavenger Receptor-B1)
• Protein activity:
Reduced presence of SR-B1 in liver
membranes contributes to induction of HDLc
• HDL excretion and uptake flux
are increased
mRNA of cholesterol efflux transporters
Tiemann et al., PLOS Comput Biol 2013
SR-B1 protein content is decreased in
hepatic membranes
Sr-b1 mRNA
expression not
changed
model: decreased
hepatic capacity to
clear cholesterol
Hepatic steatosis
• Hypothesis 2: LXR-induced hepatic steatosis is caused by an
increase in de novo lipogenesis (DNL)
Liver section of mice
treated 4 days with LXR
agonist T0901317
Oil-Red-O staining for
neutral fat
hepatic steatosis
0 10 20
0
100
200
Hepatic TG
Time [days]
[umol/g]
0 10 20
0
1
2
3
Hepatic CE
Time [days]
[umol/g]
0 10 20
0
2
4
6
Hepatic FC
Time [days]
[umol/g]
0 10 20
0
50
100
Hepatic TG
Time [days]
[umol]
0 10 20
0
0.5
1
1.5
Hepatic CE
Time [days]
[umol]
0 10 20
0
2
4
Hepatic FC
Time [days]
[umol]
0 10 20
0
1000
2000
3000
Plasma CE
Time [days]
[umol/L]
0 10 20
0
1000
2000
3000
HDL-CE
Time [days]
[umol/L]
0 10 20
0
500
1000
1500
Plasma TG
Time [days]
[umol/L]
0 10 20
6
8
10
12
VLDL clearance
Time [days]
[-]
0 10 20
100
200
300
400
ratio TG/CE
Time [days]
[-]
0 10 20
0
5
10
15
VLDL diameter
Time [days]
[nm]
0 10 20
0
1
2
3
VLDL-TG production
Time [days]
[umol/h]
0 10 20
1
2
3
Hepatic mass
Time [days]
[gram]
0 10 20
0
0.2
0.4
DNL
Time [days]
[-]
Increased hepatic FFA influx is the initial
contributor to hepatic TG accumulation
• [13C]16-palmitate infusion
Hijmans et al. (2015) FASEB J. 29(4):1153-64

C16:0 palmitate
C18:0 stearate
C16:1 palmitoleate
C18:1 oleate
saturated fatty acid monounsaturated fatty
acid
Conclusions (2)
• LXR activation in C57Bl/6J mice leads to complex time-dependent
perturbations in cholesterol and triglyceride metabolism
HDL cholesterol metabolism
• Peripheral cholesterol efflux to HDL and hepatic HDLc uptake increase over
time
• Reduced presence of SR-B1 in liver membranes despite an increment in
hepatic HDLc uptake
Hepatic triglyceride metabolism
• Input and output fluxes to liver TG are massively upregulated and a minor
imbalance between input and output fluxes causes steatosis
• Increased hepatic FFA influx is the initial contributor to hepatic TG
accumulation
Acknowledgements
• Peter Hilbers
• Christian Tiemann
• Joep Vanlier
• Yvonne Rozendaal
• Fianne Sips
• Bert Groen
• Jan Albert Kuivenhoven
• Maaike Oosterveer
• Brenda Hijmans
Systems Biology of Disease Progression -
ADAPT modeling
http://www.youtube.com/watch?v=x54ysJDS7i8
/ biomedical engineering

Modelling metabolic fluxes

  • 1.
    COUNTERSTRIKE kick-off seminar April22, 2015 Copenhagen Natal van Riel Eindhoven University of Technology, the Netherlands Dept. of Biomedical Engineering Systems Biology and Metabolic Diseases n.a.w.v.riel@tue.nl @nvanriel
  • 2.
    Lipoprotein metabolism • 3types of lipoproteins • Chylomicrons • Very low density lipoproteins (VLDL), apoB • High density lipoproteins (HDL), apoA • A continuum of particles of different size, different composition of TG, cholesterol and CE • With distinct apo- lipoproteins • Lipoprotein distribution (LPD) codetermines metabolic and cardiovascular disease risks 0 10 20 30 40 50 FPLC(arbitrary units) Fraction number VLDL IDL/LDL HDL
  • 3.
    Plasma lipoprotein cholesterolprofiles • Fast protein liquid chromatography Rigotti et al, 1997, PNAS 94: 12610-12615 PLTP Jiang et al, J. Clin. Invest. 103:907–914 (1999).scavenger receptor class B type I (SR-B1) plasma phospholipid transfer protein (PLTP)
  • 4.
  • 5.
    Concept • Particle sizeand heterogeneity • Fasted condition, no chylomicrons selective uptake CE index Triglycerides Cholesteryl ester Sips, et al. (2014) PLoS Comput Biol 10(5): e1003579.
  • 6.
    Relating TG andCE content (model) to particle diameter • …and diameter to fraction number (FPLC)
  • 7.
    Processes in themodel • ApoB-containing lipoprotein metabolism (VLDL, LDL) • ApoA-containing lipoprotein metabolism (HDL) CETP PLTP PLTP: phospholipid transfer protein CETP: cholesteryl ester transport protein
  • 8.
    Model-based data analysis •Integration of model and data • Inference of model parameters (parameter estimation) • Dealing with imperfect data (noisy, missing, inconsistent) • Data for model development and calibration • Independent data to validate model predictions
  • 9.
    In silico cholesterolFPLC profiles of transgenic mice SR-B1 -/- PLTP -/-  WT  PLTP +/-  PLTP -/- LDLr -/- WT LDLr -/-
  • 10.
    Modelling and monitoringof intervention • Liver X Receptor (LXR, nuclear receptor), induces transcription of multiple genes modulating metabolism of fatty acids, triglycerides, and lipoproteins • LXR agonists increase plasma high density lipoprotein cholesterol (HDLc) • LXR as target for anti- atherosclerotic therapy? Levin et al, (2005) Arterioscler Thromb Vasc Biol. 25(1):135-42 LDLR-/- RXR: retinoid X receptor Calkin & Tontonoz 2012
  • 11.
    Pharmaceutical intervention • Extendingthe model • Hypotheses • E1: extra cholesterol accumulation in HDL • E2: extra HDL lipoprotein uptake • E3: additional large nascent HDL / biomedical engineering PAGE 1122-4-2015 Grefhorst et al. (2002) J Biol Chem 277(37):34182
  • 12.
    Quantitative distinction betweenhypotheses: fluxes • Although the three different models yield equivalent lipoprotein profiles, there are clear differences in the predictions of lipid fluxes and lipoprotein metabolism Sips, et al. (2014) PLoS Comput Biol 10(5): e1003579.
  • 13.
    Modelling progressive changesin metabolic fluxes
  • 14.
    Modelling and monitoringof intervention • Treated with T0901317 for 1, 2, 4, 7, 14, and 21 days • Hypothesis 1: increase in HDLc is the result of increased peripheral cholesterol efflux to HDL Grefhorst et al. Atherosclerosis, 2012, 222: 382– 389 0 10 20 0 100 200 Hepatic TG Time [days] [umol/g] 0 10 20 0 1 2 3 Hepatic CE Time [days] [umol/g] 0 10 20 0 2 4 6 Hepatic FC Time [days] [umol/g] 0 10 20 0 50 100 Hepatic TG Time [days] [umol] 0 10 20 0 0.5 1 1.5 Hepatic CE Time [days] [umol] 0 10 20 0 2 4 Hepatic FC Time [days] [umol] 0 10 20 0 1000 2000 3000 Plasma CE Time [days] [umol/L] 0 10 20 0 1000 2000 3000 HDL-CE Time [days] [umol/L] 0 10 20 0 500 1000 1500 Plasma TG Time [days] [umol/L] 0 10 20 6 8 10 12 VLDL clearance Time [days] [-] 0 10 20 100 200 300 400 ratio TG/CE Time [days] [-] 0 10 20 0 5 10 15 VLDL diameter Time [days] [nm] 0 10 20 0 1 2 3 VLDL-TG production Time [days] [umol/h] 0 10 20 1 2 3 Hepatic mass Time [days] [gram] 0 10 20 0 0.2 0.4 DNL Time [days] [-]
  • 15.
    Mechanism-based model • Differentialequations • Interconnected system (network) • Model parameters have biological meaning
  • 16.
    Data integration • Estimationof unobserved metabolic parameters • At unobserved time points 1. Metabolite concentrations -Hepatic free cholesterol (FC) -Hepatic cholesteryl ester (CE) -Hepatic triglyceride (TG) -Plasma free fatty acids (FFA) -Plasma TG -Plasma total cholesterol -HDL cholesterol -VLDL (very low density lipoprotein) TG/C ratio -Nascent VLDL particle diameter 2. Fluxes -VLDL-TG production -Hepatic cholesterol synthesis -VLDL catabolism/clearance from the plasma Tiemann et al. (2013) PLOS Comput Biol. 9(8):e1003166
  • 17.
    ADAPT: Analysis ofDynamic Adaptations in Parameter Trajectories • Model parameters inferred from data • Mathematical model + ADAPT computation connects and describes the data accurately • Data: black bars and white dots • Model: the darker the more likely • Variability in data  differences in accuracy of mathematical parameters  quantification of uncertainty in predictions
  • 18.
    Analysis: HDL cholesterol Analysis:increased excretion of cholesterol Observation: increased HDLc
  • 19.
    • SR-B1 (ScavengerReceptor-B1) • Protein activity: Reduced presence of SR-B1 in liver membranes contributes to induction of HDLc • HDL excretion and uptake flux are increased mRNA of cholesterol efflux transporters Tiemann et al., PLOS Comput Biol 2013 SR-B1 protein content is decreased in hepatic membranes Sr-b1 mRNA expression not changed model: decreased hepatic capacity to clear cholesterol
  • 20.
    Hepatic steatosis • Hypothesis2: LXR-induced hepatic steatosis is caused by an increase in de novo lipogenesis (DNL) Liver section of mice treated 4 days with LXR agonist T0901317 Oil-Red-O staining for neutral fat hepatic steatosis 0 10 20 0 100 200 Hepatic TG Time [days] [umol/g] 0 10 20 0 1 2 3 Hepatic CE Time [days] [umol/g] 0 10 20 0 2 4 6 Hepatic FC Time [days] [umol/g] 0 10 20 0 50 100 Hepatic TG Time [days] [umol] 0 10 20 0 0.5 1 1.5 Hepatic CE Time [days] [umol] 0 10 20 0 2 4 Hepatic FC Time [days] [umol] 0 10 20 0 1000 2000 3000 Plasma CE Time [days] [umol/L] 0 10 20 0 1000 2000 3000 HDL-CE Time [days] [umol/L] 0 10 20 0 500 1000 1500 Plasma TG Time [days] [umol/L] 0 10 20 6 8 10 12 VLDL clearance Time [days] [-] 0 10 20 100 200 300 400 ratio TG/CE Time [days] [-] 0 10 20 0 5 10 15 VLDL diameter Time [days] [nm] 0 10 20 0 1 2 3 VLDL-TG production Time [days] [umol/h] 0 10 20 1 2 3 Hepatic mass Time [days] [gram] 0 10 20 0 0.2 0.4 DNL Time [days] [-]
  • 21.
    Increased hepatic FFAinflux is the initial contributor to hepatic TG accumulation • [13C]16-palmitate infusion Hijmans et al. (2015) FASEB J. 29(4):1153-64  C16:0 palmitate C18:0 stearate C16:1 palmitoleate C18:1 oleate saturated fatty acid monounsaturated fatty acid
  • 22.
    Conclusions (2) • LXRactivation in C57Bl/6J mice leads to complex time-dependent perturbations in cholesterol and triglyceride metabolism HDL cholesterol metabolism • Peripheral cholesterol efflux to HDL and hepatic HDLc uptake increase over time • Reduced presence of SR-B1 in liver membranes despite an increment in hepatic HDLc uptake Hepatic triglyceride metabolism • Input and output fluxes to liver TG are massively upregulated and a minor imbalance between input and output fluxes causes steatosis • Increased hepatic FFA influx is the initial contributor to hepatic TG accumulation
  • 23.
    Acknowledgements • Peter Hilbers •Christian Tiemann • Joep Vanlier • Yvonne Rozendaal • Fianne Sips • Bert Groen • Jan Albert Kuivenhoven • Maaike Oosterveer • Brenda Hijmans Systems Biology of Disease Progression - ADAPT modeling http://www.youtube.com/watch?v=x54ysJDS7i8
  • 24.

Editor's Notes

  • #2 COUNTERSTRIKE (COUNTERacting Sarcopenia with proTeins and exeRcise – Screening the CALM cohort for lIpoprotein biomarKErs) kick off seminar