Universidad Nacional Autonoma de Honduras
Escuela de Matematicas
Guia de Ejercicios MM-201 Calculo I
Lic. Carlos Miguel Cruz Rodas
Ejercicios
1. f(x) =



2 si x < 1
−1 si x = 1
−3 si 1 < x
Encontrar: (a) lim
x→1+
f(x) (b) lim
x→1−
f(x)
(c) lim
x→1
f(x)
2. f(x) =



2x + 3 si x < 1
4 si x = 1
x2
+ 2 si 1 < x
Encontrar: (a) lim
x→1+
f(x) (b) lim
x→1−
f(x)
(c) lim
x→1
f(x)
3. f(x) =



|x − 1| si x < −1
0 si x = −1
|1 − x| si −1 < x
Encontrar: (a) lim
x→−1+
f(x) (b) lim
x→−1−
f(x)
(c) lim
x→−1
f(x)
4. f(x) =



x + 1 si x < −1
x2
si −1 ≤ x ≤ 1
2 − x si −1 < x
Encontrar: (a) lim
x→−1+
f(x) (b) lim
x→−1−
f(x)
(c) lim
x→−1
f(x)
(d) lim
x→1+
f(x) (e) lim
x→1−
f(x) (f) lim
x→1
f(x)
5. f(x) =



√
x2 − 9 si x ≤ −3√
9 − x2 si −3 < x < 1√
x2 − 9 si 3 ≤ x
Encontrar: (a) lim
x→−3+
f(x) (b) lim
x→−3−
f(x)
(c) lim
x→−3
f(x)
(d) lim
x→3+
f(x) (e) lim
x→3−
f(x) (f) lim
x→3
f(x)
1
6. Si existen, determine :
(a) lim
x→ 2+
[x] (b) lim
x→ 2−
[x] (c) lim
x→ 2
[x]
7. Si existen, determine :
(a) lim
x→4+
[x − 3] (b) lim
x→4−
[x − 3] (c) lim
x→4
[x − 3]
8. Determine el valor de los limites
(a) lim
x→4−
[x] − x (b) lim
x→1−
(1 − x − [x] − [1 − x]) (c) lim
x→1+
x − [x]
(d) lim
x→1−
|x| − x (e) lim
x→2−
|x2
− 4|
x − 2
(f) lim
x→3−
[x]2
− 9
x − 3
(g) lim
x→3+
[x] − 3
x − 3
(h) lim
x→0+
x − [x]
[x] − 2x
(i) lim
x→0
|x| − x
x
9. Dadaf(x) =
3x + 2 si x < 4
5x + k si 4 ≤ x
Determine el valor de k, talque lim
x→4
f(x) exista
10. Dadaf(x) =
kx − 3 si x ≤ −1
x2
+ k si −1 < x
Determine el valor de k, talque lim
x→4
f(x) exista
11. Dadaf(x) =



x2
si x ≤ −2
ax + b si −2 < x < 2
2x − 6 si 2 ≤ x
Determine el valor de a y b, talque lim
x→−2
f(x) y lim
x→2
f(x) exista
12. Dadaf(x) =



2x − a si x < −2
ax + 2b si −2 ≤ x ≤ 3
b − 5x si 3 < x
Determine el valor de a y b, talque lim
x→−3
f(x) y lim
x→3
f(x) exista
13. Construya una grafica que satisfaga las condiciones dadas
(a) El dominio de f es [−1, 3] (b) f(−1) = −2 ,f(0) = 0,f(1) = 2,f(2) = 4,f(3) = 1
(c) lim
x→−1+
f(x) = −2 (d) lim
x→0−
f(x) = 0 (e) lim
x→0+
f(x) = 3
(f) lim
x→1−
f(x) = 4 (g) lim
x→2−
f(x) = 4 (h) lim
x→2+
f(x) = 0
(i) lim
x→3−
f(x) = 5
2
14. Evalue los limites a partir de la grafica mostrada
(a) Calcule el dominio y el rango de la funcion (b) lim
x→−1+
f(x) =
(c) lim
x→0−
f(x) = (d) lim
x→0+
f(x) = (e) lim
x→0
f(x) =
(f) lim
x→2−
f(x) = (g) lim
x→2+
f(x) = (h) lim
x→2
f(x) =
(i) lim
x→3−
f(x) = (j) lim
x→3+
f(x) = (k) lim
x→3
f(x) =
(l) lim
x→5−
f(x) =
15. Evalue los limites a partir de la grafica mostrada
(a) Calcule el dominio y el rango de la funcion (b) lim
x→0+
f(x) =
(c) lim
x→1−
f(x) = (d) lim
x→1+
f(x) = (e) lim
x→1
f(x) =
(f) lim
x→2−
f(x) = (g) lim
x→2+
f(x) = (h) lim
x→2
f(x) =
(i) lim
x→4−
f(x) = (j) lim
x→4+
f(x) = (k) lim
x→4
f(x) =
(l) lim
x→5−
f(x) =
16. Evalue los limites a partir de la grafica mostrada
(a) lim
x→2.5
g(x) = (b) lim
x→1
g(x) = (c) lim
x→2
g(x) =
(d) lim
x→3
g(x) =
3
17. Evalue los limites a partir de la grafica mostrada
(a) lim
t→−2
f(t) = (b) lim
t→−1
f(t) = (c) lim
t→0
f(t) =
(d) lim
t→−0.5
f(t) =
18. Evalue los limites a partir de la grafica mostrada
(a) lim
x→0
f(x) = (b) lim
x→1
f(x) = (c) lim
x→−1+
f(x) =
(d) lim
x→2−
f(x) =
19. Evalue los limites a partir de la grafica mostrada
(a) lim
x→0
f(x) = (b) lim
x→1
f(x) = (c) lim
x→2
f(x) =
(d) lim
x→3−
f(x) =
4
20. Evalue los limites a partir de la grafica mostrada
(a) lim
x→1+
f(x) = (b) lim
x→1−
f(x) = (c) lim
x→1
f(x) =
(d) f(1) =
21. Evalue los limites a partir de la grafica mostrada
(a) lim
x→2+
h(x) = (b) lim
x→2−
h(x) = (c) lim
x→2
h(x) =
(d) h(2) =
22. Evalue los limites a partir de la grafica mostrada
(a) lim
x→−1+
g(x) = (b) lim
x→−1−
g(x) = (c) lim
x→−1
g(x) =
(d) g(−1) =
5
23. Evalue los limites a partir de la grafica mostrada
(a) lim
x→3+
f(x) = (b) lim
x→3−
f(x) = (c) lim
x→3
f(x) =
(d) f(3) =
24. Construya una grafica que satisfaga las condiciones dadas
(a) El dominio de f es [−4, 4] (b) f(−4) = 3 ,f(−2) = −3 ,f(0) = 1 ,f(2) = −1 ,f(4) = 0
(c) lim
x→−4−
f(x) = 1 (d) lim
x→−2
f(x) = 3 (e) lim
x→0−
f(x) = 1
(f) lim
x→0+
f(x) = 4 (g) lim
x→2
f(x) = −1 (h) lim
x→4−
f(x) = 0
6

MM_201 Limites laterales

  • 1.
    Universidad Nacional Autonomade Honduras Escuela de Matematicas Guia de Ejercicios MM-201 Calculo I Lic. Carlos Miguel Cruz Rodas Ejercicios 1. f(x) =    2 si x < 1 −1 si x = 1 −3 si 1 < x Encontrar: (a) lim x→1+ f(x) (b) lim x→1− f(x) (c) lim x→1 f(x) 2. f(x) =    2x + 3 si x < 1 4 si x = 1 x2 + 2 si 1 < x Encontrar: (a) lim x→1+ f(x) (b) lim x→1− f(x) (c) lim x→1 f(x) 3. f(x) =    |x − 1| si x < −1 0 si x = −1 |1 − x| si −1 < x Encontrar: (a) lim x→−1+ f(x) (b) lim x→−1− f(x) (c) lim x→−1 f(x) 4. f(x) =    x + 1 si x < −1 x2 si −1 ≤ x ≤ 1 2 − x si −1 < x Encontrar: (a) lim x→−1+ f(x) (b) lim x→−1− f(x) (c) lim x→−1 f(x) (d) lim x→1+ f(x) (e) lim x→1− f(x) (f) lim x→1 f(x) 5. f(x) =    √ x2 − 9 si x ≤ −3√ 9 − x2 si −3 < x < 1√ x2 − 9 si 3 ≤ x Encontrar: (a) lim x→−3+ f(x) (b) lim x→−3− f(x) (c) lim x→−3 f(x) (d) lim x→3+ f(x) (e) lim x→3− f(x) (f) lim x→3 f(x) 1
  • 2.
    6. Si existen,determine : (a) lim x→ 2+ [x] (b) lim x→ 2− [x] (c) lim x→ 2 [x] 7. Si existen, determine : (a) lim x→4+ [x − 3] (b) lim x→4− [x − 3] (c) lim x→4 [x − 3] 8. Determine el valor de los limites (a) lim x→4− [x] − x (b) lim x→1− (1 − x − [x] − [1 − x]) (c) lim x→1+ x − [x] (d) lim x→1− |x| − x (e) lim x→2− |x2 − 4| x − 2 (f) lim x→3− [x]2 − 9 x − 3 (g) lim x→3+ [x] − 3 x − 3 (h) lim x→0+ x − [x] [x] − 2x (i) lim x→0 |x| − x x 9. Dadaf(x) = 3x + 2 si x < 4 5x + k si 4 ≤ x Determine el valor de k, talque lim x→4 f(x) exista 10. Dadaf(x) = kx − 3 si x ≤ −1 x2 + k si −1 < x Determine el valor de k, talque lim x→4 f(x) exista 11. Dadaf(x) =    x2 si x ≤ −2 ax + b si −2 < x < 2 2x − 6 si 2 ≤ x Determine el valor de a y b, talque lim x→−2 f(x) y lim x→2 f(x) exista 12. Dadaf(x) =    2x − a si x < −2 ax + 2b si −2 ≤ x ≤ 3 b − 5x si 3 < x Determine el valor de a y b, talque lim x→−3 f(x) y lim x→3 f(x) exista 13. Construya una grafica que satisfaga las condiciones dadas (a) El dominio de f es [−1, 3] (b) f(−1) = −2 ,f(0) = 0,f(1) = 2,f(2) = 4,f(3) = 1 (c) lim x→−1+ f(x) = −2 (d) lim x→0− f(x) = 0 (e) lim x→0+ f(x) = 3 (f) lim x→1− f(x) = 4 (g) lim x→2− f(x) = 4 (h) lim x→2+ f(x) = 0 (i) lim x→3− f(x) = 5 2
  • 3.
    14. Evalue loslimites a partir de la grafica mostrada (a) Calcule el dominio y el rango de la funcion (b) lim x→−1+ f(x) = (c) lim x→0− f(x) = (d) lim x→0+ f(x) = (e) lim x→0 f(x) = (f) lim x→2− f(x) = (g) lim x→2+ f(x) = (h) lim x→2 f(x) = (i) lim x→3− f(x) = (j) lim x→3+ f(x) = (k) lim x→3 f(x) = (l) lim x→5− f(x) = 15. Evalue los limites a partir de la grafica mostrada (a) Calcule el dominio y el rango de la funcion (b) lim x→0+ f(x) = (c) lim x→1− f(x) = (d) lim x→1+ f(x) = (e) lim x→1 f(x) = (f) lim x→2− f(x) = (g) lim x→2+ f(x) = (h) lim x→2 f(x) = (i) lim x→4− f(x) = (j) lim x→4+ f(x) = (k) lim x→4 f(x) = (l) lim x→5− f(x) = 16. Evalue los limites a partir de la grafica mostrada (a) lim x→2.5 g(x) = (b) lim x→1 g(x) = (c) lim x→2 g(x) = (d) lim x→3 g(x) = 3
  • 4.
    17. Evalue loslimites a partir de la grafica mostrada (a) lim t→−2 f(t) = (b) lim t→−1 f(t) = (c) lim t→0 f(t) = (d) lim t→−0.5 f(t) = 18. Evalue los limites a partir de la grafica mostrada (a) lim x→0 f(x) = (b) lim x→1 f(x) = (c) lim x→−1+ f(x) = (d) lim x→2− f(x) = 19. Evalue los limites a partir de la grafica mostrada (a) lim x→0 f(x) = (b) lim x→1 f(x) = (c) lim x→2 f(x) = (d) lim x→3− f(x) = 4
  • 5.
    20. Evalue loslimites a partir de la grafica mostrada (a) lim x→1+ f(x) = (b) lim x→1− f(x) = (c) lim x→1 f(x) = (d) f(1) = 21. Evalue los limites a partir de la grafica mostrada (a) lim x→2+ h(x) = (b) lim x→2− h(x) = (c) lim x→2 h(x) = (d) h(2) = 22. Evalue los limites a partir de la grafica mostrada (a) lim x→−1+ g(x) = (b) lim x→−1− g(x) = (c) lim x→−1 g(x) = (d) g(−1) = 5
  • 6.
    23. Evalue loslimites a partir de la grafica mostrada (a) lim x→3+ f(x) = (b) lim x→3− f(x) = (c) lim x→3 f(x) = (d) f(3) = 24. Construya una grafica que satisfaga las condiciones dadas (a) El dominio de f es [−4, 4] (b) f(−4) = 3 ,f(−2) = −3 ,f(0) = 1 ,f(2) = −1 ,f(4) = 0 (c) lim x→−4− f(x) = 1 (d) lim x→−2 f(x) = 3 (e) lim x→0− f(x) = 1 (f) lim x→0+ f(x) = 4 (g) lim x→2 f(x) = −1 (h) lim x→4− f(x) = 0 6