SlideShare a Scribd company logo
1 of 29
1
Gear Box
StudentName: Ahmed Naseh Latif
Class: 4 Stage – Group:B
CourseTitle: Design Project
Department: Mechanic and MechatronicEngineering
College of Engineering
Salahaddin University-Erbil
Academic Year 2020-2021
2
Specifications Units value
Power to be delivered hp 16.4
Input speed rpm 1538
Output speed rpm 72
Height in 21
Width x Length in 12 x 12
Gear and bearing life Hours >11000
I/P and O/P shafts extension in 4
I/P and O/P shafts orientation In-line (reverted gearbox)
Shock level Usually low and occasional moderate shocks
Speed,Torque,andGearRatios
• Calculationof the Numberof Teethforeachgear
Usingeq.2
𝑒 =
𝜔5
𝜔2
𝑒 =
72
1538
=
1
21.36
𝑒 =
1
21.36
=
𝑁2
𝑁3
𝑁4
𝑁5
𝑁2
𝑁3
−
𝑁4
𝑁5
− √
1
21.36
−
1
4.62
` 𝑁𝑝 =
2𝑘
(1+2𝑚)sin2 𝜙
(𝑚 + √𝑚2 + (1 + 2𝑚)sin2 𝜙)
𝑁𝑝 =
2 ∗ 1
(1 + 2(4.62))sin2 20
(4.62 + √(4.62)2 + (1 + 2(4.62))sin2 20)
𝑁𝑝 = 15.637 ≈ 16 teeth
𝑁2 = 𝑁4 = 16 teeth
𝑁3 = 4.54(𝑁2) = 73.92 ≈ 73 teeth
3
𝜔5 = (
𝑁2
𝑁3
)(
𝑁4
𝑁5
)𝜔2
𝜔5 = (
16
73
) (
16
73
) ∗ 1538 = 73.88rpm
69 < 𝜔5 < 75
𝜔3 = 𝜔4 = (
16
73
) ∗ 1538 = 337 rpm
𝑇2 =
𝐻
𝜔2
𝑇2 = (
16.4ℎ𝑝
1538𝑟𝑝𝑚
) (550
𝑓𝑡 − 𝑙𝑏/𝑠
ℎ𝑝
)(
1𝑟𝑒𝑣
2𝜋𝑟𝑎𝑑
) (60
𝑠
𝑚𝑖𝑛
)
𝑇2 =
16.4 ∗ 550 ∗ 60
1750 ∗ 2𝜋
𝑇2 = 56.00𝑙𝑏𝑓.𝑓𝑡
𝑇3 = 𝑇2 (
𝜔2
𝜔3
)…… …… …. ..eq 9
𝑇3 = 56 ∗ (
1538
337
) = 255.5lbf.ft
𝑇5 = 𝑇2 (
𝜔2
𝜔5
)
𝑇5 = 56 ∗ (
1538
73.88
) = 1165.8lbf.ft
𝑃min =
(𝑁3 +
𝑁2
2
+
𝑁5
2
+ 2)
𝑌 − (clearances + wall thickness)
… …… ….. Eq.(11)
Clearances + wall thickness = 3in
𝑃min =
(76 +
16
2
+
73
2
+ 2)
22 − (3)
= 6.64 teeth /in
𝑃min = 7 teeth /in
𝑑2 = 𝑑4 =
𝑁2
𝑃
=
16
7
= 2.28in
𝑑3 = 𝑑5 =
𝑁3
𝑃
=
73
7
= 10.43in
𝑉23 =
𝜋𝑑2𝜔2
12
…… …… …. .𝐸𝑞12
4
𝑉23 =
𝜋(2.28)(1538)
12
𝑉23 = 918.0ft/min
𝑉
45 =
𝜋𝑑5𝜔5
12
𝑉
45 =
𝜋(10.43)(73.88)
12
𝑉
45 = 201.7ft/min
𝑊
23
𝑡
= 33000
𝐻
𝑉23
… …… ……… .𝐸𝑞.13
𝑊
23
𝑡
= 33000
16.4
918
= 589.5lbf
𝑊
45
𝑡
= 33000
H
𝑉
45
𝑊
45
𝑡
= 33000
16.4
201.7
= 2683.2lbf
Gear N 𝜔 T d V W
# rpm Ibf.ft in Ft//minIbf
2 16 1538 56 2.28 918 589.5
3 73 337 255.5 10.43 918 589.5
4 16 337 255.5 2.28 201.7 2683.2
5 73 73.88 1165.8 10.43 201.7 2683.2
Chapter 3
𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝐾𝑚
𝑑𝑝𝐹
𝐶𝑓
𝐼
… …… …… .Eq.(14)
𝐶𝑝 = 2300
𝐾𝑜 = 1
𝐾𝑣 = (
𝐴 + √𝑉
𝐴
)
𝐵
…… ……. Eq.15
5
𝐴 = 50 + 56(1 − 𝐵) …… …… 𝐸𝑞. (16)
𝐵 = 0.25(12 − 𝑄𝑣)2/3 … …… .. 𝐸𝑞. (17)
𝑄𝑣 = 7
𝐵 = 0.25(12 − 7)2/3 = 0.731
𝐴 = 50 + 56(1 − 0.731) = 65.1
𝐾𝑣 = (
65.1 + √201.7
65.1
)
0.731
= 1.155
𝐾𝑠 = 1 size factor
𝐾𝑚 = 𝐶𝑚𝑓 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒)…… ……. .𝐸𝑞.(18)
𝐶𝑚𝑐 = 1 because isuncrownedteeth
𝐶𝑝𝑓 = (
𝐹
10𝑑
− 0.0375 + 0.0125𝐹) … ……. .𝐸𝑞19 for 1<F<17 in.
𝐶𝑝𝑚 = 1
𝐶𝑚𝑎 = A + BF + CF^2
𝐶𝑒 = 1
𝐹 = (3 ∼ 5) (
𝜋
𝑃
) … …… ……. 𝐸𝑞. (21)
𝐹 = 4 (
𝜋
7
) = 1.8in
Roundup to F= 2 in.
𝐴 = 0.127, 𝐵 = 0.0158, 𝐶 = −0.930(10)−4
𝐶𝑚𝑎 = 0.127 + 2(0.0158) − 0.930(10)−4 ∗ (2)2
𝐶𝑚𝑎 = 0.15
𝐶𝑝𝑓 = (
2
10(2.28)
− 0.0375 + 0.0125(2)) = 0.0752
𝐶𝑓 = 1
𝐾𝑚 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒)
𝐾𝑚 = 1 + 1 ∗ (0.0752(1) + 0.15(1))
𝐾𝑚 = 1.24
6
𝐼 =
cos𝜙sin 𝜙
2𝑚𝑁
(
𝑚𝐺
𝑚𝐺 + 1
) …… ……… … Eq. (22)
𝐼 =
cos20sin 20
2(1)
(
4.62
4.62 + 1
) = 0.1321
𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝐾𝑚
𝑑𝑝𝐹
𝐶𝑓
𝐼
𝜎𝑐 = 2300√2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗ (
1.24
2.28 ∗ 2
) (
1
0.1321
) = 183702psi
𝜎𝑐, all = (
𝑆𝑐
𝑆𝐻
)(
𝑍𝑁𝐶𝐻
𝐾𝑇𝐾𝑅
)… ……… .. Eq.(23)
𝐿4 = 𝑡 ∗ 𝑛4 …… …… .. Eq. (24)
𝐿4 = 11000 ∗ 60 ∗ 337 = 2.2 ∗ 108 rev
Usingfig 7 to find 𝑍𝑁
𝑍𝑁 = 0.9
𝐾𝑇 = 𝐾𝑅 = 𝐶𝐻 = 1
𝑆𝐻 = 1.2 design factor
So
𝑆𝑐 =
𝜎𝑐𝑆𝐻
𝑍𝑁
=
1.2 ∗ 183702
0.9
= 244900psi
Usingtable 3-4 the type of steel gear
𝑆𝑐 = 244900 is 𝐠𝐫𝐚𝐝𝐞 𝟑 carburized &ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒𝑙 𝑔𝑒𝑎𝑟,𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒
𝜎𝑐,𝑎𝑙𝑙 = 𝑆𝑐𝑍𝑁 = 275000 ∗ 0.9 = 247500psi
𝑛𝑐 =
𝜎𝑐,𝑎𝑙𝑙
𝜎𝑐
=
247500
183702
= 1.35
Bending of gear 4
𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝑃𝑑
𝐹
𝐾𝑚𝐾𝐵
𝐽
…… …… …. Eq. 26
Usingfig 8
𝑁4 = 16 teeth, then 𝐽 = 0.27
7
𝑊𝑡 = 2683.2lbf
𝐾𝑣 = 1.155
𝐾𝑜 = 1
𝐾𝑠 = 1
𝐾𝑚 = 1.24
𝐹 = 2in.
𝐾𝐵 = 1
𝑃𝑑 = 7 teeth /in
𝜎 = 2683.2 ∗ 1.155 ∗ (
7
2
) (
1.24
0.27
) = 49815psi
L=2.2 ∗ 108 rev
Thenwe use fig
𝑌𝑁 = 0.9
Usingthe same material
𝑆𝑡 = 75000
𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 75000 ∗ 0.9 = 67500psi
𝑛 =
𝜎𝑎𝑙𝑙
𝜎
=
67500
49815
= 1.35
Wear of gear 5
𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝐾𝑚
𝑑𝑝𝐹
𝐶𝑓
𝐼
𝜎𝑐 = 2300√2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗ (
1.24
10.43 ∗ 2
) (
1
0.1321
) = 85890psi
𝐿5 = 11000 ∗ 60 ∗ 73.88 = 4.9 ∗ 107rev
𝑍𝑁 = 1.0
Choosinggrade 2 throughhardenedsteel to250HB
Usingfig 3.6 at HB=250 to find 𝑆𝑐 = 121500psi
𝑛𝑐 =
𝜎𝑐,𝑎𝑙𝑙
𝜎𝑐
=
121550
85890
= 1.41
Bending of gear 5
𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝑃𝑑
𝐹
𝐾𝑚𝐾𝐵
𝐽
N5=73 , thenJ=0.415
8
𝜎 = 2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗
7
2
∗
1.24
0.415
= 32410psi
Chosingthe same material grade 2
Usingfig 3.7 at HB=250
𝑆𝑖 = 41900
𝑌𝑁 = 0.97
𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 41900 ∗ 0.97 = 40640
𝑛 =
𝜎𝑎𝑙𝑙
𝜎
=
40640
32410
= 1.25
Wearof gear 2
𝑉23 = 918
ft
min
𝑊
23
𝑡
= 589.5 ibf
Usingeq 15
𝐾𝑣 = (
65.1 + √918
65.1
)
0.731
= 1.32
Gear 2&3 is lowerthan4&5 therefore
Select F=1.5 in.
𝐶𝑝𝑓 = (
𝐹
10𝑑
− 0.0375 + 0.0125𝐹)
𝐶𝑝𝑓 = (
1.5
10(2.28)
− 0.0375 + 0.0125(1.5)) = 0.0470
Usingeq 20
𝐶𝑚𝑎 = 0.127 + 1.5(0.0158) − 0.930(10)−4 ∗ (1.5)2 = 0.15
𝐾𝑚 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒)
𝐾𝑚 = 1 + 1 ∗ (0.0470(1) + 0.15(1))
𝐾𝑚 = 1.21
Usingeq 14
9
𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝐾𝑚
𝑑𝑝𝐹
𝐶𝑓
𝐼
𝜎𝑐 = 2300√589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ (
1.21
2.28 ∗ 1.5
)(
1
0.1321
) = 105000psi
Usingeq 24
𝐿2 = 11000 ∗ 60 ∗ 1538 = 1.0 ∗ 109rev
𝑍𝑁 = 0.8
Use table 3.4 & ant try grade 1, flame hardenedsteel
𝑆𝑐 = 170000psi
𝑛𝑐 =
𝜎𝑐,𝑎𝑙𝑙
𝜎𝑐
=
170000 ∗ 0.8
105000
= 1.29
Bendingof gear 2
N2=16 teeth then
J=0.27
Usingfig 3.5 as 𝐿2 = 1.0 ∗ 109rev , 𝑌𝑁 = 0.88
Usingeq 26
𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝑃𝑑
𝐹
𝐾𝑚𝐾𝐵
𝐽
𝜎 = 589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗
7
1.5
∗
1.21
0.27
= 16274psi
Usingthe same material fromtable 3.5 flame hardened steel
𝑆𝑡 = 45000psi
Usingeq 27
𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 45000 ∗ 0.88 = 39600psi
𝑛 =
𝜎𝑎𝑙𝑙
𝜎
=
39600
16274
= 2.43
10
Wearof gear 3
𝐿3 = 11000 ∗ 60 ∗ 337 = 2.2 ∗ 108rev
𝑍𝑁 = 0.9
𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝐾𝑚
𝑑𝑝𝐹
𝐶𝑓
𝐼
𝜎𝑐 = 2300√589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ (
1.21
10.43 ∗ 1.5
) (
1
0.1321
) = 49092psi
Chosinggrade 1 through hardenedsteelto200HB
Usingfig 3.6 then
𝑆𝐶 = 90000psi
𝑛𝑐 =
𝜎𝑐,𝑎𝑙𝑙
𝜎𝑐
=
90000 ∗ 0.9
49092
= 1.65
Bendingof gear 3
N3=73 then J=0.415 from fig3.4
𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠
𝑃𝑑
𝐹
𝐾𝑚𝐾𝐵
𝐽
𝜎 = 589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗
7
1.5
∗
1.21
0.415
= 10590psi
Fig3.5
𝑌𝑁 = 0.9
Usingthe same material grade 1
𝑆𝐶 = 28000psi
𝑛 =
𝜎𝑎𝑙𝑙
𝜎
=
28000 ∗ 0.9
10590
= 2.38
11
Gear Material Treatment Wear stress Bendingstress d F
Grade psi psi in in
2 1 Flame-hardened 170000 45000 2.28 1.5
3 1 Through-hardenedto200HB 90000 28000 10.43 1.5
4 3 Carburizedandhardened 275000 75000 2.28 2.0
5 2 Through-hardenedto250HB 121550 41900 10.43 2.0
Chapter 4
𝐹2=𝐹3=1.5 in.
𝐹
4=𝐹5=2.0 in.
𝑊
23
𝑡
= 589.5lbf
𝑊
45
𝑡
= −2683.2lbf
𝑊𝑟 = 𝑊𝑡tan𝜙 …… …… …… .. 𝐸𝑞.28
𝑊
23
𝑟
= 𝑊
23
𝑡
tan 𝜙
𝑊
23
𝑟
= 589.5tan 20
𝑊
23
𝑟
= −215lb𝑓
𝑊
45
𝑟
= −977lbf
Determinationof reactionforces on bearings
12
x-zplane:
∑𝑀𝐴 = 0
𝑊
23
𝑡
∗ 𝑥1 − 𝑊
45
𝑡
∗ 𝑥2 + 𝑅𝐵𝑍 ∗ 𝑥3 = 0
589.5(2.75 − 0.75) − 2683.2(8.5 − 0.75)
+𝑅𝐵𝑍(10.75 − 0.75) = 0
𝑅𝐵𝑍 = 1962 lbf
∑𝐹
𝑧 = 0
𝑅𝐴𝑍 + 𝑊
23
𝑡
− 𝑊
45
𝑡
+ 𝑅𝐵𝑍 = 0
𝑅𝐴𝑍 = −589.5 + 2683.2 − 1962
𝑅𝐴𝑍 = 132 lb𝑓
x-yplane :
∑𝑀𝐴 = 0
𝑊
23
𝑟
∗ 𝑥1 + 𝑊
45
𝑟
∗ 𝑥2 − 𝑅𝐵𝑌 ∗ 𝑥3 = 0
215(2.75 − 0.75) + 977(8.5 − 0.75)
−𝑅𝐵𝑌(10.75− 0.75) = 0
𝑅𝐵𝑌 = 800 lbf
∑𝐹𝑌 = 0
𝑅𝐴𝑌 − 𝑊
23
𝑟
− 𝑊
45
𝑟
+ 𝑅𝐵𝑌 = 0
𝑅𝐴𝑌 = 215 + 977 − 800
𝑅𝐴𝑌 = 392 lbf
Torque diagram:
𝑇3 = 𝑊
23
𝑡
∗
𝑑3
2
𝑇3 = 589.5 ∗
10.43
2
𝑇3 = 3074 lbf. in
𝑇4 = −W45
t
∗
d4
2
𝑇4 = −2683.2 ∗
2.28
2
𝑇4 = −3060lbf.in
The shear force & bearingmoment diagram
x-yplane :
13
𝑉
𝐴𝐺 = 𝑅𝐴𝑌 = 392 lbf
𝑉𝐺𝐽 = 𝑅𝐴𝑌 − 𝑊
23
𝑟
𝑉𝐺𝐽 = 392 − 215
𝑉𝐺𝐽 = 177 lbf
𝑉
𝐽𝐵 = 𝑉𝐺𝐽 − 𝑊
45
𝑟
𝑉
𝐽𝐵 = 177 − 977
𝑉
𝐽𝐵 = −800 = 𝑅𝐵𝑌 𝑀𝐺 = 𝑅𝐴𝑌 ∗ X1 = 784 Ibf.in
𝑀𝐽 = 𝑅𝐴𝑌(8.5 − 0.75) − 𝑊
23
𝑟
(8.5 − 2.75)
𝑀𝐽 = 392 ∗ (8.5 − 0.75) − 215(8.5 − 2.75)
𝑀𝐽 = 1800 Ibf. in
𝑀𝐵 = 𝑅𝐴𝑌(10.75 − 0.75) − 𝑊
23
𝑟
(10.75 − 2.75) − 𝑊
45
𝑟
(10.75 − 8.5)
𝑀𝐵 = 392(10) − 215(8) − 977(2.25)
𝑀𝐵 = 1.75 ≈ 0
x-zplane:
𝑉
𝐴𝐺 = 𝑅𝐴𝑍 = 132lbf
𝑉𝐺𝐽 = 𝑅𝐴𝑍 + 𝑊
23
𝑡
𝑉𝐺𝐽 = 132 + 589.5
𝑉𝐺𝐽 = 722lbf
𝑉
𝐽𝐵 = 𝑉𝐺𝐽 − 𝑊
45
𝑡
𝑉
𝐽𝐵 = 722 − 2683.2
𝑉
𝐽𝐵 = −1962 = 𝑅𝐵𝑍
𝑀𝐺 = 𝑅𝐴𝑍 ∗ 𝑥1
𝑀𝐺 = 132 ∗ 2
𝑀𝐺 = 264 lbf.in
𝑀𝐽 = 𝑅𝐴𝑍(8.5 − 0.75) + 𝑊
23
𝑡
(8.5 − 2.75)
𝑀𝐽 = 132 ∗ (8.5 − 0.75) + 589.5(8.5 − 2.75)
𝑀𝑗 = 4412.6 lbf.in
𝑀𝐵 = 𝑅𝐴𝑍(10.75 − 0.75) + 𝑊
23
𝑡
(10.75 − 2.75) − 𝑊
45
𝑡
(10.75 − 8.5)
𝑀𝐵 = 132(10) + 589.5(8) − 2683.2(2.25)
𝑀𝐵 = −1.2 ≈ 0
The total bendingmomentdiagram
𝑀𝐺 = √(784)2 + (264)2
𝑀𝐺 = 827 lbf. in
𝑀𝐽 = √(1800)2 + (4412.6)2
𝑀𝐽 = 4766 lbf.in
14
The shoulderatpointI:
𝑀𝐼 = 𝑅𝐴𝑌(7.5 − 0.75) − 𝑊
23
𝑟
(7.5 − 2.75)
𝑀𝐼 = 392 ∗ (7.5 − 0.75) − 215(7.5 − 2.75)
𝑀𝐼 = 1625 Ibf.in x − y plane
𝑀𝐼 = 𝑅𝐴𝑍(7.5− 0.75) + 𝑊
23
𝑡
(7.5 − 2.75)
𝑀𝐼 = 132 ∗ (7.5 − 0.75) + 589.5(7.5 − 2.75)
𝑀𝐼 = 3691.1 lbf.in x − z plane
𝑀𝐼 = √(1625)2 + (3691.1)2
𝑀𝐼 = 4033 lbf.in
The midrange torque is:
𝑇𝑀 = 3067 Ibf.in
𝑀𝑀 = 𝑇𝑎 = 0
Extimation ofthe stress concentrations:
D/d=1.2~1.5
r/d=0.02~0.06
the MARIN equation:
𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒
′ … …… …… ..𝐸𝑞.29
𝑘𝑎 = 𝑎𝑆𝑢𝑡
𝑏
⋯⋯⋯⋯⋯⋯𝐸𝑞 ⋅ 30
A 1018CD steel ischosen:
𝑆𝑢𝑡=64 kpsi
𝑆𝑦 = 54 kpsi
Therefore
𝑎 = 2.7kpsi 𝑏 = −0.265
𝑘𝑎 = 2.7(64)−0.265 = 0.897
𝑘𝑏 = 0.9
𝑘𝑐 = 𝑘𝑑 = 𝑘𝑒 = 1
15
𝑆𝑒
′ = 0.5 ∗ 𝑆𝑢𝑡 for 𝑆𝑢𝑡 ≤ 200kpsi
𝑆𝑒
′ = 100kpsi for 𝑆𝑢𝑡 > 200𝑘𝑝𝑠𝑖
𝑆𝑒 = 0.897 ∗ 0.9 ∗ 0.5 ∗ 64 eq.29
𝑆𝑒 = 25.8 kpsi
Assuming shoulder-fillet well-rounded r/d=0.1 then:
From table 4-3
𝐾𝑡 = 1.7 and
𝐾𝑡𝑠 = 1.5
𝐾𝑓 = 𝐾𝑡 and 𝐾𝑓𝑠 = 𝐾𝑡𝑠
𝑀𝑚 = 𝑇𝑎 = 0
𝑑 = √
16𝑛
𝜋
{
2𝐾𝑓𝑀𝑎
𝑆𝑒
+
𝐾𝑓𝑠𝑇𝑚
𝑆𝑢𝑡
√3}
3
… …… …… .. 𝐸𝑞. 32
𝑑 = √
16 ∗ 1.5
𝜋
{
2 ∗ 1.7 ∗ 4033
25800
+
1.5 ∗ 3067
64000
√3}
3
𝑑 = 1.71in
From the standards:
d= 1
11
16
= 1.6875 in.
D/d=1.2
D=1.6875*1.2=2.025 in.
D= 2 in.
D/d=
2
1.6875
= 1.185
Assume
r/d=0.1
r=0.1*1.6875=0.16 in.
using fig 4.5 for r/d=0.1 & D/d=1.185
𝐾𝑡 = 1.6
Using fig 4.6 for find q
q=0.82
16
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33
𝐾𝑓 = 1 + 0.82(1.6 − 1)
𝐾𝑓 = 1.49
Using fig 4.7 r/d=0.1 & D/d=1.185
𝐾𝑡𝑠 = 1.35
Using fig4.8 for r=1.6 in
q=0.95
𝐾𝑓𝑠 = 1 + 𝑞shear(𝐾𝑡𝑠 − 1) ……… …𝐸𝑞.34
𝐾𝑓𝑠 = 1 + 0.95(1.35 − 1)
𝐾𝑓𝑠 = 1.33
𝐾𝑎 = 0.897 (not changed)
𝑘𝑏 = (
𝑑
0.3
)
−0.107
for 0.11 ≤ 𝑑 ≤ 2.0 in. …… …. Eq.35
𝑘𝑏 = 0.91𝑑−0.157 for 2.0 < 𝑑 ≤ 10 in. ……… .. 𝐸𝑞. 36
𝑘𝑏 = (
1.6875
0.3
)
−0.107
= 0.831
𝑆𝑒 = 0.897 ∗ 0.831 ∗ 0.5 ∗ 64
𝑆𝑒 = 23.7 kpsi
𝜎𝑎
′ =
32𝐾𝑓𝑀𝑎
𝜋𝑑3
𝜎𝑎
′ =
32 ∗ 1.49 ∗ 4033
𝜋(1.6875)3
𝜎𝑎
′ = 12737 psi
𝜎𝑚
′ = (𝜎𝑚
2 + 3𝜏𝑚
2 )1/2 = [(
32𝐾𝑓𝑀𝑚
𝜋𝑑3
)
2
+ 3 (
16𝐾𝑓𝑠𝑇𝑚
𝜋𝑑3
)
2
]
1/2
𝜎𝑚
′ = [3(
16𝐾𝑓𝑠𝑇𝑚
𝜋𝑑3
)
2
]
1/2
𝜎𝑚
′ =
√3 ∗ 16 ∗ 1.33 ∗ 3067
𝜋(1.6875)3
𝜎𝑚
′ = 7488 psi
1
𝑛𝑓
=
𝜎𝑎
′
𝑆𝑒
+
𝜎𝑚
′
𝑆𝑢𝑡
1
𝑛𝑓
=
12737
23700
+
7488
64000
= 0.654
𝑛𝑓 = 1.53
17
Check for yielding:
𝑛𝑦 =
𝑆𝑦
𝜎max
′
𝑛𝑦 =
54000
(12737 + 7488)
= 2.66
The keyway
M=4030 Ibf.in
Assume
r/d=0.02
r=0.02*1.6875
r=0.033 in.
using fig 4.5
𝐾𝑡 = 2.4
Using fig 4.6
q=0.66
using eq.33
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33
𝐾𝑓 = 1 + 0.66(2.4 − 1)
𝐾𝑓 = 1.92
Using fig 4.7
𝐾𝑡𝑠 = 2.2
Fig 4.8 gives
𝑞𝑠 = 0.91
Using eq.34
18
𝐾𝑓𝑠 = 1 + 𝑞shear(𝐾𝑡𝑠 − 1) ……… …𝐸𝑞.34
𝐾𝑓𝑠 = 1 + 0.91(2.2 − 1)
𝐾𝑓𝑠 = 2.09
𝜎𝑎
′ =
32𝐾𝑓𝑀𝑎
𝜋𝑑3
𝜎𝑎
′ =
32 ∗ 1.92 ∗ 4030
𝜋(1.6875)3
𝜎𝑎
′ = 16400 psi
𝜎𝑚
′ = [3(
16𝐾𝑓𝑠𝑇𝑚
𝜋𝑑3
)
2
]
1/2
𝜎𝑚
′ =
√3 ∗ 16 ∗ 2.09 ∗ 3067
𝜋(1.6875)3
𝜎𝑚
′ = 11767 psi
1
𝑛𝑓
=
𝜎𝑎
′
𝑆𝑒
+
𝜎𝑚
′
𝑆𝑢𝑡
1
𝑛𝑓
=
16400
23700
+
11767
64000
= 0.876
𝑛𝑓 = 1.14
Is not good
Trying steel 1050CD with 𝑆𝑢𝑡 = 100 kpsi & 𝑆𝑦 = 84 kpsi
Using eq 30
𝑘𝑎 = 𝑎𝑆𝑢𝑡
𝑏
⋯⋯⋯⋯⋯⋯𝐸𝑞 ⋅ 30
𝑘𝑎 = 2.7(100)−0.265
𝑘𝑎 = 0.797
Using eq.29
𝑆𝑒 = 0.797 ∗ 0.831 ∗ 0.5 ∗ 100 eq. 29
𝑆𝑒 = 33.1 kpsi
Fig 4.6 gives
q=0.73
19
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33
𝐾𝑓 = 1 + 0.73(2.4 − 1)
𝐾𝑓 = 2.02
𝜎𝑎
′ =
32 ∗ 2.02 ∗ 4030
𝜋(1.6875)3
𝜎𝑎
′ = 17255 psi
1
𝑛𝑓
=
𝜎𝑎
′
𝑆𝑒
+
𝜎𝑚
′
𝑆𝑢𝑡
1
𝑛𝑓
=
17255
33100
+
11767
100000
= 0.64
𝑛𝑓 = 1.56
Inspecting at point K
𝑀𝑎 = 2650 Ibf.in
𝑀𝑚 = 𝑇𝑎 = 𝑇𝑚 = 0
Using table 4.3
𝐾𝑡 = 𝐾𝑓 = 5.0
𝜎𝑎 =
32𝐾𝑓𝑀𝑎
𝜋𝑑3
𝜎𝑎 =
32 ∗ 5 ∗ 2650
𝜋(1.6875)3
𝜎𝑎 = 28086psi
𝑛𝑓 =
𝑆𝑒
𝜎𝑎
𝑛𝑓 =
33100
28086
= 1.17
Is not good
Using the shaft diameter of 1.6875 in. to gets:
a=0.068 in.
t=0.048 in.
r=0.01 in.
20
𝑟
𝑡
= 0.208
𝑎
𝑡
= 1.42
𝑑 = 𝐷 − 2𝑡
𝑑 = 1.6875 − 2 ∗ 0.048
𝑑 = 1.5915 in
Using fig 4.9
q=0.65
𝐾𝑡 = 4.3
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33
𝐾𝑓 = 1 + 0.65(4.3 − 1)
𝐾𝑓 = 3.15
𝜎𝑎 =
32𝐾𝑓𝑀𝑎
𝜋𝑑3
𝜎𝑎 =
32 ∗ 3.15 ∗ 2650
𝜋(1.6875)3
𝜎𝑎 = 17694 psi
𝑛𝑓 =
𝑆𝑒
𝜎𝑎
𝑛𝑓 =
33100
17694
= 1.87
Determination of 𝐷6
D/d = 1.2~1.5
d = D/1.2
d = 1.6875/1.2 = 1.406 in.
𝐷6 = 1.4 in.
Inspecting point M
x-y plane
𝑀𝑀 = 𝑅𝐴𝑌(10.25 − 0.75) − 𝑊
23
𝑟
(10.25 − 2.75) − 𝑊
45
𝑟
(10.25 − 8.5)
𝑀𝑀 = 392 ∗ (10.25 − 0.75) − 215(10.25 − 2.75) − 977(10.25 − 8.5)
𝑀𝑀 = 401.75 lbf.𝑖𝑛
x-z plane
21
𝑀𝑀 = 𝑅𝐴𝑍(10.25 − 0.75) + 𝑊
23
𝑡
(10.25 − 2.75) − 𝑊
45
𝑡
(10.25 − 8.5)
𝑀𝑀 = 132 ∗ (10.25 − 0.75) + 589.5(10.25 − 2.75) − 2683.2(10.25 − 8.5)
𝑀𝑀 = 979.65 lbf.in
𝑀𝑀 = √(401.75)2 + (979.65)2
𝑀𝑀 = 1058.82 lbf.in
𝑀𝑎 = 1058.82 lbf.in
𝑀𝑚 = 𝑇𝑚 = 𝑇𝑎 = 0
Using table 4.3
r/d = 0.05
𝐾𝑓 = 1.9
d = 1 in.
r = 0.05*1 = 0.05 in.
using fig 4.6
𝑞 = 0.75
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)
𝐾𝑓 = 1 + 0.75(1.9 − 1)
𝐾𝑓 = 1.675
𝜎𝑎 =
32𝐾𝑓𝑀𝑎
𝜋𝑑3
𝜎𝑎 =
32 ∗ 1.675 ∗ 1058.82
𝜋(1)3
𝜎𝑎 = 18050 psi
𝑛𝑓 =
𝑆𝑒
𝜎𝑎
𝑛𝑓 =
33100
18050
= 1.83
𝐷1 = 𝐷7 = 1 in.
𝐷2 = 𝐷6 = 1.4 in.
𝐷3 = 𝐷5 = 1.6875 in.
𝐷4 = 2 in.
The rigidity of the shaft
Deflection of the shaft
22
𝐼 =
𝜋𝑑4
64
𝐼𝐷𝐻 = 𝐼𝐼𝑀 =
𝜋(1.6875)4
64
= 0.398 in4
𝐼𝐻𝐼 =
𝜋(2.0)4
64
= 0.785in4
x-z plane
Shoulder H
(
𝑀𝐺
𝐼𝐴𝐻
)
𝐺
=
264
0.398
= 663 lbf/in3
𝑀𝐻 = 𝑅𝐴𝑍(3.5− 0.75) + 𝑊
23
𝑡
(3.5 − 2.75)
𝑀𝐻 = 132(3.5 − 0.75) + 589.5(3.5 − 2.75)
𝑀𝐻 = 805.125 lbf.in
(
𝑀𝐻
𝐼𝐴𝐻
)
𝐻
=
805.125
0.398
= 2023 lbf/in3
slope𝐺𝐻 =
2023 − 663
0.75
= 1813lbf/in4
(
𝑀𝐻
𝐼𝐻𝐼
)
𝐻
=
805.125
0.785
= 1026 lbf/in3
(
𝑀𝐼
𝐼𝐻𝐼
)
𝐼
=
4033
0.785
= 5138 lbf/in3
slope 𝐻𝐼 =
5138 − 1026
4
= 1027.8 lbf/in4
Δ𝑚 = slope𝐺𝐻 − slope 𝐻𝐼
Δ𝑚 = 1027.8 − 1813 = −785.1 lbf/in4
step𝐻 = (
𝑀𝐻
𝐼𝐻𝐼
)
𝐻
− (
𝑀𝐻
𝐼𝐴𝐻
)
𝐻
step𝐻 = 1026 − 2023 = −997 lbf/in3
Shoulder I:
(
𝑀𝐼
𝐼𝐼𝐵
)
𝐼
=
4033
0.398
= 10133 lbf/in3
(
𝑀𝐽
𝐼𝐼𝐵
)
𝐽
=
4766
0.398
= 11975 lbf/in3
slope𝐼𝐽 =
11975 − 10133
1
= 1842lbf/in4
23
Δ𝑚 = slop𝑒𝐼𝐽 − slope𝐻𝐼
Δ𝑚 = 1842 − 1027.8 = 814.2 lbf/in4
step𝐼 = (
𝑀𝐼
𝐼𝐼𝐵
)
𝐼
− (
𝑀𝐼
𝐼𝐻
)
1
step𝐼 = 10133 − 5138 = 4995 lbf/in3
Chapter 5
Bearings
Bearing selection:
Gear & bearing life =11000 hours
Counter shaft speed = 337 rpm
Estimated bore size= 1 in.
Estimated bearing width= 1 in.
Reliability= 99%
Left bearing reactions
𝑅𝐴𝑍 = 132 Ibf, 𝑅𝐴𝑦 = 392 Ibf, 𝑅𝐴 = 414 Ibf
Right bearing reactions
𝑅𝐵𝑍 = 1962 Ibf, 𝑅𝐵𝑦 = 800 Ibf, 𝑅𝐵 = 2119 Ibf
Right bearing selection procedure
𝑥𝐷 =
𝐿
𝐿10
=
60𝐿𝐷𝑛𝐷
60𝐿𝑅𝑛𝑅
𝑥𝐷 =
60 ∗ 11000 ∗ 337
106
𝑥𝐷 =
2.8 ∗ 108
106
= 222
24
Assuming a ball bearing with
a=3
using eq 5.2
𝐶10 = 𝑎𝑓𝐹𝐷 [
𝑥𝐷
𝑥𝑜 + (𝜃 − 𝑥0)(1− 𝑅𝐷)
1
𝑏
]
1
𝑎
𝑎𝑓 = 1 for steady loads.
𝐶10 = 2119 ∗ [
222
0.02 + 4.439(1 − 0.99)
1
1.483
]
1
3
𝐶10 = 21289lbf
𝐶10 = 21289lbf∗ 0.00444
𝐶10 = 94.5 kN
Is very high
Choosing roller bearing
a=10/3
𝐶10 = 2119 ∗ [
222
0.02 + 4.439(1− 0.99)
1
1.483
]
3
10
𝐶10 = 16900
𝐶10 = 16900 ∗ 0.00444
𝐶10 = 75.0 kN
Checking this load with SKF bearing catalogue for 1 in.
𝐶 = 83kN
𝐶 = 18568lbf
𝐼𝐷 = 30mm = 1.188in
𝑂𝐷 = 72mm = 2.834in.
𝑊 = 27mm = 1.063in.
Shoulder diameter = 36.8mm = 1.45in.
Maximum fillet radius = 1.09mm = 0.043in.
25
Left bearing selection procedure
Choosing a=3
Using eq 5.2
𝐶10 = 414 ∗ [
222
0.02 + 4.439(1− 0.99)
1
1.483
]
1
3
𝐶10 = 4159 ∗ 0.00444
𝐶10 = 18.47 kN
The left bearing selection specifications
𝐼𝐷 = 25mm = 1.0in
𝑂𝐷 = 62mm ≈ 2.5in
𝑊 = 17mm = 0.67in
𝐶 = 23.4kN = 5270lbf
Shoulder diameter = 1.3~1.4 in.
Maximum fillet radius = 0.08 in.
Chpter six
Key&keyway design
From the previous data:
Bore in. Hub length in. Torque Ibf.in. Safety factor
Gear 3 1.6875 1.5 3067 2
Gear 4 1.6875 2.0 3067 2
26
Using table 6.3 for asquare key
Shaft diameter w h Keyway design
1.6875…….1 11/16 3/8 3/8 3/16
Choosing key material of 1020 CD steel
With 𝑆𝑦 = 57 kpsi
𝐹 =
𝑇
𝑟
𝐹 =
3067 ∗ 2
1.6875
= 3635 lbf
𝑎 =
ℎ
2
∗ 𝑙
𝑎 =
3/8
2
∗ 𝑙 = 0.1875𝑙
𝜎 =
𝐹
𝑎
=
3635
0.1875𝑙
But
𝑛 =
𝑆𝑦
𝜎
𝜎 =
𝑆𝑦
𝑛
𝑆𝑦
𝑛
=
3635
0.1875𝑙
𝑙 =
3635 ∗ 𝑛
0.1875 ∗ 𝑆𝑦
𝑙 =
3635 ∗ 2
0.1875 ∗ 57000
𝑙 = 0.68 in.
Chpater seven
𝑙 =
1
2
+
1
2
= 1.0 𝑖𝑛
27
𝑡 =
41
64
𝑖𝑛
2
(12 )
𝐿 = 𝑙 + 𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 2 𝑡ℎ𝑟𝑒𝑎𝑑𝑠
𝐿 = 1.0 +
41
64
+
2
12
= 1.81 𝑖𝑛
Round up to the next standard size
L=1.81 in
𝐿𝑇 = 2𝑑 +
1
4
𝑖𝑛.
The length of the threaded part is
𝐿𝑇 = 2 ∗ 0.5625 + 0.25 = 1.375 𝑖𝑛
𝑙𝑑 = 𝐿 − 𝐿𝑇
𝑙𝑑 = 1.81 − 1.375 = 0.435 𝑖𝑛
𝑙𝑡 = 𝑙 − 𝑙𝑑 = 1.0 − 0.435 = 0.565 𝑖𝑛.
Using fig.(4.7)
𝐴𝑡 = 0.182 𝑖𝑛2
𝐴𝑑 = 𝜋
0.56252
4
= 0.248 𝑖𝑛2
𝐾𝑏 =
𝐴𝑡𝐴𝑑𝐸
𝐴𝑑𝑙𝑡+𝐴𝑡𝑙𝑑
𝐾𝑏 =
0.182 ∗ 0.248 ∗ 30
0.248 ∗ 0.565 + 0.182 ∗ 0.435
= 6.39 𝑀𝑙𝑏𝑓/𝑖𝑛
𝐾𝑚 =
0.5774𝜋𝐸𝑑
2𝑙𝑛(5
0.5774𝑙 + 0.5𝑑
0.5774𝑙 + 2.5𝑑
)
28
𝐾𝑚 =
0.5774 ∗ 𝜋 ∗ 14 ∗ 0.5625
2𝑙𝑛(5
0.5774 ∗ 1.0 + 0.5 ∗ 0.5625
0.5774 ∗ 1.0 + 2.5 ∗ 0.5625
)
= 9.25 𝑀𝑙𝑏𝑓/𝑖𝑛
Using table 7.5 to find 𝐾𝑚
𝐾𝑚 = 𝐸𝑑𝐴 ∗ 𝑒
𝐵
𝐴
𝑙
𝐾𝑚 = 14 ∗ 0.5625 ∗ 0.778 ∗ 𝑒
0.616
0.625
1.5
𝐾𝑚 = 8.96 𝑀 𝑙𝑏𝑓/in
𝑒𝑟𝑟𝑜𝑟 =
9.25 − 8.96
9.25
≈ 3.1%
The joint stiffness
𝐶 =
𝐾𝑏
𝐾𝑏 + 𝐾𝑚
𝐶 =
6.39
6.39 + 9.25
= 0.408
Using table 7.6 to obtain the minimum proof strength of grade 5 SAE bolt
𝐹𝑖 = 0.75 ∗ 0.182 ∗ 85 = 11.6 𝑘𝑙𝑏𝑓
𝑛 =
𝑆𝑝𝐴𝑡 − 𝐹𝑖
𝐶(
𝑃
𝑛
)
Rearrangement gives
𝑁 =
𝐶𝑛𝑃
𝑆𝑝𝐴𝑡 − 𝐹𝑖
𝑁 =
0.408 ∗ 2 ∗ 25
85 ∗ 0.182 − 11.6
= 5.27
Roundup to 6 bolts and check for n
29
𝑛 =
85 ∗ 0.182 − 11.6
0.408 ∗
25
6
= 2.27
The value of n is higher than the required value (2)
The tightening torque is
𝑇 = 𝐾𝐹𝑖𝑑
𝑇 = 0.2 ∗ 11600 ∗ 0.5625 = 1305 𝐼𝑏𝑓/𝑖𝑛

More Related Content

Similar to project designa.docx

Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
Turja Deb
 

Similar to project designa.docx (20)

Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Shi20396 ch13
Shi20396 ch13Shi20396 ch13
Shi20396 ch13
 
Capítulo 15 engrenagens cônicas e sem-fim
Capítulo 15   engrenagens cônicas e sem-fimCapítulo 15   engrenagens cônicas e sem-fim
Capítulo 15 engrenagens cônicas e sem-fim
 
Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)
 
Appendix E
Appendix EAppendix E
Appendix E
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Capítulo 14 engrenagens cilíndricas
Capítulo 14   engrenagens cilíndricasCapítulo 14   engrenagens cilíndricas
Capítulo 14 engrenagens cilíndricas
 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
 
Shi20396 ch15
Shi20396 ch15Shi20396 ch15
Shi20396 ch15
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...
 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
 
Budynas sm ch01
Budynas sm ch01Budynas sm ch01
Budynas sm ch01
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS  STRAIN MEASURING TECHNIQUES & APPLICATIONS
STRAIN MEASURING TECHNIQUES & APPLICATIONS
 
EJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOSEJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOS
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
 

More from Mahamad Jawhar (20)

text book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdftext book Programmable-Logic-Controllers plc.pdf
text book Programmable-Logic-Controllers plc.pdf
 
2.pdf
2.pdf2.pdf
2.pdf
 
3.pdf
3.pdf3.pdf
3.pdf
 
1.pdf
1.pdf1.pdf
1.pdf
 
robotic2.docx
robotic2.docxrobotic2.docx
robotic2.docx
 
Power Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdfPower Plant Engineering - (Malestrom) (1).pdf
Power Plant Engineering - (Malestrom) (1).pdf
 
ref3.pdf
ref3.pdfref3.pdf
ref3.pdf
 
I-Section-US-1003.pdf
I-Section-US-1003.pdfI-Section-US-1003.pdf
I-Section-US-1003.pdf
 
ref.pdf
ref.pdfref.pdf
ref.pdf
 
lect 01 (1).pdf
lect 01 (1).pdflect 01 (1).pdf
lect 01 (1).pdf
 
plasma cutting.pdf
plasma cutting.pdfplasma cutting.pdf
plasma cutting.pdf
 
Grad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docxGrad. Proj. Poster Templete akam.docx
Grad. Proj. Poster Templete akam.docx
 
project format writting 2.docx
project format writting 2.docxproject format writting 2.docx
project format writting 2.docx
 
PLC4.docx
PLC4.docxPLC4.docx
PLC4.docx
 
PLC 1 (2).docx
PLC 1 (2).docxPLC 1 (2).docx
PLC 1 (2).docx
 
Project Cooling Tower.pptx
Project Cooling Tower.pptxProject Cooling Tower.pptx
Project Cooling Tower.pptx
 
final project.docx
final project.docxfinal project.docx
final project.docx
 
final project1.docx
final project1.docxfinal project1.docx
final project1.docx
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docx
 
robotic.docx
robotic.docxrobotic.docx
robotic.docx
 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Recently uploaded (20)

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 

project designa.docx

  • 1. 1 Gear Box StudentName: Ahmed Naseh Latif Class: 4 Stage – Group:B CourseTitle: Design Project Department: Mechanic and MechatronicEngineering College of Engineering Salahaddin University-Erbil Academic Year 2020-2021
  • 2. 2 Specifications Units value Power to be delivered hp 16.4 Input speed rpm 1538 Output speed rpm 72 Height in 21 Width x Length in 12 x 12 Gear and bearing life Hours >11000 I/P and O/P shafts extension in 4 I/P and O/P shafts orientation In-line (reverted gearbox) Shock level Usually low and occasional moderate shocks Speed,Torque,andGearRatios • Calculationof the Numberof Teethforeachgear Usingeq.2 𝑒 = 𝜔5 𝜔2 𝑒 = 72 1538 = 1 21.36 𝑒 = 1 21.36 = 𝑁2 𝑁3 𝑁4 𝑁5 𝑁2 𝑁3 − 𝑁4 𝑁5 − √ 1 21.36 − 1 4.62 ` 𝑁𝑝 = 2𝑘 (1+2𝑚)sin2 𝜙 (𝑚 + √𝑚2 + (1 + 2𝑚)sin2 𝜙) 𝑁𝑝 = 2 ∗ 1 (1 + 2(4.62))sin2 20 (4.62 + √(4.62)2 + (1 + 2(4.62))sin2 20) 𝑁𝑝 = 15.637 ≈ 16 teeth 𝑁2 = 𝑁4 = 16 teeth 𝑁3 = 4.54(𝑁2) = 73.92 ≈ 73 teeth
  • 3. 3 𝜔5 = ( 𝑁2 𝑁3 )( 𝑁4 𝑁5 )𝜔2 𝜔5 = ( 16 73 ) ( 16 73 ) ∗ 1538 = 73.88rpm 69 < 𝜔5 < 75 𝜔3 = 𝜔4 = ( 16 73 ) ∗ 1538 = 337 rpm 𝑇2 = 𝐻 𝜔2 𝑇2 = ( 16.4ℎ𝑝 1538𝑟𝑝𝑚 ) (550 𝑓𝑡 − 𝑙𝑏/𝑠 ℎ𝑝 )( 1𝑟𝑒𝑣 2𝜋𝑟𝑎𝑑 ) (60 𝑠 𝑚𝑖𝑛 ) 𝑇2 = 16.4 ∗ 550 ∗ 60 1750 ∗ 2𝜋 𝑇2 = 56.00𝑙𝑏𝑓.𝑓𝑡 𝑇3 = 𝑇2 ( 𝜔2 𝜔3 )…… …… …. ..eq 9 𝑇3 = 56 ∗ ( 1538 337 ) = 255.5lbf.ft 𝑇5 = 𝑇2 ( 𝜔2 𝜔5 ) 𝑇5 = 56 ∗ ( 1538 73.88 ) = 1165.8lbf.ft 𝑃min = (𝑁3 + 𝑁2 2 + 𝑁5 2 + 2) 𝑌 − (clearances + wall thickness) … …… ….. Eq.(11) Clearances + wall thickness = 3in 𝑃min = (76 + 16 2 + 73 2 + 2) 22 − (3) = 6.64 teeth /in 𝑃min = 7 teeth /in 𝑑2 = 𝑑4 = 𝑁2 𝑃 = 16 7 = 2.28in 𝑑3 = 𝑑5 = 𝑁3 𝑃 = 73 7 = 10.43in 𝑉23 = 𝜋𝑑2𝜔2 12 …… …… …. .𝐸𝑞12
  • 4. 4 𝑉23 = 𝜋(2.28)(1538) 12 𝑉23 = 918.0ft/min 𝑉 45 = 𝜋𝑑5𝜔5 12 𝑉 45 = 𝜋(10.43)(73.88) 12 𝑉 45 = 201.7ft/min 𝑊 23 𝑡 = 33000 𝐻 𝑉23 … …… ……… .𝐸𝑞.13 𝑊 23 𝑡 = 33000 16.4 918 = 589.5lbf 𝑊 45 𝑡 = 33000 H 𝑉 45 𝑊 45 𝑡 = 33000 16.4 201.7 = 2683.2lbf Gear N 𝜔 T d V W # rpm Ibf.ft in Ft//minIbf 2 16 1538 56 2.28 918 589.5 3 73 337 255.5 10.43 918 589.5 4 16 337 255.5 2.28 201.7 2683.2 5 73 73.88 1165.8 10.43 201.7 2683.2 Chapter 3 𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝐾𝑚 𝑑𝑝𝐹 𝐶𝑓 𝐼 … …… …… .Eq.(14) 𝐶𝑝 = 2300 𝐾𝑜 = 1 𝐾𝑣 = ( 𝐴 + √𝑉 𝐴 ) 𝐵 …… ……. Eq.15
  • 5. 5 𝐴 = 50 + 56(1 − 𝐵) …… …… 𝐸𝑞. (16) 𝐵 = 0.25(12 − 𝑄𝑣)2/3 … …… .. 𝐸𝑞. (17) 𝑄𝑣 = 7 𝐵 = 0.25(12 − 7)2/3 = 0.731 𝐴 = 50 + 56(1 − 0.731) = 65.1 𝐾𝑣 = ( 65.1 + √201.7 65.1 ) 0.731 = 1.155 𝐾𝑠 = 1 size factor 𝐾𝑚 = 𝐶𝑚𝑓 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒)…… ……. .𝐸𝑞.(18) 𝐶𝑚𝑐 = 1 because isuncrownedteeth 𝐶𝑝𝑓 = ( 𝐹 10𝑑 − 0.0375 + 0.0125𝐹) … ……. .𝐸𝑞19 for 1<F<17 in. 𝐶𝑝𝑚 = 1 𝐶𝑚𝑎 = A + BF + CF^2 𝐶𝑒 = 1 𝐹 = (3 ∼ 5) ( 𝜋 𝑃 ) … …… ……. 𝐸𝑞. (21) 𝐹 = 4 ( 𝜋 7 ) = 1.8in Roundup to F= 2 in. 𝐴 = 0.127, 𝐵 = 0.0158, 𝐶 = −0.930(10)−4 𝐶𝑚𝑎 = 0.127 + 2(0.0158) − 0.930(10)−4 ∗ (2)2 𝐶𝑚𝑎 = 0.15 𝐶𝑝𝑓 = ( 2 10(2.28) − 0.0375 + 0.0125(2)) = 0.0752 𝐶𝑓 = 1 𝐾𝑚 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒) 𝐾𝑚 = 1 + 1 ∗ (0.0752(1) + 0.15(1)) 𝐾𝑚 = 1.24
  • 6. 6 𝐼 = cos𝜙sin 𝜙 2𝑚𝑁 ( 𝑚𝐺 𝑚𝐺 + 1 ) …… ……… … Eq. (22) 𝐼 = cos20sin 20 2(1) ( 4.62 4.62 + 1 ) = 0.1321 𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝐾𝑚 𝑑𝑝𝐹 𝐶𝑓 𝐼 𝜎𝑐 = 2300√2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗ ( 1.24 2.28 ∗ 2 ) ( 1 0.1321 ) = 183702psi 𝜎𝑐, all = ( 𝑆𝑐 𝑆𝐻 )( 𝑍𝑁𝐶𝐻 𝐾𝑇𝐾𝑅 )… ……… .. Eq.(23) 𝐿4 = 𝑡 ∗ 𝑛4 …… …… .. Eq. (24) 𝐿4 = 11000 ∗ 60 ∗ 337 = 2.2 ∗ 108 rev Usingfig 7 to find 𝑍𝑁 𝑍𝑁 = 0.9 𝐾𝑇 = 𝐾𝑅 = 𝐶𝐻 = 1 𝑆𝐻 = 1.2 design factor So 𝑆𝑐 = 𝜎𝑐𝑆𝐻 𝑍𝑁 = 1.2 ∗ 183702 0.9 = 244900psi Usingtable 3-4 the type of steel gear 𝑆𝑐 = 244900 is 𝐠𝐫𝐚𝐝𝐞 𝟑 carburized &ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑠𝑡𝑒𝑒𝑙 𝑔𝑒𝑎𝑟,𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝜎𝑐,𝑎𝑙𝑙 = 𝑆𝑐𝑍𝑁 = 275000 ∗ 0.9 = 247500psi 𝑛𝑐 = 𝜎𝑐,𝑎𝑙𝑙 𝜎𝑐 = 247500 183702 = 1.35 Bending of gear 4 𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝑃𝑑 𝐹 𝐾𝑚𝐾𝐵 𝐽 …… …… …. Eq. 26 Usingfig 8 𝑁4 = 16 teeth, then 𝐽 = 0.27
  • 7. 7 𝑊𝑡 = 2683.2lbf 𝐾𝑣 = 1.155 𝐾𝑜 = 1 𝐾𝑠 = 1 𝐾𝑚 = 1.24 𝐹 = 2in. 𝐾𝐵 = 1 𝑃𝑑 = 7 teeth /in 𝜎 = 2683.2 ∗ 1.155 ∗ ( 7 2 ) ( 1.24 0.27 ) = 49815psi L=2.2 ∗ 108 rev Thenwe use fig 𝑌𝑁 = 0.9 Usingthe same material 𝑆𝑡 = 75000 𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 75000 ∗ 0.9 = 67500psi 𝑛 = 𝜎𝑎𝑙𝑙 𝜎 = 67500 49815 = 1.35 Wear of gear 5 𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝐾𝑚 𝑑𝑝𝐹 𝐶𝑓 𝐼 𝜎𝑐 = 2300√2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗ ( 1.24 10.43 ∗ 2 ) ( 1 0.1321 ) = 85890psi 𝐿5 = 11000 ∗ 60 ∗ 73.88 = 4.9 ∗ 107rev 𝑍𝑁 = 1.0 Choosinggrade 2 throughhardenedsteel to250HB Usingfig 3.6 at HB=250 to find 𝑆𝑐 = 121500psi 𝑛𝑐 = 𝜎𝑐,𝑎𝑙𝑙 𝜎𝑐 = 121550 85890 = 1.41 Bending of gear 5 𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝑃𝑑 𝐹 𝐾𝑚𝐾𝐵 𝐽 N5=73 , thenJ=0.415
  • 8. 8 𝜎 = 2683.2 ∗ 1 ∗ 1.155 ∗ 1 ∗ 7 2 ∗ 1.24 0.415 = 32410psi Chosingthe same material grade 2 Usingfig 3.7 at HB=250 𝑆𝑖 = 41900 𝑌𝑁 = 0.97 𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 41900 ∗ 0.97 = 40640 𝑛 = 𝜎𝑎𝑙𝑙 𝜎 = 40640 32410 = 1.25 Wearof gear 2 𝑉23 = 918 ft min 𝑊 23 𝑡 = 589.5 ibf Usingeq 15 𝐾𝑣 = ( 65.1 + √918 65.1 ) 0.731 = 1.32 Gear 2&3 is lowerthan4&5 therefore Select F=1.5 in. 𝐶𝑝𝑓 = ( 𝐹 10𝑑 − 0.0375 + 0.0125𝐹) 𝐶𝑝𝑓 = ( 1.5 10(2.28) − 0.0375 + 0.0125(1.5)) = 0.0470 Usingeq 20 𝐶𝑚𝑎 = 0.127 + 1.5(0.0158) − 0.930(10)−4 ∗ (1.5)2 = 0.15 𝐾𝑚 = 1 + 𝐶𝑚𝑐(𝐶𝑝𝑓𝐶𝑝𝑚 + 𝐶𝑚𝑎𝐶𝑒) 𝐾𝑚 = 1 + 1 ∗ (0.0470(1) + 0.15(1)) 𝐾𝑚 = 1.21 Usingeq 14
  • 9. 9 𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝐾𝑚 𝑑𝑝𝐹 𝐶𝑓 𝐼 𝜎𝑐 = 2300√589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ ( 1.21 2.28 ∗ 1.5 )( 1 0.1321 ) = 105000psi Usingeq 24 𝐿2 = 11000 ∗ 60 ∗ 1538 = 1.0 ∗ 109rev 𝑍𝑁 = 0.8 Use table 3.4 & ant try grade 1, flame hardenedsteel 𝑆𝑐 = 170000psi 𝑛𝑐 = 𝜎𝑐,𝑎𝑙𝑙 𝜎𝑐 = 170000 ∗ 0.8 105000 = 1.29 Bendingof gear 2 N2=16 teeth then J=0.27 Usingfig 3.5 as 𝐿2 = 1.0 ∗ 109rev , 𝑌𝑁 = 0.88 Usingeq 26 𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝑃𝑑 𝐹 𝐾𝑚𝐾𝐵 𝐽 𝜎 = 589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ 7 1.5 ∗ 1.21 0.27 = 16274psi Usingthe same material fromtable 3.5 flame hardened steel 𝑆𝑡 = 45000psi Usingeq 27 𝜎𝑎𝑙𝑙 = 𝑆𝑡𝑌𝑁 = 45000 ∗ 0.88 = 39600psi 𝑛 = 𝜎𝑎𝑙𝑙 𝜎 = 39600 16274 = 2.43
  • 10. 10 Wearof gear 3 𝐿3 = 11000 ∗ 60 ∗ 337 = 2.2 ∗ 108rev 𝑍𝑁 = 0.9 𝜎𝑐 = 𝐶𝑝√𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝐾𝑚 𝑑𝑝𝐹 𝐶𝑓 𝐼 𝜎𝑐 = 2300√589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ ( 1.21 10.43 ∗ 1.5 ) ( 1 0.1321 ) = 49092psi Chosinggrade 1 through hardenedsteelto200HB Usingfig 3.6 then 𝑆𝐶 = 90000psi 𝑛𝑐 = 𝜎𝑐,𝑎𝑙𝑙 𝜎𝑐 = 90000 ∗ 0.9 49092 = 1.65 Bendingof gear 3 N3=73 then J=0.415 from fig3.4 𝜎 = 𝑊𝑡𝐾𝑜𝐾𝑣𝐾𝑠 𝑃𝑑 𝐹 𝐾𝑚𝐾𝐵 𝐽 𝜎 = 589.5 ∗ 1 ∗ 1.32 ∗ 1 ∗ 7 1.5 ∗ 1.21 0.415 = 10590psi Fig3.5 𝑌𝑁 = 0.9 Usingthe same material grade 1 𝑆𝐶 = 28000psi 𝑛 = 𝜎𝑎𝑙𝑙 𝜎 = 28000 ∗ 0.9 10590 = 2.38
  • 11. 11 Gear Material Treatment Wear stress Bendingstress d F Grade psi psi in in 2 1 Flame-hardened 170000 45000 2.28 1.5 3 1 Through-hardenedto200HB 90000 28000 10.43 1.5 4 3 Carburizedandhardened 275000 75000 2.28 2.0 5 2 Through-hardenedto250HB 121550 41900 10.43 2.0 Chapter 4 𝐹2=𝐹3=1.5 in. 𝐹 4=𝐹5=2.0 in. 𝑊 23 𝑡 = 589.5lbf 𝑊 45 𝑡 = −2683.2lbf 𝑊𝑟 = 𝑊𝑡tan𝜙 …… …… …… .. 𝐸𝑞.28 𝑊 23 𝑟 = 𝑊 23 𝑡 tan 𝜙 𝑊 23 𝑟 = 589.5tan 20 𝑊 23 𝑟 = −215lb𝑓 𝑊 45 𝑟 = −977lbf Determinationof reactionforces on bearings
  • 12. 12 x-zplane: ∑𝑀𝐴 = 0 𝑊 23 𝑡 ∗ 𝑥1 − 𝑊 45 𝑡 ∗ 𝑥2 + 𝑅𝐵𝑍 ∗ 𝑥3 = 0 589.5(2.75 − 0.75) − 2683.2(8.5 − 0.75) +𝑅𝐵𝑍(10.75 − 0.75) = 0 𝑅𝐵𝑍 = 1962 lbf ∑𝐹 𝑧 = 0 𝑅𝐴𝑍 + 𝑊 23 𝑡 − 𝑊 45 𝑡 + 𝑅𝐵𝑍 = 0 𝑅𝐴𝑍 = −589.5 + 2683.2 − 1962 𝑅𝐴𝑍 = 132 lb𝑓 x-yplane : ∑𝑀𝐴 = 0 𝑊 23 𝑟 ∗ 𝑥1 + 𝑊 45 𝑟 ∗ 𝑥2 − 𝑅𝐵𝑌 ∗ 𝑥3 = 0 215(2.75 − 0.75) + 977(8.5 − 0.75) −𝑅𝐵𝑌(10.75− 0.75) = 0 𝑅𝐵𝑌 = 800 lbf ∑𝐹𝑌 = 0 𝑅𝐴𝑌 − 𝑊 23 𝑟 − 𝑊 45 𝑟 + 𝑅𝐵𝑌 = 0 𝑅𝐴𝑌 = 215 + 977 − 800 𝑅𝐴𝑌 = 392 lbf Torque diagram: 𝑇3 = 𝑊 23 𝑡 ∗ 𝑑3 2 𝑇3 = 589.5 ∗ 10.43 2 𝑇3 = 3074 lbf. in 𝑇4 = −W45 t ∗ d4 2 𝑇4 = −2683.2 ∗ 2.28 2 𝑇4 = −3060lbf.in The shear force & bearingmoment diagram x-yplane :
  • 13. 13 𝑉 𝐴𝐺 = 𝑅𝐴𝑌 = 392 lbf 𝑉𝐺𝐽 = 𝑅𝐴𝑌 − 𝑊 23 𝑟 𝑉𝐺𝐽 = 392 − 215 𝑉𝐺𝐽 = 177 lbf 𝑉 𝐽𝐵 = 𝑉𝐺𝐽 − 𝑊 45 𝑟 𝑉 𝐽𝐵 = 177 − 977 𝑉 𝐽𝐵 = −800 = 𝑅𝐵𝑌 𝑀𝐺 = 𝑅𝐴𝑌 ∗ X1 = 784 Ibf.in 𝑀𝐽 = 𝑅𝐴𝑌(8.5 − 0.75) − 𝑊 23 𝑟 (8.5 − 2.75) 𝑀𝐽 = 392 ∗ (8.5 − 0.75) − 215(8.5 − 2.75) 𝑀𝐽 = 1800 Ibf. in 𝑀𝐵 = 𝑅𝐴𝑌(10.75 − 0.75) − 𝑊 23 𝑟 (10.75 − 2.75) − 𝑊 45 𝑟 (10.75 − 8.5) 𝑀𝐵 = 392(10) − 215(8) − 977(2.25) 𝑀𝐵 = 1.75 ≈ 0 x-zplane: 𝑉 𝐴𝐺 = 𝑅𝐴𝑍 = 132lbf 𝑉𝐺𝐽 = 𝑅𝐴𝑍 + 𝑊 23 𝑡 𝑉𝐺𝐽 = 132 + 589.5 𝑉𝐺𝐽 = 722lbf 𝑉 𝐽𝐵 = 𝑉𝐺𝐽 − 𝑊 45 𝑡 𝑉 𝐽𝐵 = 722 − 2683.2 𝑉 𝐽𝐵 = −1962 = 𝑅𝐵𝑍 𝑀𝐺 = 𝑅𝐴𝑍 ∗ 𝑥1 𝑀𝐺 = 132 ∗ 2 𝑀𝐺 = 264 lbf.in 𝑀𝐽 = 𝑅𝐴𝑍(8.5 − 0.75) + 𝑊 23 𝑡 (8.5 − 2.75) 𝑀𝐽 = 132 ∗ (8.5 − 0.75) + 589.5(8.5 − 2.75) 𝑀𝑗 = 4412.6 lbf.in 𝑀𝐵 = 𝑅𝐴𝑍(10.75 − 0.75) + 𝑊 23 𝑡 (10.75 − 2.75) − 𝑊 45 𝑡 (10.75 − 8.5) 𝑀𝐵 = 132(10) + 589.5(8) − 2683.2(2.25) 𝑀𝐵 = −1.2 ≈ 0 The total bendingmomentdiagram 𝑀𝐺 = √(784)2 + (264)2 𝑀𝐺 = 827 lbf. in 𝑀𝐽 = √(1800)2 + (4412.6)2 𝑀𝐽 = 4766 lbf.in
  • 14. 14 The shoulderatpointI: 𝑀𝐼 = 𝑅𝐴𝑌(7.5 − 0.75) − 𝑊 23 𝑟 (7.5 − 2.75) 𝑀𝐼 = 392 ∗ (7.5 − 0.75) − 215(7.5 − 2.75) 𝑀𝐼 = 1625 Ibf.in x − y plane 𝑀𝐼 = 𝑅𝐴𝑍(7.5− 0.75) + 𝑊 23 𝑡 (7.5 − 2.75) 𝑀𝐼 = 132 ∗ (7.5 − 0.75) + 589.5(7.5 − 2.75) 𝑀𝐼 = 3691.1 lbf.in x − z plane 𝑀𝐼 = √(1625)2 + (3691.1)2 𝑀𝐼 = 4033 lbf.in The midrange torque is: 𝑇𝑀 = 3067 Ibf.in 𝑀𝑀 = 𝑇𝑎 = 0 Extimation ofthe stress concentrations: D/d=1.2~1.5 r/d=0.02~0.06 the MARIN equation: 𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒 ′ … …… …… ..𝐸𝑞.29 𝑘𝑎 = 𝑎𝑆𝑢𝑡 𝑏 ⋯⋯⋯⋯⋯⋯𝐸𝑞 ⋅ 30 A 1018CD steel ischosen: 𝑆𝑢𝑡=64 kpsi 𝑆𝑦 = 54 kpsi Therefore 𝑎 = 2.7kpsi 𝑏 = −0.265 𝑘𝑎 = 2.7(64)−0.265 = 0.897 𝑘𝑏 = 0.9 𝑘𝑐 = 𝑘𝑑 = 𝑘𝑒 = 1
  • 15. 15 𝑆𝑒 ′ = 0.5 ∗ 𝑆𝑢𝑡 for 𝑆𝑢𝑡 ≤ 200kpsi 𝑆𝑒 ′ = 100kpsi for 𝑆𝑢𝑡 > 200𝑘𝑝𝑠𝑖 𝑆𝑒 = 0.897 ∗ 0.9 ∗ 0.5 ∗ 64 eq.29 𝑆𝑒 = 25.8 kpsi Assuming shoulder-fillet well-rounded r/d=0.1 then: From table 4-3 𝐾𝑡 = 1.7 and 𝐾𝑡𝑠 = 1.5 𝐾𝑓 = 𝐾𝑡 and 𝐾𝑓𝑠 = 𝐾𝑡𝑠 𝑀𝑚 = 𝑇𝑎 = 0 𝑑 = √ 16𝑛 𝜋 { 2𝐾𝑓𝑀𝑎 𝑆𝑒 + 𝐾𝑓𝑠𝑇𝑚 𝑆𝑢𝑡 √3} 3 … …… …… .. 𝐸𝑞. 32 𝑑 = √ 16 ∗ 1.5 𝜋 { 2 ∗ 1.7 ∗ 4033 25800 + 1.5 ∗ 3067 64000 √3} 3 𝑑 = 1.71in From the standards: d= 1 11 16 = 1.6875 in. D/d=1.2 D=1.6875*1.2=2.025 in. D= 2 in. D/d= 2 1.6875 = 1.185 Assume r/d=0.1 r=0.1*1.6875=0.16 in. using fig 4.5 for r/d=0.1 & D/d=1.185 𝐾𝑡 = 1.6 Using fig 4.6 for find q q=0.82
  • 16. 16 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33 𝐾𝑓 = 1 + 0.82(1.6 − 1) 𝐾𝑓 = 1.49 Using fig 4.7 r/d=0.1 & D/d=1.185 𝐾𝑡𝑠 = 1.35 Using fig4.8 for r=1.6 in q=0.95 𝐾𝑓𝑠 = 1 + 𝑞shear(𝐾𝑡𝑠 − 1) ……… …𝐸𝑞.34 𝐾𝑓𝑠 = 1 + 0.95(1.35 − 1) 𝐾𝑓𝑠 = 1.33 𝐾𝑎 = 0.897 (not changed) 𝑘𝑏 = ( 𝑑 0.3 ) −0.107 for 0.11 ≤ 𝑑 ≤ 2.0 in. …… …. Eq.35 𝑘𝑏 = 0.91𝑑−0.157 for 2.0 < 𝑑 ≤ 10 in. ……… .. 𝐸𝑞. 36 𝑘𝑏 = ( 1.6875 0.3 ) −0.107 = 0.831 𝑆𝑒 = 0.897 ∗ 0.831 ∗ 0.5 ∗ 64 𝑆𝑒 = 23.7 kpsi 𝜎𝑎 ′ = 32𝐾𝑓𝑀𝑎 𝜋𝑑3 𝜎𝑎 ′ = 32 ∗ 1.49 ∗ 4033 𝜋(1.6875)3 𝜎𝑎 ′ = 12737 psi 𝜎𝑚 ′ = (𝜎𝑚 2 + 3𝜏𝑚 2 )1/2 = [( 32𝐾𝑓𝑀𝑚 𝜋𝑑3 ) 2 + 3 ( 16𝐾𝑓𝑠𝑇𝑚 𝜋𝑑3 ) 2 ] 1/2 𝜎𝑚 ′ = [3( 16𝐾𝑓𝑠𝑇𝑚 𝜋𝑑3 ) 2 ] 1/2 𝜎𝑚 ′ = √3 ∗ 16 ∗ 1.33 ∗ 3067 𝜋(1.6875)3 𝜎𝑚 ′ = 7488 psi 1 𝑛𝑓 = 𝜎𝑎 ′ 𝑆𝑒 + 𝜎𝑚 ′ 𝑆𝑢𝑡 1 𝑛𝑓 = 12737 23700 + 7488 64000 = 0.654 𝑛𝑓 = 1.53
  • 17. 17 Check for yielding: 𝑛𝑦 = 𝑆𝑦 𝜎max ′ 𝑛𝑦 = 54000 (12737 + 7488) = 2.66 The keyway M=4030 Ibf.in Assume r/d=0.02 r=0.02*1.6875 r=0.033 in. using fig 4.5 𝐾𝑡 = 2.4 Using fig 4.6 q=0.66 using eq.33 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33 𝐾𝑓 = 1 + 0.66(2.4 − 1) 𝐾𝑓 = 1.92 Using fig 4.7 𝐾𝑡𝑠 = 2.2 Fig 4.8 gives 𝑞𝑠 = 0.91 Using eq.34
  • 18. 18 𝐾𝑓𝑠 = 1 + 𝑞shear(𝐾𝑡𝑠 − 1) ……… …𝐸𝑞.34 𝐾𝑓𝑠 = 1 + 0.91(2.2 − 1) 𝐾𝑓𝑠 = 2.09 𝜎𝑎 ′ = 32𝐾𝑓𝑀𝑎 𝜋𝑑3 𝜎𝑎 ′ = 32 ∗ 1.92 ∗ 4030 𝜋(1.6875)3 𝜎𝑎 ′ = 16400 psi 𝜎𝑚 ′ = [3( 16𝐾𝑓𝑠𝑇𝑚 𝜋𝑑3 ) 2 ] 1/2 𝜎𝑚 ′ = √3 ∗ 16 ∗ 2.09 ∗ 3067 𝜋(1.6875)3 𝜎𝑚 ′ = 11767 psi 1 𝑛𝑓 = 𝜎𝑎 ′ 𝑆𝑒 + 𝜎𝑚 ′ 𝑆𝑢𝑡 1 𝑛𝑓 = 16400 23700 + 11767 64000 = 0.876 𝑛𝑓 = 1.14 Is not good Trying steel 1050CD with 𝑆𝑢𝑡 = 100 kpsi & 𝑆𝑦 = 84 kpsi Using eq 30 𝑘𝑎 = 𝑎𝑆𝑢𝑡 𝑏 ⋯⋯⋯⋯⋯⋯𝐸𝑞 ⋅ 30 𝑘𝑎 = 2.7(100)−0.265 𝑘𝑎 = 0.797 Using eq.29 𝑆𝑒 = 0.797 ∗ 0.831 ∗ 0.5 ∗ 100 eq. 29 𝑆𝑒 = 33.1 kpsi Fig 4.6 gives q=0.73
  • 19. 19 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33 𝐾𝑓 = 1 + 0.73(2.4 − 1) 𝐾𝑓 = 2.02 𝜎𝑎 ′ = 32 ∗ 2.02 ∗ 4030 𝜋(1.6875)3 𝜎𝑎 ′ = 17255 psi 1 𝑛𝑓 = 𝜎𝑎 ′ 𝑆𝑒 + 𝜎𝑚 ′ 𝑆𝑢𝑡 1 𝑛𝑓 = 17255 33100 + 11767 100000 = 0.64 𝑛𝑓 = 1.56 Inspecting at point K 𝑀𝑎 = 2650 Ibf.in 𝑀𝑚 = 𝑇𝑎 = 𝑇𝑚 = 0 Using table 4.3 𝐾𝑡 = 𝐾𝑓 = 5.0 𝜎𝑎 = 32𝐾𝑓𝑀𝑎 𝜋𝑑3 𝜎𝑎 = 32 ∗ 5 ∗ 2650 𝜋(1.6875)3 𝜎𝑎 = 28086psi 𝑛𝑓 = 𝑆𝑒 𝜎𝑎 𝑛𝑓 = 33100 28086 = 1.17 Is not good Using the shaft diameter of 1.6875 in. to gets: a=0.068 in. t=0.048 in. r=0.01 in.
  • 20. 20 𝑟 𝑡 = 0.208 𝑎 𝑡 = 1.42 𝑑 = 𝐷 − 2𝑡 𝑑 = 1.6875 − 2 ∗ 0.048 𝑑 = 1.5915 in Using fig 4.9 q=0.65 𝐾𝑡 = 4.3 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)… …… …𝐸𝑞.33 𝐾𝑓 = 1 + 0.65(4.3 − 1) 𝐾𝑓 = 3.15 𝜎𝑎 = 32𝐾𝑓𝑀𝑎 𝜋𝑑3 𝜎𝑎 = 32 ∗ 3.15 ∗ 2650 𝜋(1.6875)3 𝜎𝑎 = 17694 psi 𝑛𝑓 = 𝑆𝑒 𝜎𝑎 𝑛𝑓 = 33100 17694 = 1.87 Determination of 𝐷6 D/d = 1.2~1.5 d = D/1.2 d = 1.6875/1.2 = 1.406 in. 𝐷6 = 1.4 in. Inspecting point M x-y plane 𝑀𝑀 = 𝑅𝐴𝑌(10.25 − 0.75) − 𝑊 23 𝑟 (10.25 − 2.75) − 𝑊 45 𝑟 (10.25 − 8.5) 𝑀𝑀 = 392 ∗ (10.25 − 0.75) − 215(10.25 − 2.75) − 977(10.25 − 8.5) 𝑀𝑀 = 401.75 lbf.𝑖𝑛 x-z plane
  • 21. 21 𝑀𝑀 = 𝑅𝐴𝑍(10.25 − 0.75) + 𝑊 23 𝑡 (10.25 − 2.75) − 𝑊 45 𝑡 (10.25 − 8.5) 𝑀𝑀 = 132 ∗ (10.25 − 0.75) + 589.5(10.25 − 2.75) − 2683.2(10.25 − 8.5) 𝑀𝑀 = 979.65 lbf.in 𝑀𝑀 = √(401.75)2 + (979.65)2 𝑀𝑀 = 1058.82 lbf.in 𝑀𝑎 = 1058.82 lbf.in 𝑀𝑚 = 𝑇𝑚 = 𝑇𝑎 = 0 Using table 4.3 r/d = 0.05 𝐾𝑓 = 1.9 d = 1 in. r = 0.05*1 = 0.05 in. using fig 4.6 𝑞 = 0.75 𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) 𝐾𝑓 = 1 + 0.75(1.9 − 1) 𝐾𝑓 = 1.675 𝜎𝑎 = 32𝐾𝑓𝑀𝑎 𝜋𝑑3 𝜎𝑎 = 32 ∗ 1.675 ∗ 1058.82 𝜋(1)3 𝜎𝑎 = 18050 psi 𝑛𝑓 = 𝑆𝑒 𝜎𝑎 𝑛𝑓 = 33100 18050 = 1.83 𝐷1 = 𝐷7 = 1 in. 𝐷2 = 𝐷6 = 1.4 in. 𝐷3 = 𝐷5 = 1.6875 in. 𝐷4 = 2 in. The rigidity of the shaft Deflection of the shaft
  • 22. 22 𝐼 = 𝜋𝑑4 64 𝐼𝐷𝐻 = 𝐼𝐼𝑀 = 𝜋(1.6875)4 64 = 0.398 in4 𝐼𝐻𝐼 = 𝜋(2.0)4 64 = 0.785in4 x-z plane Shoulder H ( 𝑀𝐺 𝐼𝐴𝐻 ) 𝐺 = 264 0.398 = 663 lbf/in3 𝑀𝐻 = 𝑅𝐴𝑍(3.5− 0.75) + 𝑊 23 𝑡 (3.5 − 2.75) 𝑀𝐻 = 132(3.5 − 0.75) + 589.5(3.5 − 2.75) 𝑀𝐻 = 805.125 lbf.in ( 𝑀𝐻 𝐼𝐴𝐻 ) 𝐻 = 805.125 0.398 = 2023 lbf/in3 slope𝐺𝐻 = 2023 − 663 0.75 = 1813lbf/in4 ( 𝑀𝐻 𝐼𝐻𝐼 ) 𝐻 = 805.125 0.785 = 1026 lbf/in3 ( 𝑀𝐼 𝐼𝐻𝐼 ) 𝐼 = 4033 0.785 = 5138 lbf/in3 slope 𝐻𝐼 = 5138 − 1026 4 = 1027.8 lbf/in4 Δ𝑚 = slope𝐺𝐻 − slope 𝐻𝐼 Δ𝑚 = 1027.8 − 1813 = −785.1 lbf/in4 step𝐻 = ( 𝑀𝐻 𝐼𝐻𝐼 ) 𝐻 − ( 𝑀𝐻 𝐼𝐴𝐻 ) 𝐻 step𝐻 = 1026 − 2023 = −997 lbf/in3 Shoulder I: ( 𝑀𝐼 𝐼𝐼𝐵 ) 𝐼 = 4033 0.398 = 10133 lbf/in3 ( 𝑀𝐽 𝐼𝐼𝐵 ) 𝐽 = 4766 0.398 = 11975 lbf/in3 slope𝐼𝐽 = 11975 − 10133 1 = 1842lbf/in4
  • 23. 23 Δ𝑚 = slop𝑒𝐼𝐽 − slope𝐻𝐼 Δ𝑚 = 1842 − 1027.8 = 814.2 lbf/in4 step𝐼 = ( 𝑀𝐼 𝐼𝐼𝐵 ) 𝐼 − ( 𝑀𝐼 𝐼𝐻 ) 1 step𝐼 = 10133 − 5138 = 4995 lbf/in3 Chapter 5 Bearings Bearing selection: Gear & bearing life =11000 hours Counter shaft speed = 337 rpm Estimated bore size= 1 in. Estimated bearing width= 1 in. Reliability= 99% Left bearing reactions 𝑅𝐴𝑍 = 132 Ibf, 𝑅𝐴𝑦 = 392 Ibf, 𝑅𝐴 = 414 Ibf Right bearing reactions 𝑅𝐵𝑍 = 1962 Ibf, 𝑅𝐵𝑦 = 800 Ibf, 𝑅𝐵 = 2119 Ibf Right bearing selection procedure 𝑥𝐷 = 𝐿 𝐿10 = 60𝐿𝐷𝑛𝐷 60𝐿𝑅𝑛𝑅 𝑥𝐷 = 60 ∗ 11000 ∗ 337 106 𝑥𝐷 = 2.8 ∗ 108 106 = 222
  • 24. 24 Assuming a ball bearing with a=3 using eq 5.2 𝐶10 = 𝑎𝑓𝐹𝐷 [ 𝑥𝐷 𝑥𝑜 + (𝜃 − 𝑥0)(1− 𝑅𝐷) 1 𝑏 ] 1 𝑎 𝑎𝑓 = 1 for steady loads. 𝐶10 = 2119 ∗ [ 222 0.02 + 4.439(1 − 0.99) 1 1.483 ] 1 3 𝐶10 = 21289lbf 𝐶10 = 21289lbf∗ 0.00444 𝐶10 = 94.5 kN Is very high Choosing roller bearing a=10/3 𝐶10 = 2119 ∗ [ 222 0.02 + 4.439(1− 0.99) 1 1.483 ] 3 10 𝐶10 = 16900 𝐶10 = 16900 ∗ 0.00444 𝐶10 = 75.0 kN Checking this load with SKF bearing catalogue for 1 in. 𝐶 = 83kN 𝐶 = 18568lbf 𝐼𝐷 = 30mm = 1.188in 𝑂𝐷 = 72mm = 2.834in. 𝑊 = 27mm = 1.063in. Shoulder diameter = 36.8mm = 1.45in. Maximum fillet radius = 1.09mm = 0.043in.
  • 25. 25 Left bearing selection procedure Choosing a=3 Using eq 5.2 𝐶10 = 414 ∗ [ 222 0.02 + 4.439(1− 0.99) 1 1.483 ] 1 3 𝐶10 = 4159 ∗ 0.00444 𝐶10 = 18.47 kN The left bearing selection specifications 𝐼𝐷 = 25mm = 1.0in 𝑂𝐷 = 62mm ≈ 2.5in 𝑊 = 17mm = 0.67in 𝐶 = 23.4kN = 5270lbf Shoulder diameter = 1.3~1.4 in. Maximum fillet radius = 0.08 in. Chpter six Key&keyway design From the previous data: Bore in. Hub length in. Torque Ibf.in. Safety factor Gear 3 1.6875 1.5 3067 2 Gear 4 1.6875 2.0 3067 2
  • 26. 26 Using table 6.3 for asquare key Shaft diameter w h Keyway design 1.6875…….1 11/16 3/8 3/8 3/16 Choosing key material of 1020 CD steel With 𝑆𝑦 = 57 kpsi 𝐹 = 𝑇 𝑟 𝐹 = 3067 ∗ 2 1.6875 = 3635 lbf 𝑎 = ℎ 2 ∗ 𝑙 𝑎 = 3/8 2 ∗ 𝑙 = 0.1875𝑙 𝜎 = 𝐹 𝑎 = 3635 0.1875𝑙 But 𝑛 = 𝑆𝑦 𝜎 𝜎 = 𝑆𝑦 𝑛 𝑆𝑦 𝑛 = 3635 0.1875𝑙 𝑙 = 3635 ∗ 𝑛 0.1875 ∗ 𝑆𝑦 𝑙 = 3635 ∗ 2 0.1875 ∗ 57000 𝑙 = 0.68 in. Chpater seven 𝑙 = 1 2 + 1 2 = 1.0 𝑖𝑛
  • 27. 27 𝑡 = 41 64 𝑖𝑛 2 (12 ) 𝐿 = 𝑙 + 𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 2 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝐿 = 1.0 + 41 64 + 2 12 = 1.81 𝑖𝑛 Round up to the next standard size L=1.81 in 𝐿𝑇 = 2𝑑 + 1 4 𝑖𝑛. The length of the threaded part is 𝐿𝑇 = 2 ∗ 0.5625 + 0.25 = 1.375 𝑖𝑛 𝑙𝑑 = 𝐿 − 𝐿𝑇 𝑙𝑑 = 1.81 − 1.375 = 0.435 𝑖𝑛 𝑙𝑡 = 𝑙 − 𝑙𝑑 = 1.0 − 0.435 = 0.565 𝑖𝑛. Using fig.(4.7) 𝐴𝑡 = 0.182 𝑖𝑛2 𝐴𝑑 = 𝜋 0.56252 4 = 0.248 𝑖𝑛2 𝐾𝑏 = 𝐴𝑡𝐴𝑑𝐸 𝐴𝑑𝑙𝑡+𝐴𝑡𝑙𝑑 𝐾𝑏 = 0.182 ∗ 0.248 ∗ 30 0.248 ∗ 0.565 + 0.182 ∗ 0.435 = 6.39 𝑀𝑙𝑏𝑓/𝑖𝑛 𝐾𝑚 = 0.5774𝜋𝐸𝑑 2𝑙𝑛(5 0.5774𝑙 + 0.5𝑑 0.5774𝑙 + 2.5𝑑 )
  • 28. 28 𝐾𝑚 = 0.5774 ∗ 𝜋 ∗ 14 ∗ 0.5625 2𝑙𝑛(5 0.5774 ∗ 1.0 + 0.5 ∗ 0.5625 0.5774 ∗ 1.0 + 2.5 ∗ 0.5625 ) = 9.25 𝑀𝑙𝑏𝑓/𝑖𝑛 Using table 7.5 to find 𝐾𝑚 𝐾𝑚 = 𝐸𝑑𝐴 ∗ 𝑒 𝐵 𝐴 𝑙 𝐾𝑚 = 14 ∗ 0.5625 ∗ 0.778 ∗ 𝑒 0.616 0.625 1.5 𝐾𝑚 = 8.96 𝑀 𝑙𝑏𝑓/in 𝑒𝑟𝑟𝑜𝑟 = 9.25 − 8.96 9.25 ≈ 3.1% The joint stiffness 𝐶 = 𝐾𝑏 𝐾𝑏 + 𝐾𝑚 𝐶 = 6.39 6.39 + 9.25 = 0.408 Using table 7.6 to obtain the minimum proof strength of grade 5 SAE bolt 𝐹𝑖 = 0.75 ∗ 0.182 ∗ 85 = 11.6 𝑘𝑙𝑏𝑓 𝑛 = 𝑆𝑝𝐴𝑡 − 𝐹𝑖 𝐶( 𝑃 𝑛 ) Rearrangement gives 𝑁 = 𝐶𝑛𝑃 𝑆𝑝𝐴𝑡 − 𝐹𝑖 𝑁 = 0.408 ∗ 2 ∗ 25 85 ∗ 0.182 − 11.6 = 5.27 Roundup to 6 bolts and check for n
  • 29. 29 𝑛 = 85 ∗ 0.182 − 11.6 0.408 ∗ 25 6 = 2.27 The value of n is higher than the required value (2) The tightening torque is 𝑇 = 𝐾𝐹𝑖𝑑 𝑇 = 0.2 ∗ 11600 ∗ 0.5625 = 1305 𝐼𝑏𝑓/𝑖𝑛