Hadoop
Development
Series
By Sandeep Patil
4/11/2017 1Footer Text
Contents
• Traditional Big Data Processing Approach
• Mapreduce I/O
• How Mapper Works
• Reducers tasks
• MapReduce Work Flow
• MapReduce Example
4/11/2017Footer Text 2
Traditional Approach
4/11/2017Footer Text 3
Big
Data
Split Data
Split Data
Split Data
Split Data
grep
grep
grep
grep
Matches
Matches
Matches
Matches
cat All
Matches
MapReduce I/O
Mappers input  InputFormat Class  k/v pair
Mappers Output  Developer  k/v pair
Reducers input  Mappers Output  k/v pair
Reducer Output  Developer  k/v pair
4/11/2017Footer Text 4
How Mapper Works
4/11/2017Footer Text 5
250 Mb File
KuchBhi.txt
Block 1 -- > DN1
Block 2 -- > DN2
Number of Mappers == Number of Blocks
Reducers Tasks
• Summarization operation
• By Default One reducer
4/11/2017Footer Text 6
MapReduce
• Map
- Mapper Get Data from input File
- Write business logic to process data
- Write Output
• Reduce
- Get Data From mapper
- Write business logic
- Write output
4/11/2017Footer Text 7
How Mapper gets Input
• InputFormatClass
• Everything in MapReduce is Key Value Pair
4/11/2017Footer Text 8
MR in Short
4/11/2017Footer Text 9
MR Approach
4/11/2017Footer Text 10
Big
Data
Split Data
Split Data
Split Data
Split Data
All
Matches
MAP Reduce
Next Video
• Will do something practical
4/11/2017Footer Text 11
Like and Subscribe
4/11/2017Footer Text 12
sdp117@gmail.com

Mapreduce Tutorial