SlideShare a Scribd company logo
Fan Speed Design Project
Design Project for ME 449
By Dillon O’Connor
1
Duct System
Technical Details
The given dimensions are shown on in
the Table 1.
Other relevant information:
1) Duct recirculates air within the
house
2) The ducts are made of galvanized
iron sheeting
3) Outlet velocities may not be the
same.
4) Outlet velocities should be close to
25 ft/s without exceeding that
amount.
Description Cross Section Length
Duct 1 24 in. X 18 in. 25 ft
90o Turns (1 to 2; and 1 to 3) - -
Duct 2 18 in. X 12 in. 12 ft
Duct 3 12 in. X 12 in. 7 ft
90o Turns (2 to 4; and 2 to 5) - -
Duct 4 w/ one 90o Turn 8 in. diameter (circular) 6 ft
Duct 5 w/ one 90o Turn 8 in. diameter (circular) 6 ft
90o Turns (3 to 6; and 3 to 7) - -
Duct 6 w/ one 90o Turn 8 in. diameter (circular) 6 ft
Duct 7 w/ one 90o Turn 8 in. diameter (circular) 6 ft
Return Duct w/ one 90o Turn 24 in. X 18 in. 22 ft
Table 1: Given duct system dimensions
2
Duct Schematic
• Figure 1 shows an isometric view of
the system.
• Figure 2 shows a dimensioned top
down view (left) and a dimensioned
side view (right) of the system.
Figure 1. Isometric view of the duct system. Figure 2. Dimensioned Schematic of the duct system.
3
Fan Curve
• The fan has already been selected.
• However the required operating
speed needs to be determined.
• The fan curve for the given fan has
been provided in Figure 3.
• The curve fit equation to this fan
curve will be used in later
calculations.
Figure 3. Fan curve for the given system’s fan.
4
Circuit Diagram
• Figure 4 shows the equivalent
circuit diagram for the system.
• Major loss sections are shown as
long rectangular boxes.
• Minor loss sections are shown as
short rectangular boxes.
• Each will have a hf that
contributes to the resulting
pressure loss.
Figure 4. Equivalent circuit diagram of the duct system.
5
Minor Loss Coefficients
The minor loss coefficients used are
shown on in Table 2.
Tee and Elbow K values are taken from
Table 6.5 of the Fluid Mechanics (5th
edition) text by F. M. White. Flanged
connections were assumed.
K values for sudden expansion and
sudden contraction come from
equations 6.80 and 6.81 respectively
from the same textbook.
𝐾 = 1 −
𝑑2
𝐷2
2
𝐾 = 0.42 1 −
𝑑2
𝐷2
Duct Minor
Loss Coefficient
Value Description
K1 0.41 Tee (d = 20 in.)
K2 0.7035
Sudden Contraction (d1 to d2)
+ Tee (d = 14.4 in.)
K3 0.8004
Sudden Contraction (d1 to d3)
+ Tee (d = 12 in.)
K4 1.5504
Sudden Contraction (d2 to d4)
+ Elbow (90 degree, regular, d = 8 in.)
+ Sudden Expansion (d4 to large d)
K5 1.5504
Sudden Contraction (d2 to d5)
+ Elbow (90 degree, regular, d = 8 in.)
+ Sudden Expansion (d5 to large d)
K6 1.4933
Sudden Contraction (d3 to d6)
+ Elbow (90 degree, regular, d = 8 in.)
+ Sudden Expansion (d6 to large d)
K7 1.4933
Sudden Contraction (d3 to d7)
+ Elbow (90 degree, regular, d = 8 in.)
+ Sudden Expansion (d7 to large d)
K8 0.63
Sudden Contraction (large d to d8)
+ Elbow (d = 20 in.)
Table 2: Minor loss coefficients
(6.80)
(6.81)
6
Constants
• The other constants used in this
design are shown in Table 3.
• Air properties, including density,
were assumed constant throughout
the duct system.
• Air properties were evaluated at
standard room temperature (70 ºF)
and pressure (1 bar).
• Acceleration due to gravity was
taken at sea level.
symbol Description Value
g Acceleration due to gravity 32.2 ft/s²
ε Duct roughness 0.0005 ft
ν Kinematic viscosity of air 1.64e-4 ft²/s
γ Specific weight of air 7.492e-2 lb/ft³
Table 3: Essential constants.
7
Equations
(1st Part)
𝑓 =
1
−1.8𝑙𝑜𝑔
6.9
𝑅𝑒 𝐷
+
𝜀/𝐷ℎ
3.7
1.11
2
ℎ 𝑓,𝑚𝑎𝑗𝑜𝑟 = 𝑓
𝐿
𝐷ℎ
1
2𝑔𝐴2
𝑄2
ℎ 𝑓,𝑚𝑖𝑛𝑜𝑟 = 𝐾
1
2𝑔𝐴2
𝑄2
ℎ 𝑓 = ℎ 𝑓,𝑚𝑎𝑗𝑜𝑟 + ℎ 𝑓,𝑚𝑖𝑛𝑜𝑟
∆𝑃 = 𝛾ℎ 𝑓
𝑇𝑃𝑡𝑜𝑝 𝑙𝑒𝑔 = ∆𝑃1 + ∆𝑃2 + ∆𝑃4 + ∆𝑃8
𝑇𝑃𝑏𝑜𝑡𝑡𝑜𝑚 𝑙𝑒𝑔 = ∆𝑃1 + ∆𝑃3 + ∆𝑃7 + ∆𝑃8
𝐷ℎ =
4 ∙ 𝐴𝑟𝑒𝑎 𝑓𝑙𝑜𝑤
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑤𝑒𝑡𝑡𝑒𝑑
𝑅𝑒 𝐷 =
𝑄𝐷ℎ
𝐴𝜈
8
Method • Guess a Q1 value.
• Calculate total pressure lost through the top line for Q2 = 0 to 100% of Q1.
• Calculate total pressure lost through the bottom line for Q3 = 0 to 100% of
Q1.
• Plot ΔPtop leg vs. increasing% of Q1 and ΔPbottom leg vs. decreasing % of Q1.
• Independent axis value at intercept = % of Q1 to Q2.
• Q2 = %*Q1 and Q3 = (1oo-%)*Q1.
• Q4 = Q5 = 0.5*Q2 and Q6 = Q7 = 0.5*Q3
• Intercept can be better tuned by comparing resulting
ΔPtop leg and ΔPbottom leg values until they are equivalent.
• Find exit velocities using v = Q/A
• Change Q1 until max v (of v4-v7) is close to 25 ft/s
9
Q1 And Where It Goes
• A Q1 guess of 34 ft³/s yielded the
plot shown in Figure 5.
• The intercept in this case can be
seen at about 51% of Q1 to Q2 and
the remaining 49% of Q1 to Q3.
• Fine tuning the % by ΔP values
yields a 51.26% of Q1 to Q2. The
remaining 48.74% of Q1 goes to
Q3.
Figure 5. Plot of losses in each line as a function of decimal
fraction of Q1 that travels into Q2 for a guessed Q1 of 34
ft³/s.
10
Verifying Accuracy Of Guess
• A guess of Q1 = 34 ft³/s yields a maximum exit velocity of 24.96 ft/s in
ducts 4 and 5.
• The lesser exit velocity is 23.74 ft/s in ducts 6 and 7.
• This satisfies the given criteria of an exit velocity close to 25 ft/s without
exceeding it.
• The resulting TP = ΔP = 0.2761 in.H2O
11
Equations (2nd Part)
𝑄1 =
𝛼
𝑇𝑃2
1
𝑄2
2
2
+
𝛽
𝑇𝑃2
𝑁2 =
𝑄2
𝑄1
𝑁1
For these equations:
• Q2 is our Q1 from the previous slide
converted to ft³/min.
• TP2 is our TP from the previous slide.
• N2 is the operating speed to achieve it.
• Q1 is the Q at N=2000 RPM as shown
on the Fan Curve.
• N1 = 2000 RPM
• α = 5.95 in.H2O
• β = 8.5e-7 (in.H2O/CFM²)
12
Final Results
• The required Q1 = 2040 cfm
• The required N = 1607 RPM
• The resulting TP = ΔP = 0.2761 in.H2O
• The maximum exit velocity is 24.96 ft/s in ducts 4 and 5.
• The lesser exit velocity is 23.74 ft/s in ducts 6 and 7.
13
REFERENCES
White, F.M., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, 2003
Department of Mechanical, Aerospace, and Biomedical Engineering, ME
449 A Preliminary Design Problem, University of Tennessee, Knoxville,
2015
14

More Related Content

What's hot

Single Phase Gas Flow Correlations
Single Phase Gas Flow CorrelationsSingle Phase Gas Flow Correlations
Single Phase Gas Flow Correlations
Vijay Sarathy
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
Yuri Melliza
 
Separating and throttling calorimeter for steam
Separating and throttling calorimeter for steamSeparating and throttling calorimeter for steam
Separating and throttling calorimeter for steam
Saif al-din ali
 
Ankit
AnkitAnkit
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPSOPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
Vijay Sarathy
 
Radiator design
Radiator designRadiator design
Radiator design
Ahmed Rezk
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob
gunabalan sellan
 
Blower
BlowerBlower
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
Vijay Sarathy
 
Subsonic wind tunnel with animation
Subsonic wind tunnel with animationSubsonic wind tunnel with animation
Subsonic wind tunnel with animation
Lokesh Verma
 
K10881 (chinmay sharma)rac
K10881 (chinmay sharma)racK10881 (chinmay sharma)rac
K10881 (chinmay sharma)rac
cpume
 
BS2 Tutorial 2 ventilation design
BS2 Tutorial 2 ventilation designBS2 Tutorial 2 ventilation design
BS2 Tutorial 2 ventilation design
Est
 
Itenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9bItenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9b
NoviyantiNugraha
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
Yuri Melliza
 
Estimating The Available Amount Of Waste Heat
Estimating The Available Amount Of Waste HeatEstimating The Available Amount Of Waste Heat
Estimating The Available Amount Of Waste Heatharlandmachacon
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
M SAQIB
 

What's hot (20)

Single Phase Gas Flow Correlations
Single Phase Gas Flow CorrelationsSingle Phase Gas Flow Correlations
Single Phase Gas Flow Correlations
 
Ppt1
Ppt1Ppt1
Ppt1
 
Fan and blowers (mech 326)
Fan and blowers (mech 326)Fan and blowers (mech 326)
Fan and blowers (mech 326)
 
Separating and throttling calorimeter for steam
Separating and throttling calorimeter for steamSeparating and throttling calorimeter for steam
Separating and throttling calorimeter for steam
 
Ankit
AnkitAnkit
Ankit
 
Ppt2
Ppt2Ppt2
Ppt2
 
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPSOPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
OPERATING ENVELOPES FOR CENTRIFUGAL PUMPS
 
Radiator design
Radiator designRadiator design
Radiator design
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob
 
Blower
BlowerBlower
Blower
 
Compressor
CompressorCompressor
Compressor
 
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
A QUICK ESTIMATION METHOD TO DETERMINE HOT RECYCLE REQUIREMENTS FOR CENTRIFUG...
 
Subsonic wind tunnel with animation
Subsonic wind tunnel with animationSubsonic wind tunnel with animation
Subsonic wind tunnel with animation
 
K10881 (chinmay sharma)rac
K10881 (chinmay sharma)racK10881 (chinmay sharma)rac
K10881 (chinmay sharma)rac
 
Ppt3
Ppt3Ppt3
Ppt3
 
BS2 Tutorial 2 ventilation design
BS2 Tutorial 2 ventilation designBS2 Tutorial 2 ventilation design
BS2 Tutorial 2 ventilation design
 
Itenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9bItenas termodinamika ii bab 9b
Itenas termodinamika ii bab 9b
 
AIR STANDARD CYCLE
AIR STANDARD CYCLEAIR STANDARD CYCLE
AIR STANDARD CYCLE
 
Estimating The Available Amount Of Waste Heat
Estimating The Available Amount Of Waste HeatEstimating The Available Amount Of Waste Heat
Estimating The Available Amount Of Waste Heat
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 

Viewers also liked

Benefits Brief April 09
Benefits Brief April 09 Benefits Brief April 09
Benefits Brief April 09
Ebailey_bowlesrice
 
Crm Bud 20100225 Crm Final
Crm Bud 20100225 Crm FinalCrm Bud 20100225 Crm Final
Crm Bud 20100225 Crm Final
crmsys
 
Estudio Cient Fico Sobre Los Peos
Estudio Cient Fico Sobre Los PeosEstudio Cient Fico Sobre Los Peos
Estudio Cient Fico Sobre Los Peosguestbc5a42
 
Sudamericano
SudamericanoSudamericano
Sudamericano
josesucuzhanay25
 
Sudamericano
SudamericanoSudamericano
Sudamericano
josesucuzhanay25
 
GrabacióN Y Subida De Audio Y MúSica
GrabacióN Y Subida De Audio Y MúSicaGrabacióN Y Subida De Audio Y MúSica
GrabacióN Y Subida De Audio Y MúSicamaidervalverde
 
Partodenosotros
PartodenosotrosPartodenosotros
Partodenosotros
guestd730c3a
 
Año de la misericordia avendaño pereyra
Año de la misericordia avendaño pereyraAño de la misericordia avendaño pereyra
Año de la misericordia avendaño pereyra
guada pe
 
North Carolina Bankers 2016 Final[1]
North Carolina Bankers 2016 Final[1]North Carolina Bankers 2016 Final[1]
North Carolina Bankers 2016 Final[1]Margie Kensil
 
järfälla.PDF
järfälla.PDFjärfälla.PDF
järfälla.PDFLena Chau
 
Trabajo De Miguel Angel Molina
Trabajo De Miguel Angel MolinaTrabajo De Miguel Angel Molina
Trabajo De Miguel Angel Molinalolisierra1
 
Decreto regulamentar 2 de 2010 avaliação de desempenho
Decreto regulamentar 2 de 2010 avaliação de desempenhoDecreto regulamentar 2 de 2010 avaliação de desempenho
Decreto regulamentar 2 de 2010 avaliação de desempenhoMaria João Vasconcelos
 
Marketing Plan
Marketing PlanMarketing Plan
Marketing Plan
Sindhuja Nanduri
 
Presentacions en públic
Presentacions en públicPresentacions en públic
Presentacions en públic
ngraells
 
Francesia F Ontiveros
Francesia F OntiverosFrancesia F Ontiveros
Francesia F OntiverosIziar
 

Viewers also liked (20)

Class Presentation
Class PresentationClass Presentation
Class Presentation
 
Benefits Brief April 09
Benefits Brief April 09 Benefits Brief April 09
Benefits Brief April 09
 
Crm Bud 20100225 Crm Final
Crm Bud 20100225 Crm FinalCrm Bud 20100225 Crm Final
Crm Bud 20100225 Crm Final
 
Estudio Cient Fico Sobre Los Peos
Estudio Cient Fico Sobre Los PeosEstudio Cient Fico Sobre Los Peos
Estudio Cient Fico Sobre Los Peos
 
Sudamericano
SudamericanoSudamericano
Sudamericano
 
Sudamericano
SudamericanoSudamericano
Sudamericano
 
Taller De Pintar Camisas
Taller De Pintar CamisasTaller De Pintar Camisas
Taller De Pintar Camisas
 
Quem te fez nascer portugal
Quem te fez nascer portugalQuem te fez nascer portugal
Quem te fez nascer portugal
 
GrabacióN Y Subida De Audio Y MúSica
GrabacióN Y Subida De Audio Y MúSicaGrabacióN Y Subida De Audio Y MúSica
GrabacióN Y Subida De Audio Y MúSica
 
Partodenosotros
PartodenosotrosPartodenosotros
Partodenosotros
 
Año de la misericordia avendaño pereyra
Año de la misericordia avendaño pereyraAño de la misericordia avendaño pereyra
Año de la misericordia avendaño pereyra
 
North Carolina Bankers 2016 Final[1]
North Carolina Bankers 2016 Final[1]North Carolina Bankers 2016 Final[1]
North Carolina Bankers 2016 Final[1]
 
järfälla.PDF
järfälla.PDFjärfälla.PDF
järfälla.PDF
 
Trabajo De Miguel Angel Molina
Trabajo De Miguel Angel MolinaTrabajo De Miguel Angel Molina
Trabajo De Miguel Angel Molina
 
Decreto regulamentar 2 de 2010 avaliação de desempenho
Decreto regulamentar 2 de 2010 avaliação de desempenhoDecreto regulamentar 2 de 2010 avaliação de desempenho
Decreto regulamentar 2 de 2010 avaliação de desempenho
 
Marketing Plan
Marketing PlanMarketing Plan
Marketing Plan
 
Anona
AnonaAnona
Anona
 
Presentacions en públic
Presentacions en públicPresentacions en públic
Presentacions en públic
 
Francesia F Ontiveros
Francesia F OntiverosFrancesia F Ontiveros
Francesia F Ontiveros
 
Leonardo Da Vinci 3
Leonardo Da Vinci 3Leonardo Da Vinci 3
Leonardo Da Vinci 3
 

Similar to ME449_OConnor_Presentation

fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
BlentBulut5
 
FAN MODULE.pdf
FAN MODULE.pdfFAN MODULE.pdf
FAN MODULE.pdf
NITIN ASNANI
 
A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...Alexander Decker
 
A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...Alexander Decker
 
SPEECH EMOTION RECOGNITION SYSTEM USING RNN
SPEECH EMOTION RECOGNITION SYSTEM USING RNNSPEECH EMOTION RECOGNITION SYSTEM USING RNN
SPEECH EMOTION RECOGNITION SYSTEM USING RNN
IRJET Journal
 
REFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONINGREFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONING
radhakrishnan unni
 
DUCT FORMULA Design-2006.pptx
DUCT FORMULA Design-2006.pptxDUCT FORMULA Design-2006.pptx
DUCT FORMULA Design-2006.pptx
PraveenMGowdru
 
Numerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air BlowerNumerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air Blower
IJSRD
 
Duct design in HVAC for mechanical engineering degree study material
Duct design in HVAC for mechanical engineering degree study materialDuct design in HVAC for mechanical engineering degree study material
Duct design in HVAC for mechanical engineering degree study material
ChandanRaut9
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
Naveen Kushwaha
 
Hardy cross method of pipe network analysis
Hardy cross method of pipe network analysisHardy cross method of pipe network analysis
Hardy cross method of pipe network analysis
sidrarashiddar
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
KOSIREDDYASHOKDEVAKU
 
duct.pptx
duct.pptxduct.pptx
duct.pptx
Mahamad Jawhar
 
Unit7 nozzles
Unit7   nozzlesUnit7   nozzles
Unit7 nozzles
Malaysia
 
Duct design st
Duct design stDuct design st
Duct design st
kellies sambondu
 
Ac ducts
Ac ductsAc ducts
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...Nate Werner
 

Similar to ME449_OConnor_Presentation (20)

ppty
pptyppty
ppty
 
HVAC
HVACHVAC
HVAC
 
fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
 
FAN MODULE.pdf
FAN MODULE.pdfFAN MODULE.pdf
FAN MODULE.pdf
 
A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...
 
A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...A numerical simulation of the effect of ambient temperature on capillary tube...
A numerical simulation of the effect of ambient temperature on capillary tube...
 
SPEECH EMOTION RECOGNITION SYSTEM USING RNN
SPEECH EMOTION RECOGNITION SYSTEM USING RNNSPEECH EMOTION RECOGNITION SYSTEM USING RNN
SPEECH EMOTION RECOGNITION SYSTEM USING RNN
 
REFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONINGREFRIGERATION AND AIR CONDITIONING
REFRIGERATION AND AIR CONDITIONING
 
DUCT FORMULA Design-2006.pptx
DUCT FORMULA Design-2006.pptxDUCT FORMULA Design-2006.pptx
DUCT FORMULA Design-2006.pptx
 
Numerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air BlowerNumerical Analysis of Centrifugal Air Blower
Numerical Analysis of Centrifugal Air Blower
 
Duct design in HVAC for mechanical engineering degree study material
Duct design in HVAC for mechanical engineering degree study materialDuct design in HVAC for mechanical engineering degree study material
Duct design in HVAC for mechanical engineering degree study material
 
01 kern's method.
01 kern's method.01 kern's method.
01 kern's method.
 
Hardy cross method of pipe network analysis
Hardy cross method of pipe network analysisHardy cross method of pipe network analysis
Hardy cross method of pipe network analysis
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
 
duct.pptx
duct.pptxduct.pptx
duct.pptx
 
Unit7 nozzles
Unit7   nozzlesUnit7   nozzles
Unit7 nozzles
 
Duct design st
Duct design stDuct design st
Duct design st
 
Ac ducts
Ac ductsAc ducts
Ac ducts
 
008
008008
008
 
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...
Numerical_Analysis_of_Turbulent_Momentum_and_Heat_Transfer_in_a_Rectangular_H...
 

ME449_OConnor_Presentation

  • 1. Fan Speed Design Project Design Project for ME 449 By Dillon O’Connor 1
  • 2. Duct System Technical Details The given dimensions are shown on in the Table 1. Other relevant information: 1) Duct recirculates air within the house 2) The ducts are made of galvanized iron sheeting 3) Outlet velocities may not be the same. 4) Outlet velocities should be close to 25 ft/s without exceeding that amount. Description Cross Section Length Duct 1 24 in. X 18 in. 25 ft 90o Turns (1 to 2; and 1 to 3) - - Duct 2 18 in. X 12 in. 12 ft Duct 3 12 in. X 12 in. 7 ft 90o Turns (2 to 4; and 2 to 5) - - Duct 4 w/ one 90o Turn 8 in. diameter (circular) 6 ft Duct 5 w/ one 90o Turn 8 in. diameter (circular) 6 ft 90o Turns (3 to 6; and 3 to 7) - - Duct 6 w/ one 90o Turn 8 in. diameter (circular) 6 ft Duct 7 w/ one 90o Turn 8 in. diameter (circular) 6 ft Return Duct w/ one 90o Turn 24 in. X 18 in. 22 ft Table 1: Given duct system dimensions 2
  • 3. Duct Schematic • Figure 1 shows an isometric view of the system. • Figure 2 shows a dimensioned top down view (left) and a dimensioned side view (right) of the system. Figure 1. Isometric view of the duct system. Figure 2. Dimensioned Schematic of the duct system. 3
  • 4. Fan Curve • The fan has already been selected. • However the required operating speed needs to be determined. • The fan curve for the given fan has been provided in Figure 3. • The curve fit equation to this fan curve will be used in later calculations. Figure 3. Fan curve for the given system’s fan. 4
  • 5. Circuit Diagram • Figure 4 shows the equivalent circuit diagram for the system. • Major loss sections are shown as long rectangular boxes. • Minor loss sections are shown as short rectangular boxes. • Each will have a hf that contributes to the resulting pressure loss. Figure 4. Equivalent circuit diagram of the duct system. 5
  • 6. Minor Loss Coefficients The minor loss coefficients used are shown on in Table 2. Tee and Elbow K values are taken from Table 6.5 of the Fluid Mechanics (5th edition) text by F. M. White. Flanged connections were assumed. K values for sudden expansion and sudden contraction come from equations 6.80 and 6.81 respectively from the same textbook. 𝐾 = 1 − 𝑑2 𝐷2 2 𝐾 = 0.42 1 − 𝑑2 𝐷2 Duct Minor Loss Coefficient Value Description K1 0.41 Tee (d = 20 in.) K2 0.7035 Sudden Contraction (d1 to d2) + Tee (d = 14.4 in.) K3 0.8004 Sudden Contraction (d1 to d3) + Tee (d = 12 in.) K4 1.5504 Sudden Contraction (d2 to d4) + Elbow (90 degree, regular, d = 8 in.) + Sudden Expansion (d4 to large d) K5 1.5504 Sudden Contraction (d2 to d5) + Elbow (90 degree, regular, d = 8 in.) + Sudden Expansion (d5 to large d) K6 1.4933 Sudden Contraction (d3 to d6) + Elbow (90 degree, regular, d = 8 in.) + Sudden Expansion (d6 to large d) K7 1.4933 Sudden Contraction (d3 to d7) + Elbow (90 degree, regular, d = 8 in.) + Sudden Expansion (d7 to large d) K8 0.63 Sudden Contraction (large d to d8) + Elbow (d = 20 in.) Table 2: Minor loss coefficients (6.80) (6.81) 6
  • 7. Constants • The other constants used in this design are shown in Table 3. • Air properties, including density, were assumed constant throughout the duct system. • Air properties were evaluated at standard room temperature (70 ºF) and pressure (1 bar). • Acceleration due to gravity was taken at sea level. symbol Description Value g Acceleration due to gravity 32.2 ft/s² ε Duct roughness 0.0005 ft ν Kinematic viscosity of air 1.64e-4 ft²/s γ Specific weight of air 7.492e-2 lb/ft³ Table 3: Essential constants. 7
  • 8. Equations (1st Part) 𝑓 = 1 −1.8𝑙𝑜𝑔 6.9 𝑅𝑒 𝐷 + 𝜀/𝐷ℎ 3.7 1.11 2 ℎ 𝑓,𝑚𝑎𝑗𝑜𝑟 = 𝑓 𝐿 𝐷ℎ 1 2𝑔𝐴2 𝑄2 ℎ 𝑓,𝑚𝑖𝑛𝑜𝑟 = 𝐾 1 2𝑔𝐴2 𝑄2 ℎ 𝑓 = ℎ 𝑓,𝑚𝑎𝑗𝑜𝑟 + ℎ 𝑓,𝑚𝑖𝑛𝑜𝑟 ∆𝑃 = 𝛾ℎ 𝑓 𝑇𝑃𝑡𝑜𝑝 𝑙𝑒𝑔 = ∆𝑃1 + ∆𝑃2 + ∆𝑃4 + ∆𝑃8 𝑇𝑃𝑏𝑜𝑡𝑡𝑜𝑚 𝑙𝑒𝑔 = ∆𝑃1 + ∆𝑃3 + ∆𝑃7 + ∆𝑃8 𝐷ℎ = 4 ∙ 𝐴𝑟𝑒𝑎 𝑓𝑙𝑜𝑤 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑤𝑒𝑡𝑡𝑒𝑑 𝑅𝑒 𝐷 = 𝑄𝐷ℎ 𝐴𝜈 8
  • 9. Method • Guess a Q1 value. • Calculate total pressure lost through the top line for Q2 = 0 to 100% of Q1. • Calculate total pressure lost through the bottom line for Q3 = 0 to 100% of Q1. • Plot ΔPtop leg vs. increasing% of Q1 and ΔPbottom leg vs. decreasing % of Q1. • Independent axis value at intercept = % of Q1 to Q2. • Q2 = %*Q1 and Q3 = (1oo-%)*Q1. • Q4 = Q5 = 0.5*Q2 and Q6 = Q7 = 0.5*Q3 • Intercept can be better tuned by comparing resulting ΔPtop leg and ΔPbottom leg values until they are equivalent. • Find exit velocities using v = Q/A • Change Q1 until max v (of v4-v7) is close to 25 ft/s 9
  • 10. Q1 And Where It Goes • A Q1 guess of 34 ft³/s yielded the plot shown in Figure 5. • The intercept in this case can be seen at about 51% of Q1 to Q2 and the remaining 49% of Q1 to Q3. • Fine tuning the % by ΔP values yields a 51.26% of Q1 to Q2. The remaining 48.74% of Q1 goes to Q3. Figure 5. Plot of losses in each line as a function of decimal fraction of Q1 that travels into Q2 for a guessed Q1 of 34 ft³/s. 10
  • 11. Verifying Accuracy Of Guess • A guess of Q1 = 34 ft³/s yields a maximum exit velocity of 24.96 ft/s in ducts 4 and 5. • The lesser exit velocity is 23.74 ft/s in ducts 6 and 7. • This satisfies the given criteria of an exit velocity close to 25 ft/s without exceeding it. • The resulting TP = ΔP = 0.2761 in.H2O 11
  • 12. Equations (2nd Part) 𝑄1 = 𝛼 𝑇𝑃2 1 𝑄2 2 2 + 𝛽 𝑇𝑃2 𝑁2 = 𝑄2 𝑄1 𝑁1 For these equations: • Q2 is our Q1 from the previous slide converted to ft³/min. • TP2 is our TP from the previous slide. • N2 is the operating speed to achieve it. • Q1 is the Q at N=2000 RPM as shown on the Fan Curve. • N1 = 2000 RPM • α = 5.95 in.H2O • β = 8.5e-7 (in.H2O/CFM²) 12
  • 13. Final Results • The required Q1 = 2040 cfm • The required N = 1607 RPM • The resulting TP = ΔP = 0.2761 in.H2O • The maximum exit velocity is 24.96 ft/s in ducts 4 and 5. • The lesser exit velocity is 23.74 ft/s in ducts 6 and 7. 13
  • 14. REFERENCES White, F.M., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, 2003 Department of Mechanical, Aerospace, and Biomedical Engineering, ME 449 A Preliminary Design Problem, University of Tennessee, Knoxville, 2015 14