SlideShare a Scribd company logo
1 of 88
Download to read offline
Clustered graph, visualization and hierarchical
visualization
Nathalie Villa-Vialaneix
http://www.nathalievilla.org
nathalie.villa@univ-paris1.fr
Séminaire LIPN, Université Paris 13
November, 15th, 2012
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 1 / 35
An overview on graph visualization and clustering
Framework
A graph (network) G = (V, E, W) with
• n vertices (nodes) V = {x1, . . . , xn};
• edges, E, weighted by Wij = Wji ≥ 0 (Wii = 0).
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 2 / 35
An overview on graph visualization and clustering
Network mining through visualization
A standard approach for network mining: using a force directed
placement algorithm (FDP) to display the graph; e.g.,
[Fruchterman and Reingold, 1991]
• attractive forces: along the edges, analogous to springs;
• repulsive forces : between all pairs of nodes, analogous to electric
forces.
The algorithm starts from an initial (random) position and iterates until the
layout is stabilized.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
An overview on graph visualization and clustering
Network mining through visualization
A standard approach for network mining: using a force directed
placement algorithm (FDP) to display the graph; e.g.,
[Fruchterman and Reingold, 1991]
• attractive forces: along the edges, analogous to springs;
• repulsive forces : between all pairs of nodes, analogous to electric
forces.
The algorithm starts from an initial (random) position and iterates until the
layout is stabilized.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
An overview on graph visualization and clustering
Network mining through visualization
A standard approach for network mining: using a force directed
placement algorithm (FDP) to display the graph; e.g.,
[Fruchterman and Reingold, 1991]
• attractive forces: along the edges, analogous to springs;
• repulsive forces : between all pairs of nodes, analogous to electric
forces.
The algorithm starts from an initial (random) position and iterates until the
layout is stabilized.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
An overview on graph visualization and clustering
Drawbacks of FDP algorithms
• slow (hard to use for very large graphs);
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
An overview on graph visualization and clustering
Drawbacks of FDP algorithms
• slow (hard to use for very large graphs);
• are more oriented toward aesthetic than toward an interpretable
layout:
• tendency: short edges with uniform lengths;
• negative consequence: hubs are clustered in the center of the figure.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
An overview on graph visualization and clustering
Drawbacks of FDP algorithms
• slow (hard to use for very large graphs);
• are more oriented toward aesthetic than toward an interpretable
layout:
• tendency: short edges with uniform lengths;
• negative consequence: hubs are clustered in the center of the figure.
What the user usually prefers:
1 understanding the macroscopic structure of the graph, i.e., find out
“communities” and their relations;
2 focus on details for clusters that seem to be of interest.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
An overview on graph visualization and clustering
Emphasizing “communities” in the layout
1 global approach: displaying all vertices while modifying the forces in
such a way that the dense areas are emphasized: [Noack, 2007]
(LinLog algorithm)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
An overview on graph visualization and clustering
Emphasizing “communities” in the layout
1 global approach: displaying all vertices while modifying the forces in
such a way that the dense areas are emphasized: [Noack, 2007]
(LinLog algorithm)
2 clustering the vertices and then using a simplified representation of
the graph [Herman et al., 2000]
• partition the nodes into clusters V1, . . . , VC ;
• display the clustered graph: nodes V1, . . . , VC (surface proportional
to |Vj|) and edges width proportional to xk ∈Vi ,xk ∈Vj
Wij
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
An overview on graph visualization and clustering
Emphasizing “communities” in the layout
1 global approach: displaying all vertices while modifying the forces in
such a way that the dense areas are emphasized: [Noack, 2007]
(LinLog algorithm)
2 clustering the vertices and then using a simplified representation of
the graph [Herman et al., 2000]
• partition the nodes into clusters V1, . . . , VC ;
• display the clustered graph: nodes V1, . . . , VC (surface proportional
to |Vj|) and edges width proportional to xk ∈Vi ,xk ∈Vj
Wij
Main issue: Modify FDP to allows us to display nodes with different
sizes.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
An overview on graph visualization and clustering
Emphasizing “communities” in the layout
1 global approach: displaying all vertices while modifying the forces in
such a way that the dense areas are emphasized: [Noack, 2007]
(LinLog algorithm)
2 clustering the vertices and then using a simplified representation of
the graph
alternative approach: displaying while clustering as in
Self-Organizing Maps [Boulet et al., 2008],
[Rossi and Villa-Vialaneix, 2010] and [Olteanu et al., 2013]
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
An overview on graph visualization and clustering
Emphasizing “communities” in the layout
1 global approach: displaying all vertices while modifying the forces in
such a way that the dense areas are emphasized: [Noack, 2007]
(LinLog algorithm)
2 clustering the vertices and then using a simplified representation of
the graph
3 combined approach: hierarchical representations where finer
details are provided to the user
[Auber et al., 2003, Auber and Jourdan, 2005, Seifi et al., 2010]
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
An overview on graph visualization and clustering
Outline of this talk
• self-organizing maps based on kernels and dissimilarities;
• modularity based representations:
• combined with a map;
• used hierarchically.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 6 / 35
Self-organizing maps approaches
Outline
1 Self-organizing maps approaches
2 Modularity based approaches
3 Soft modularity
Hierarchical clustering and visualization
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 7 / 35
Self-organizing maps approaches
Basic ideas about SOM
Project the graph on a squared grid (each square of the grid is a cluster)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 8 / 35
Self-organizing maps approaches
Basic ideas about SOM
Project the graph on a squared grid (each square of the grid is a cluster)
such that:
• the nodes in a same cluster are highly connected
• the nodes in two close clusters are also (less) connected
• the nodes in two distant clusters are (almost) not connected
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 8 / 35
Self-organizing maps approaches
Basics on Self-Organizing Maps (for multidimensional
data)
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, with which prototypes pi are associated (a
prototype is a “representer” of the neuron in the original dataset);
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
Self-organizing maps approaches
Basics on Self-Organizing Maps (for multidimensional
data)
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, with which prototypes pi are associated (a
prototype is a “representer” of the neuron in the original dataset);
• the map is equipped with a neighborhood relationship, i.e., a
“distance” (actually a dissimilarity) between neurons, D;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
Self-organizing maps approaches
Basics on Self-Organizing Maps (for multidimensional
data)
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, with which prototypes pi are associated (a
prototype is a “representer” of the neuron in the original dataset);
• the map is equipped with a neighborhood relationship, i.e., a
“distance” (actually a dissimilarity) between neurons, D;
• goal: find the best mapping f(xi) ∈ {1, . . . , M} of the data xi in the
different neurons by minimizing the energy
E =
n
i=1
M
j=1
h(D(f(xi), j)) xi − pi
2
.
i.e., each data is assigned to a neuron so that:
• the neuron’s prototype is “close” to the data;
• the neighboring prototypes are also “close” to the data;
• distant prototypes are “distant” of the data.
(topology preservation)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
Self-organizing maps approaches
SOM, dissimilarity SOM and kernel SOM (batch)
Original SOM algorithm (batch): x1, . . . , xn ∈ Rd
1: Initialization: randomly set p0
1
,...,p0
M
in Rd
2: for l = 1 → L do
3: for all i = 1 → n do Assignment
4: fl
(xi) ← arg minj=1,...,M xi − pl−1
j Rd
5: end for
6: for all j = 1 → M do Representation
7: pl
j
← arg minp∈Rd
n
i=1 hl
(D(fl
(xi), j)) xi − p 2
Rd
8: end for
9: end for
Problems with graphs: xi are nodes so 1/ how to define the prototypes?
and 2/ which distance to use between nodes?
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
Self-organizing maps approaches
SOM, dissimilarity SOM and kernel SOM (batch)
Dissimilarity SOM (batch): xi ∈ G defined by a dissimilarity relation:
δ(xi, xj)
1: Initialization: randomly set p0
1
,...,p0
M
in (xi)i
2: for l = 1 → L do
3: for all i = 1 → n do Assignment
4: fl
(xi) ← arg minj=1,...,M δ(xi, pl−1
j
)
5: end for
6: for all j = 1 → M do Representation
7: pl
j
← arg minp∈(xi)i
n
i=1 hl
(D(fl
(xi), j))δ(xi, p)
8: end for
9: end for
[Kohohen and Somervuo, 1998, Kohonen and Somervuo, 2002]
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
Self-organizing maps approaches
SOM, dissimilarity SOM and kernel SOM (batch)
Dissimilarity SOM (batch): xi ∈ G defined by a dissimilarity relation:
δ(xi, xj)
1: Initialization: randomly set p0
j
← γ0
ji
xi (symbolic)
2: for l = 1 → L do
3: for all i = 1 → n do Assignment
4: fl
(xi) ← arg minj=1,...,M δ2
(xi, pl−1
j
) = ∆γl−1
j i
− 1
2 (γl−1
j
)T
∆γl−1
j
where ∆ = (δ(xk , xk ))k,k
5: end for
6: for all j = 1 → M do Representation
7: γl
j
← arg minγ∈Rn
n
i=1 hl
(D(fl
(xi), j))δ2
xi, n
k=1 γk xk
8: end for
9: end for
[Rossi et al., 2007]
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
Self-organizing maps approaches
SOM, dissimilarity SOM and kernel SOM (batch)
Kernel SOM (batch): xi ∈ G defined by a kernel relation: K(xi, xj) ⇒
∃ φ : G → (H, ., . H ):K(x, x ) = φ(x), φ(x ) H
1: Initialization: randomly set p0
j
← n
i=1 γ0
ji
φ(xi)
2: for l = 1 → L do
3: for all i = 1 → n do Assignment
4: fl
(xi) ← arg minj=1,...,M φ(xi) − pl−1
j H where φ(xi) − pl−1
j H =
n
k=1 γl−1
jk
γl−1
jk
K(xk , xk ) − 2 n
k=1 γl−1
jk
K(xi, xk )
5: end for
6: for all j = 1 → M do Representation
7: γl
jk
← arg minγ∈Rn
n
i=1 hl
(D(fl
(xi), j)) φ(xi) − n
k=1 γk φ(xk ) 2
H
8: end for
9: end for
[Villa and Rossi, 2007, Boulet et al., 2008]
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
Self-organizing maps approaches
Dissimilarity SOM (stochastic)
(Online relational SOM) [Olteanu et al., 2013]
1: Initialization: randomly set γ0
ji
in R
2: for l = 1 → L do
3: Randomly chose an input xi
4: Assignment ft
(xi) ← arg minj=1,...,M γl−1
j
∆
i
− 1
2 γl−1
j
∆(γl−1
j
)T
5: for all j = 1 → M do Update of the prototypes
6: γl
j
← γl−1
j
+ αl
hl
(D(fl
(xi), j)) 1i − γl−1
j
where 1i is a vector with a
single non null coefficient at the ith position, equal to one
7: end for
8: end for
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 11 / 35
Self-organizing maps approaches
Which dissimilarities/kernels for graphs?
Laplacian [Kondor and Lafferty, 2002]
For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n
(positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where
Li,j =
−wi,j if i j
di = j i wi,j if i = j
;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
Self-organizing maps approaches
Which dissimilarities/kernels for graphs?
Laplacian [Kondor and Lafferty, 2002]
For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n
(positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where
Li,j =
−wi,j if i j
di = j i wi,j if i = j
;
1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0,
Kβ = e−βL
= +∞
k=1
(−βL)k
k! heat kernel (or diffusion kernel);
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
Self-organizing maps approaches
Which dissimilarities/kernels for graphs?
Laplacian [Kondor and Lafferty, 2002]
For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n
(positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where
Li,j =
−wi,j if i j
di = j i wi,j if i = j
;
1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0,
Kβ = e−βL
= +∞
k=1
(−βL)k
k! heat kernel (or diffusion kernel);
2 Generalized inverse of the Laplacian [Fouss et al., 2007] :
K = L+;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
Self-organizing maps approaches
Which dissimilarities/kernels for graphs?
Laplacian [Kondor and Lafferty, 2002]
For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n
(positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where
Li,j =
−wi,j if i j
di = j i wi,j if i = j
;
1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0,
Kβ = e−βL
= +∞
k=1
(−βL)k
k! heat kernel (or diffusion kernel);
2 Generalized inverse of the Laplacian [Fouss et al., 2007] :
K = L+;
3 Dissimilarity: length of the shortest path between two nodes.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
Self-organizing maps approaches
A first example: a medieval social network
Example from [Boulet et al., 2008]
, http://graphcomp.univ-tlse2.fr/ In the “Archive départementales
du Lot” (Cahors, France), big corpus of 5000 transactions (mostly land
charters)
• coming from 4 “seigneuries” (about 25 little villages) in South West of
France;
• being established between 1240 and 1520 (just before and after the
hundred years’ war).
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 13 / 35
Self-organizing maps approaches
Simplification of this network by kernel SOM
nodes: individuals ( 600)
named in the transactions, re-
stricted to transactions estab-
lished before the HYW; edges:
the fact that two individuals are
named in a common transac-
tion or have a common lord
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 14 / 35
Self-organizing maps approaches
Simplification of this network by kernel SOM
Kernel SOM with heat kernel
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 14 / 35
Self-organizing maps approaches
A brief comparison with spectral clustering
Number of clusters: 35 50
Maximum size of the clusters: 255 268
Modularity: 0.597 0.420
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 15 / 35
Self-organizing maps approaches
A brief comparison with spectral clustering
Number of clusters: 35 29
Maximum size of the clusters: 255 325
Modularity: 0.597 0.433
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 15 / 35
Self-organizing maps approaches
Online relational SOM (faster)
Description:
• nodes: 105 American political books;
• edges weighted by the number of co-purchasing of the two books on
the internet (Amazon.com).
FDP representation
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 16 / 35
Self-organizing maps approaches
Online relational SOM (faster)
Description:
• nodes: 105 American political books;
• edges weighted by the number of co-purchasing of the two books on
the internet (Amazon.com).
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 16 / 35
Modularity based approaches
Outline
1 Self-organizing maps approaches
2 Modularity based approaches
3 Soft modularity
Hierarchical clustering and visualization
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 17 / 35
Modularity based approaches
Modularity [Newman and Girvan, 2004]
Popular quality measure for graph clustering: a partition of the vertices
in C clusters, (Ck )k=1,...,C has modularity:
Q(C) =
1
2m
C
k=1 i,j∈Ck
(Wij − Pij)
where Pij are weights corresponding to a “null model” where the weights
only depend on the nodes properties and not on the cluster they belong to.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
Modularity based approaches
Modularity [Newman and Girvan, 2004]
Popular quality measure for graph clustering: a partition of the vertices
in C clusters, (Ck )k=1,...,C has modularity:
Q(C) =
1
2m
C
k=1 i,j∈Ck
(Wij − Pij)
where Pij are weights corresponding to a “null model” where the weights
only depend on the nodes properties and not on the cluster they belong to.
More precisely,
Pij =
didj
2m
with di = 1
2 j i Wij is the degree of a vertex xi.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
Modularity based approaches
Modularity [Newman and Girvan, 2004]
Popular quality measure for graph clustering: a partition of the vertices
in C clusters, (Ck )k=1,...,C has modularity:
Q(C) =
1
2m
C
k=1 i,j∈Ck
(Wij − Pij)
where Pij are weights corresponding to a “null model” where the weights
only depend on the nodes properties and not on the cluster they belong to.
More precisely,
Pij =
didj
2m
with di = 1
2 j i Wij is the degree of a vertex xi.
A “good” clustering should maximize Q.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
Modularity based approaches
Interpretation
• Q increases when (xi, xj) are in a same cluster and have true
weight Wij greater than the ones expected in the null model, Pij
• Q increases when (xi, xj) are in a two different clusters and have
true weight Wij smaller than the ones expected in the null model, Pij
because
Q(C) +
1
2m
k k i∈Ck , j∈Ck
(Wij − Pij) = 0.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 19 / 35
Modularity based approaches
Interpretation
• Q increases when (xi, xj) are in a same cluster and have true
weight Wij greater than the ones expected in the null model, Pij
• Q increases when (xi, xj) are in a two different clusters and have
true weight Wij smaller than the ones expected in the null model, Pij
because
Q(C) +
1
2m
k k i∈Ck , j∈Ck
(Wij − Pij) = 0.
• Contrary to the minimization of the number of edges between
clusters, modularity can help to separate nodes with high degrees
into different clusters more easily
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 19 / 35
Modularity based approaches
Drawing optimized clustering
Combine:
• high modularity to ensure high intra clusters density and low
external connectivity
• little edge crossing
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
Modularity based approaches
Drawing optimized clustering
Combine:
• high modularity to ensure high intra clusters density and low
external connectivity
• little edge crossing by:
• Classic solution: relying on graph drawing algorithm after maximization
of the modularity
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
Modularity based approaches
Drawing optimized clustering
Combine:
• high modularity to ensure high intra clusters density and low
external connectivity
• little edge crossing by:
• Classic solution: relying on graph drawing algorithm after maximization
of the modularity
• Extend the modularity to a criterium adapted to a prior structure (like a
grid)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
Soft modularity
Outline
1 Self-organizing maps approaches
2 Modularity based approaches
3 Soft modularity
Hierarchical clustering and visualization
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 21 / 35
Soft modularity
Self Organizing Map principle
For data in Rd
, SOM minimizes (over the clustering and the prototypes
(pk ))
M
j=1
n
i=1
Sf(xi),j xi − pj
2
Rd
where Skl encodes the prior structure: close to 1 for close clusters and
close to 0 for distant clusters
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 22 / 35
Soft modularity
Self Organizing Map principle
For data in Rd
, SOM minimizes (over the clustering and the prototypes
(pk ))
M
j=1
n
i=1
Sf(xi),j xi − pj
2
Rd
where Skl encodes the prior structure: close to 1 for close clusters and
close to 0 for distant clusters
This corresponds to a soft membership: xi belongs to Cj with
membership Sf(xi),j.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 22 / 35
Soft modularity
Organized modularity [Rossi and Villa-Vialaneix, 2010]
Same idea: encode a prior structure via a matrix S.
Maximize:
SQ =
1
2m
i,j
Sf(i)f(j)(Wij − Pij)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 23 / 35
Soft modularity
Organized modularity [Rossi and Villa-Vialaneix, 2010]
Same idea: encode a prior structure via a matrix S.
Maximize:
SQ =
1
2m
i,j
Sf(i)f(j)(Wij − Pij)
Hence:
• if a pair of vertices (xi, xj) is such that Wij > Pij, SQ increases with the
closeness of f(xi) and f(xj) in the prior structure
• if a pair of vertices (xi, xj) is such that Wij < Pij, SQ increases if f(xi)
and f(xj) are distant in the prior structure
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 23 / 35
Soft modularity
Optimization
The clustering is represented by a n × C assignment matrix M with
Mik = δf(i)=k . The goal is then to maximize
SQ = F(M) =
1
2m
i,j k,l
Mik SklMlj(Wij − Pij)
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 24 / 35
Soft modularity
Optimization
The clustering is represented by a n × C assignment matrix M with
Mik = δf(i)=k . The goal is then to maximize
SQ = F(M) =
1
2m
i,j k,l
Mik SklMlj(Wij − Pij)
Combinatorial problem is NP-complet ⇒ use of deterministic algorithm
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 24 / 35
Soft modularity
Comparison on the co-appearance network from “Les
Misérables”
Co-appearance network from “Les Misérables” [Knuth, 1993]
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
Myriel
Napoleon
MlleBaptistine
MmeMagloire
CountessDeLo
Geborand
Champtercier
Cravatte
Count
OldMan
Labarre
Valjean
Marguerite
MmeDeR
Isabeau
Gervais
Tholomyes
Listolier
Fameuil
Blacheville
Favourite
Dahlia
Zephine
Fantine
MmeThenardier
Thenardier
Cosette
Javert
Fauchelevent
Bamatabois
Perpetue
Simplice
Scaufflaire
Woman1
Judge
Champmathieu
Brevet
ChenildieuCochepaille
PontmercyBoulatruelle
Eponine
Anzelma
Woman2
MotherInnocent
Gribier
Jondrette
MmeBurgon
Gavroche
Gillenormand
Magnon
MlleGillenormand
MmePontmercy
MlleVaubois
LtGillenormand
Marius
BaronessT
Mabeuf
Enjolras
Combeferre
Prouvaire
Feuilly
Courfeyrac
BahorelBossuet
Joly
Grantaire
MotherPlutarch
GueulemerBabet
Claquesous
Montparnasse
Toussaint
Child1Child2
Brujon
MmeHucheloup
77 nodes
density = 8.7%
transitivity = 49.9 %
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 25 / 35
Soft modularity
Methodology
Comparison of:
• Kernel SOM with various kernels: heat kernel, generalized inverse of
the Laplacian, modularity kernel (i.e., the positive part of W − P which
mimics the optimization of the modularity) and spectral SOM (based
on the first M eigenvectors of the Laplacian)
• SQ optimization
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
Soft modularity
Methodology
Comparison of:
• Kernel SOM with various kernels: heat kernel, generalized inverse of
the Laplacian, modularity kernel (i.e., the positive part of W − P which
mimics the optimization of the modularity) and spectral SOM (based
on the first M eigenvectors of the Laplacian)
• SQ optimization
Parameters varied:
• size of the prior grid or number of clusters
• for organized clusterings, type of neighborhood on the grid
• for SOM, random or PCA initialization and kernel parameter for the
heat kernel
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
Soft modularity
Methodology
Comparison of:
• Kernel SOM with various kernels: heat kernel, generalized inverse of
the Laplacian, modularity kernel (i.e., the positive part of W − P which
mimics the optimization of the modularity) and spectral SOM (based
on the first M eigenvectors of the Laplacian)
• SQ optimization
Parameters varied:
• size of the prior grid or number of clusters
• for organized clusterings, type of neighborhood on the grid
• for SOM, random or PCA initialization and kernel parameter for the
heat kernel
Selection of the solutions: Pareto points according to modularity and
number of edge crossing
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
Soft modularity
A brief comment on the kernel SOM solutions
qq qq qqq qq qq q qq qq q q
q
qq
qqqq
0.0 0.1 0.2 0.3 0.4 0.5 0.6
0100200300400500
Generalized inverse
Modularity
Crossingedges
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
qq
q
q
qq
q
q
q
q
q
q
q
q
q
q q
q
qqq
qq
q
qq
qqq
q
q
q
q
q
Size 3
Size 4
Size 5
Pareto point
qqq qqqqq qqqqq qqqqq qqqqq q qqqq
q
qqqq
q
qqqq
q
qq
q
q
q
q
q
q
q
q
q q
qqq qq
q qq q
qqqq q q
qq
q q q
q q
qqqq qq qqq qq qq qqq qqq qq qq q qq q
0.0 0.1 0.2 0.3 0.4 0.5 0.6
0100200300400500
Heat kernel
Modularity
Crossingedges
q
q
q
q
q
q
q
q
q
q
q
qq
q qq
q q
q q
q
qq
q
q
qqq
q q
q
q
q
q q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q q
q
qq
qqq
q
q
qq
q
q
qq
q
q
q
qq
q
q
q qqq
q
qq
q
q
qq qq qqq qq
q
qqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
q
q
q
q
q
q q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
qq
q
qqq
q
qq
qq
q
qq
qq
q
q
q
Size 3
Size 4
Size 5
Pareto point
qq
q
qq qq
qq
q
qq qq q qq qq q qqq
q q
0.0 0.1 0.2 0.3 0.4 0.5 0.6
0100200300400500
Modularity kernel
Modularity
Crossingedges
qq qq
q
q
q q
q
q
q
q qq
q
q
q
q
q
q q
q
q
q
q
q
q
qq
q q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
Size 3
Size 4
Size 5
qqqqq qq
q
qq
q
q qqq
q
qq qq
q
q qqq
0.0 0.1 0.2 0.3 0.4 0.5 0.6
0100200300400500
Spectral SOM
Modularity
Crossingedges
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q q
q
q
q
qq
q
q
q q
q
q
Size 3
Size 4
Size 5
Spectral SOM and Modularity kernel obtain poor results
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 27 / 35
Soft modularity
Analysis of the Pareto points for “Les Misérables”
Method Number Modularity Nb of pairs
of clusters of cut edges
Organized mod. 42
(7) 0.5638 1
Organized mod. 52
(7) 0.5652 3
32
(6) 0.5472 0
kernel SOM (HK) 52
(22) 0.5327 27
32
(8) 0.5276 2
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 28 / 35
Soft modularity
Analysis of the Pareto points for “Les Misérables”
Method Number Modularity Nb of pairs
of clusters of cut edges
Organized mod. 42
(7) 0.5638 1
Organized mod. 52
(7) 0.5652 3
32
(6) 0.5472 0
kernel SOM (HK) 52
(22) 0.5327 27
32
(8) 0.5276 2
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
qq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
q
q
q qq
q
q
qq
q
q
q
q q
q
q
q
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 28 / 35
Soft modularity Hierarchical clustering and visualization
Outline
1 Self-organizing maps approaches
2 Modularity based approaches
3 Soft modularity
Hierarchical clustering and visualization
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 29 / 35
Soft modularity Hierarchical clustering and visualization
Global overview
[Rossi and Villa-Vialaneix, 2011] 2 combined steps:
• Find out a clustering hierarchy (by repeating modularity optimization
in clusters) + test of the significativity of the partition at each step;
• Display the different levels of the hierarchy by a modified force
directed algorithm.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 30 / 35
Soft modularity Hierarchical clustering and visualization
A hierarchy of clustering
Aim: Limiting the resolution default of modularity (see [Fortunato, 2010].
How to do so? Iterate the modularity optimization in each cluster. The
modularity is optimized by a greedy algorithm with multi-levels refinement
similar to that of [Noack and Rotta, 2009].
Step 1
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
Soft modularity Hierarchical clustering and visualization
A hierarchy of clustering
Aim: Limiting the resolution default of modularity (see [Fortunato, 2010].
How to do so? Iterate the modularity optimization in each cluster. The
modularity is optimized by a greedy algorithm with multi-levels refinement
similar to that of [Noack and Rotta, 2009].
Step 2
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
Soft modularity Hierarchical clustering and visualization
A hierarchy of clustering
Aim: Limiting the resolution default of modularity (see [Fortunato, 2010].
How to do so? Iterate the modularity optimization in each cluster. The
modularity is optimized by a greedy algorithm with multi-levels refinement
similar to that of [Noack and Rotta, 2009].
Step 3
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
Soft modularity Hierarchical clustering and visualization
Stopping criterion
A clustering algorithm always provides a solution, relevant or not!
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
Soft modularity Hierarchical clustering and visualization
Stopping criterion
A clustering algorithm always provides a solution, relevant or not!
Significativity of a node clustering:
1 Generate random graphs with the same degree distribution than the
original graph;
Simulation process: MCMC algorithm of [Roberts Jr., 2000] which
permutes edges on random couples of pairs of connected nodes;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
Soft modularity Hierarchical clustering and visualization
Stopping criterion
A clustering algorithm always provides a solution, relevant or not!
Significativity of a node clustering:
1 Generate random graphs with the same degree distribution than the
original graph;
Simulation process: MCMC algorithm of [Roberts Jr., 2000] which
permutes edges on random couples of pairs of connected nodes;
After Q|E| permutations, the obtained graph is random for the uniform
distribution on the set of graphs with the same degre distribution.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
Soft modularity Hierarchical clustering and visualization
Stopping criterion
A clustering algorithm always provides a solution, relevant or not!
Significativity of a node clustering:
1 Generate random graphs with the same degree distribution than the
original graph;
2 Optimize the modularity on these random graphs;
3 Find out the p-value of the observed modularity compared to the
empirical distribution on random graphs;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
Soft modularity Hierarchical clustering and visualization
Stopping criterion
A clustering algorithm always provides a solution, relevant or not!
Significativity of a node clustering:
1 Generate random graphs with the same degree distribution than the
original graph;
2 Optimize the modularity on these random graphs;
3 Find out the p-value of the observed modularity compared to the
empirical distribution on random graphs;
4 If the new clustering is not found to be significant, the algorithm is
stopped.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
Soft modularity Hierarchical clustering and visualization
Display a clustering hierarchy
Basics
• start from the first step of the clustering;
• expand the clusters by order of minimal decrease in modularity.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
Soft modularity Hierarchical clustering and visualization
Display a clustering hierarchy
Basics
• start from the first step of the clustering;
• expand the clusters by order of minimal decrease in modularity.
Issues
1 taking into account the size of the clusters: [Tunkelang, 1999] for a
modification of the FDR algorithm to nodes that have different sizes;
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
Soft modularity Hierarchical clustering and visualization
Display a clustering hierarchy
Basics
• start from the first step of the clustering;
• expand the clusters by order of minimal decrease in modularity.
Issues
1 taking into account the size of the clusters: [Tunkelang, 1999] for a
modification of the FDR algorithm to nodes that have different sizes;
2 estimating in advance the place needed to represent a cluster when it
is expanded.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
From the same corpus of medieval documents:
• nodes: transactions and active individuals. 3 918 individuals and
6 455 transactions (total: 10 373 sommets);
• edges model the active involvement of an individual in a transaction.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
From the same corpus of medieval documents:
• nodes: transactions and active individuals. 3 918 individuals and
6 455 transactions (total: 10 373 sommets);
• edges model the active involvement of an individual in a transaction.
Modularity optimization: 48 clusters having from 10 to 740 nodes.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
From the same corpus of medieval documents:
• nodes: transactions and active individuals. 3 918 individuals and
6 455 transactions (total: 10 373 sommets);
• edges model the active involvement of an individual in a transaction.
Modularity optimization: 48 clusters having from 10 to 740 nodes.
Hierarchy : 4 levels, 89 classes on the latest levels.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Another medieval network...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
Soft modularity Hierarchical clustering and visualization
Conclusion
Mining a graph from a clustering
• clustering can be used to provide a simplified representation of the
network and to help the user understand its macroscopic structure;
• optimizing the modularity seems to provide better results than
approaches based on the Laplacian (it helps for separating hubs and
thus results in more balanced clusters);
• approaches presented here are almost fully automated: solutions to
tune the parameters are provided in the corresponding articles.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
Soft modularity Hierarchical clustering and visualization
Conclusion
Mining a graph from a clustering
• clustering can be used to provide a simplified representation of the
network and to help the user understand its macroscopic structure;
• optimizing the modularity seems to provide better results than
approaches based on the Laplacian (it helps for separating hubs and
thus results in more balanced clusters);
• approaches presented here are almost fully automated: solutions to
tune the parameters are provided in the corresponding articles.
Perspectives: improve the representation of the hierarchy, incorporate
additional information on nodes and edges in the clustering...
Merci pour votre attention...
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
Soft modularity Hierarchical clustering and visualization
References
Auber, D., Chiricota, Y., Jourdan, F., and Melançon, G. (2003).
Multiscale visualization of small world networks.
In INFOVIS’03.
Auber, D. and Jourdan, F. (2005).
Interactive refinement of multi-scale network clusterings.
In International Conference on Information Visualisation, pages 703–709, Los Alamitos, CA, USA. IEEE Computer Society.
Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008).
Batch kernel SOM and related laplacian methods for social network analysis.
Neurocomputing, 71(7-9):1257–1273.
Fortunato, S. (2010).
Community detection in graphs.
Physics Reports, 486:75–174.
Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007).
Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation.
IEEE Trans Knowl Data En, 19(3):355–369.
Fruchterman, T. and Reingold, B. (1991).
Graph drawing by force-directed placement.
Software Pract Exper, 21:1129–1164.
Herman, I., Melançon, G., and Scott Marshall, M. (2000).
Graph visualization and navigation in information visualisation.
6(1):24–43.
Knuth, D. (1993).
The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison-Wesley, Reading, MA.
Kohohen, T. and Somervuo, P. (1998).
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
Soft modularity Hierarchical clustering and visualization
Self-Organizing maps of symbol strings.
Neurocomputing, 21:19–30.
Kohonen, T. and Somervuo, P. (2002).
How to make large self-organizing maps for nonvectorial data.
Neural Networks, 15(8):945–952.
Kondor, R. and Lafferty, J. (2002).
Diffusion kernels on graphs and other discrete structures.
In Proceedings of the 19th International Conference on Machine Learning, pages 315–322.
Newman, M. and Girvan, M. (2004).
Finding and evaluating community structure in networks.
Phys Rev E, 69:026113.
Noack, A. (2007).
Energy models for graph clustering.
J Graph Algorithms Appl, 11(2):453–480.
Noack, A. and Rotta, R. (2009).
Multi-level algorithms for modularity clustering.
In SEA ’09: Proceedings of the 8th International Symposium on Experimental Algorithms, pages 257–268, Berlin, Heidelberg.
Springer-Verlag.
Olteanu, M., Villa-Vialaneix, N., and Cottrell, M. (2013).
On-line relational som for dissimilarity data.
In Estevez, P., Principe, J., Zegers, P., and Barreto, G., editors, Advances in Self-Organizing Maps (Proceedings of WSOM
2012), volume 198 of AISC, pages 13–22, Springer Verlag, Berlin, Heidelberg.
To appear.
Roberts Jr., J. M. (2000).
Simple methods for simulating sociomatrices with given marginal totals.
Social Networks, 22(3):273 – 283.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
Soft modularity Hierarchical clustering and visualization
Rossi, F., Hasenfuss, A., and Hammer, B. (2007).
Accelerating relational clustering algorithms with sparse prototype representation.
In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield
University.
Rossi, F. and Villa-Vialaneix, N. (2010).
Optimizing an organized modularity measure for topographic graph clustering: a deterministic annealing approach.
Neurocomputing, 73(7-9):1142–1163.
Rossi, F. and Villa-Vialaneix, N. (2011).
Représentation d’un grand réseau à partir d’une classification hiérarchique de ses sommets.
Journal de la Société Française de Statistique, 152(3):34–65.
Seifi, M., Guillaume, J., Latapy, M., and Le Grand, B. (2010).
Visualisation interactive multi-échelle des grands graphes : application à un réseau de blogs.
In Atelier EGC 2010, Visualisation et Extraction de Connaissances, Hammamet, Tunisie.
Tunkelang, D. (1999).
A Numerical Optimization Approach to General Graph Drawing.
PhD thesis, School of Computer Science, Carnegie Mellon University.
CMU-CS-98-189.
Villa, N. and Rossi, F. (2007).
A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph.
In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield
University.
Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35

More Related Content

Viewers also liked

Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"tuxette
 
Consensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplesConsensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplestuxette
 
Combiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxCombiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxtuxette
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
A comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingA comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingtuxette
 
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans RVisualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans Rtuxette
 
Des réseaux sociaux aux réseaux historiques
Des réseaux sociaux aux réseaux historiquesDes réseaux sociaux aux réseaux historiques
Des réseaux sociaux aux réseaux historiquestuxette
 
Interpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional dataInterpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional datatuxette
 
Multiple kernel Self-Organizing Maps
Multiple kernel Self-Organizing MapsMultiple kernel Self-Organizing Maps
Multiple kernel Self-Organizing Mapstuxette
 
A short introduction to statistical learning
A short introduction to statistical learningA short introduction to statistical learning
A short introduction to statistical learningtuxette
 
Clustered graph, visualization, hierarchical visualization
Clustered graph, visualization, hierarchical visualizationClustered graph, visualization, hierarchical visualization
Clustered graph, visualization, hierarchical visualizationtuxette
 
Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014tuxette
 
Cartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringCartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringtuxette
 
Graph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningGraph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningtuxette
 

Viewers also liked (15)

Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"Reading revue of "Inferring Multiple Graphical Structures"
Reading revue of "Inferring Multiple Graphical Structures"
 
Consensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplesConsensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samples
 
Combiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxCombiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseaux
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
A comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingA comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leaching
 
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans RVisualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
 
Des réseaux sociaux aux réseaux historiques
Des réseaux sociaux aux réseaux historiquesDes réseaux sociaux aux réseaux historiques
Des réseaux sociaux aux réseaux historiques
 
Interpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional dataInterpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional data
 
Multiple kernel Self-Organizing Maps
Multiple kernel Self-Organizing MapsMultiple kernel Self-Organizing Maps
Multiple kernel Self-Organizing Maps
 
A short introduction to statistical learning
A short introduction to statistical learningA short introduction to statistical learning
A short introduction to statistical learning
 
Clustered graph, visualization, hierarchical visualization
Clustered graph, visualization, hierarchical visualizationClustered graph, visualization, hierarchical visualization
Clustered graph, visualization, hierarchical visualization
 
Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014
 
Cartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringCartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clustering
 
Graph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningGraph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph mining
 

Similar to http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf

A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelstuxette
 
Notes on Spectral Clustering
Notes on Spectral ClusteringNotes on Spectral Clustering
Notes on Spectral ClusteringDavide Eynard
 
Large network analysis : visualization and clustering
Large network analysis : visualization and clusteringLarge network analysis : visualization and clustering
Large network analysis : visualization and clusteringtuxette
 
JOSA TechTalks - Machine Learning on Graph-Structured Data
JOSA TechTalks - Machine Learning on Graph-Structured DataJOSA TechTalks - Machine Learning on Graph-Structured Data
JOSA TechTalks - Machine Learning on Graph-Structured DataJordan Open Source Association
 
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Universitat Politècnica de Catalunya
 
Graph mining with kernel self-organizing map
Graph mining with kernel self-organizing mapGraph mining with kernel self-organizing map
Graph mining with kernel self-organizing maptuxette
 
Topographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodsTopographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodstuxette
 
(slides 3) Visual Computing: Geometry, Graphics, and Vision
(slides 3)  Visual Computing: Geometry, Graphics, and Vision(slides 3)  Visual Computing: Geometry, Graphics, and Vision
(slides 3) Visual Computing: Geometry, Graphics, and VisionFrank Nielsen
 
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...Yandex
 
GraphSignalProcessingFinalPaper
GraphSignalProcessingFinalPaperGraphSignalProcessingFinalPaper
GraphSignalProcessingFinalPaperChiraz Nafouki
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphstuxette
 
Clustering of graphs and search of assemblages
Clustering of graphs and search of assemblagesClustering of graphs and search of assemblages
Clustering of graphs and search of assemblagesData-Centric_Alliance
 
A discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsA discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsLARCA UPC
 
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:Sean Golliher
 
(slides 1) Visual Computing: Geometry, Graphics, and Vision
(slides 1) Visual Computing: Geometry, Graphics, and Vision(slides 1) Visual Computing: Geometry, Graphics, and Vision
(slides 1) Visual Computing: Geometry, Graphics, and VisionFrank Nielsen
 
Spectral Clustering Report
Spectral Clustering ReportSpectral Clustering Report
Spectral Clustering ReportMiaolan Xie
 
Manifold learning
Manifold learningManifold learning
Manifold learningWei Yang
 

Similar to http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf (20)

A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
 
Notes on Spectral Clustering
Notes on Spectral ClusteringNotes on Spectral Clustering
Notes on Spectral Clustering
 
Graph Partitioning and Spectral Methods
Graph Partitioning and Spectral MethodsGraph Partitioning and Spectral Methods
Graph Partitioning and Spectral Methods
 
Large network analysis : visualization and clustering
Large network analysis : visualization and clusteringLarge network analysis : visualization and clustering
Large network analysis : visualization and clustering
 
JOSA TechTalks - Machine Learning on Graph-Structured Data
JOSA TechTalks - Machine Learning on Graph-Structured DataJOSA TechTalks - Machine Learning on Graph-Structured Data
JOSA TechTalks - Machine Learning on Graph-Structured Data
 
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
Convolutional Neural Networks (DLAI D5L1 2017 UPC Deep Learning for Artificia...
 
Module 22-graphs
Module 22-graphsModule 22-graphs
Module 22-graphs
 
Graph mining with kernel self-organizing map
Graph mining with kernel self-organizing mapGraph mining with kernel self-organizing map
Graph mining with kernel self-organizing map
 
Topographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodsTopographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methods
 
(slides 3) Visual Computing: Geometry, Graphics, and Vision
(slides 3)  Visual Computing: Geometry, Graphics, and Vision(slides 3)  Visual Computing: Geometry, Graphics, and Vision
(slides 3) Visual Computing: Geometry, Graphics, and Vision
 
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
Nelly Litvak – Asymptotic behaviour of ranking algorithms in directed random ...
 
GraphSignalProcessingFinalPaper
GraphSignalProcessingFinalPaperGraphSignalProcessingFinalPaper
GraphSignalProcessingFinalPaper
 
From RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphsFrom RNN to neural networks for cyclic undirected graphs
From RNN to neural networks for cyclic undirected graphs
 
Clustering of graphs and search of assemblages
Clustering of graphs and search of assemblagesClustering of graphs and search of assemblages
Clustering of graphs and search of assemblages
 
A discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functionsA discussion on sampling graphs to approximate network classification functions
A discussion on sampling graphs to approximate network classification functions
 
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction:
 
1422798749.2779lecture 5
1422798749.2779lecture 51422798749.2779lecture 5
1422798749.2779lecture 5
 
(slides 1) Visual Computing: Geometry, Graphics, and Vision
(slides 1) Visual Computing: Geometry, Graphics, and Vision(slides 1) Visual Computing: Geometry, Graphics, and Vision
(slides 1) Visual Computing: Geometry, Graphics, and Vision
 
Spectral Clustering Report
Spectral Clustering ReportSpectral Clustering Report
Spectral Clustering Report
 
Manifold learning
Manifold learningManifold learning
Manifold learning
 

More from tuxette

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathstuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènestuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquestuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-Ctuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquestuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeantuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquestuxette
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...tuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation datatuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysistuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricestuxette
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Predictiontuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random foresttuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 

More from tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 

Recently uploaded

Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 

Recently uploaded (20)

Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 

http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf

  • 1. Clustered graph, visualization and hierarchical visualization Nathalie Villa-Vialaneix http://www.nathalievilla.org nathalie.villa@univ-paris1.fr Séminaire LIPN, Université Paris 13 November, 15th, 2012 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 1 / 35
  • 2. An overview on graph visualization and clustering Framework A graph (network) G = (V, E, W) with • n vertices (nodes) V = {x1, . . . , xn}; • edges, E, weighted by Wij = Wji ≥ 0 (Wii = 0). Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 2 / 35
  • 3. An overview on graph visualization and clustering Network mining through visualization A standard approach for network mining: using a force directed placement algorithm (FDP) to display the graph; e.g., [Fruchterman and Reingold, 1991] • attractive forces: along the edges, analogous to springs; • repulsive forces : between all pairs of nodes, analogous to electric forces. The algorithm starts from an initial (random) position and iterates until the layout is stabilized. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
  • 4. An overview on graph visualization and clustering Network mining through visualization A standard approach for network mining: using a force directed placement algorithm (FDP) to display the graph; e.g., [Fruchterman and Reingold, 1991] • attractive forces: along the edges, analogous to springs; • repulsive forces : between all pairs of nodes, analogous to electric forces. The algorithm starts from an initial (random) position and iterates until the layout is stabilized. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
  • 5. An overview on graph visualization and clustering Network mining through visualization A standard approach for network mining: using a force directed placement algorithm (FDP) to display the graph; e.g., [Fruchterman and Reingold, 1991] • attractive forces: along the edges, analogous to springs; • repulsive forces : between all pairs of nodes, analogous to electric forces. The algorithm starts from an initial (random) position and iterates until the layout is stabilized. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 3 / 35
  • 6. An overview on graph visualization and clustering Drawbacks of FDP algorithms • slow (hard to use for very large graphs); Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
  • 7. An overview on graph visualization and clustering Drawbacks of FDP algorithms • slow (hard to use for very large graphs); • are more oriented toward aesthetic than toward an interpretable layout: • tendency: short edges with uniform lengths; • negative consequence: hubs are clustered in the center of the figure. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
  • 8. An overview on graph visualization and clustering Drawbacks of FDP algorithms • slow (hard to use for very large graphs); • are more oriented toward aesthetic than toward an interpretable layout: • tendency: short edges with uniform lengths; • negative consequence: hubs are clustered in the center of the figure. What the user usually prefers: 1 understanding the macroscopic structure of the graph, i.e., find out “communities” and their relations; 2 focus on details for clusters that seem to be of interest. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 4 / 35
  • 9. An overview on graph visualization and clustering Emphasizing “communities” in the layout 1 global approach: displaying all vertices while modifying the forces in such a way that the dense areas are emphasized: [Noack, 2007] (LinLog algorithm) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
  • 10. An overview on graph visualization and clustering Emphasizing “communities” in the layout 1 global approach: displaying all vertices while modifying the forces in such a way that the dense areas are emphasized: [Noack, 2007] (LinLog algorithm) 2 clustering the vertices and then using a simplified representation of the graph [Herman et al., 2000] • partition the nodes into clusters V1, . . . , VC ; • display the clustered graph: nodes V1, . . . , VC (surface proportional to |Vj|) and edges width proportional to xk ∈Vi ,xk ∈Vj Wij Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
  • 11. An overview on graph visualization and clustering Emphasizing “communities” in the layout 1 global approach: displaying all vertices while modifying the forces in such a way that the dense areas are emphasized: [Noack, 2007] (LinLog algorithm) 2 clustering the vertices and then using a simplified representation of the graph [Herman et al., 2000] • partition the nodes into clusters V1, . . . , VC ; • display the clustered graph: nodes V1, . . . , VC (surface proportional to |Vj|) and edges width proportional to xk ∈Vi ,xk ∈Vj Wij Main issue: Modify FDP to allows us to display nodes with different sizes. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
  • 12. An overview on graph visualization and clustering Emphasizing “communities” in the layout 1 global approach: displaying all vertices while modifying the forces in such a way that the dense areas are emphasized: [Noack, 2007] (LinLog algorithm) 2 clustering the vertices and then using a simplified representation of the graph alternative approach: displaying while clustering as in Self-Organizing Maps [Boulet et al., 2008], [Rossi and Villa-Vialaneix, 2010] and [Olteanu et al., 2013] Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
  • 13. An overview on graph visualization and clustering Emphasizing “communities” in the layout 1 global approach: displaying all vertices while modifying the forces in such a way that the dense areas are emphasized: [Noack, 2007] (LinLog algorithm) 2 clustering the vertices and then using a simplified representation of the graph 3 combined approach: hierarchical representations where finer details are provided to the user [Auber et al., 2003, Auber and Jourdan, 2005, Seifi et al., 2010] Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 5 / 35
  • 14. An overview on graph visualization and clustering Outline of this talk • self-organizing maps based on kernels and dissimilarities; • modularity based representations: • combined with a map; • used hierarchically. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 6 / 35
  • 15. Self-organizing maps approaches Outline 1 Self-organizing maps approaches 2 Modularity based approaches 3 Soft modularity Hierarchical clustering and visualization Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 7 / 35
  • 16. Self-organizing maps approaches Basic ideas about SOM Project the graph on a squared grid (each square of the grid is a cluster) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 8 / 35
  • 17. Self-organizing maps approaches Basic ideas about SOM Project the graph on a squared grid (each square of the grid is a cluster) such that: • the nodes in a same cluster are highly connected • the nodes in two close clusters are also (less) connected • the nodes in two distant clusters are (almost) not connected Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 8 / 35
  • 18. Self-organizing maps approaches Basics on Self-Organizing Maps (for multidimensional data) • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, with which prototypes pi are associated (a prototype is a “representer” of the neuron in the original dataset); Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
  • 19. Self-organizing maps approaches Basics on Self-Organizing Maps (for multidimensional data) • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, with which prototypes pi are associated (a prototype is a “representer” of the neuron in the original dataset); • the map is equipped with a neighborhood relationship, i.e., a “distance” (actually a dissimilarity) between neurons, D; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
  • 20. Self-organizing maps approaches Basics on Self-Organizing Maps (for multidimensional data) • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, with which prototypes pi are associated (a prototype is a “representer” of the neuron in the original dataset); • the map is equipped with a neighborhood relationship, i.e., a “distance” (actually a dissimilarity) between neurons, D; • goal: find the best mapping f(xi) ∈ {1, . . . , M} of the data xi in the different neurons by minimizing the energy E = n i=1 M j=1 h(D(f(xi), j)) xi − pi 2 . i.e., each data is assigned to a neuron so that: • the neuron’s prototype is “close” to the data; • the neighboring prototypes are also “close” to the data; • distant prototypes are “distant” of the data. (topology preservation) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 9 / 35
  • 21. Self-organizing maps approaches SOM, dissimilarity SOM and kernel SOM (batch) Original SOM algorithm (batch): x1, . . . , xn ∈ Rd 1: Initialization: randomly set p0 1 ,...,p0 M in Rd 2: for l = 1 → L do 3: for all i = 1 → n do Assignment 4: fl (xi) ← arg minj=1,...,M xi − pl−1 j Rd 5: end for 6: for all j = 1 → M do Representation 7: pl j ← arg minp∈Rd n i=1 hl (D(fl (xi), j)) xi − p 2 Rd 8: end for 9: end for Problems with graphs: xi are nodes so 1/ how to define the prototypes? and 2/ which distance to use between nodes? Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
  • 22. Self-organizing maps approaches SOM, dissimilarity SOM and kernel SOM (batch) Dissimilarity SOM (batch): xi ∈ G defined by a dissimilarity relation: δ(xi, xj) 1: Initialization: randomly set p0 1 ,...,p0 M in (xi)i 2: for l = 1 → L do 3: for all i = 1 → n do Assignment 4: fl (xi) ← arg minj=1,...,M δ(xi, pl−1 j ) 5: end for 6: for all j = 1 → M do Representation 7: pl j ← arg minp∈(xi)i n i=1 hl (D(fl (xi), j))δ(xi, p) 8: end for 9: end for [Kohohen and Somervuo, 1998, Kohonen and Somervuo, 2002] Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
  • 23. Self-organizing maps approaches SOM, dissimilarity SOM and kernel SOM (batch) Dissimilarity SOM (batch): xi ∈ G defined by a dissimilarity relation: δ(xi, xj) 1: Initialization: randomly set p0 j ← γ0 ji xi (symbolic) 2: for l = 1 → L do 3: for all i = 1 → n do Assignment 4: fl (xi) ← arg minj=1,...,M δ2 (xi, pl−1 j ) = ∆γl−1 j i − 1 2 (γl−1 j )T ∆γl−1 j where ∆ = (δ(xk , xk ))k,k 5: end for 6: for all j = 1 → M do Representation 7: γl j ← arg minγ∈Rn n i=1 hl (D(fl (xi), j))δ2 xi, n k=1 γk xk 8: end for 9: end for [Rossi et al., 2007] Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
  • 24. Self-organizing maps approaches SOM, dissimilarity SOM and kernel SOM (batch) Kernel SOM (batch): xi ∈ G defined by a kernel relation: K(xi, xj) ⇒ ∃ φ : G → (H, ., . H ):K(x, x ) = φ(x), φ(x ) H 1: Initialization: randomly set p0 j ← n i=1 γ0 ji φ(xi) 2: for l = 1 → L do 3: for all i = 1 → n do Assignment 4: fl (xi) ← arg minj=1,...,M φ(xi) − pl−1 j H where φ(xi) − pl−1 j H = n k=1 γl−1 jk γl−1 jk K(xk , xk ) − 2 n k=1 γl−1 jk K(xi, xk ) 5: end for 6: for all j = 1 → M do Representation 7: γl jk ← arg minγ∈Rn n i=1 hl (D(fl (xi), j)) φ(xi) − n k=1 γk φ(xk ) 2 H 8: end for 9: end for [Villa and Rossi, 2007, Boulet et al., 2008] Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 10 / 35
  • 25. Self-organizing maps approaches Dissimilarity SOM (stochastic) (Online relational SOM) [Olteanu et al., 2013] 1: Initialization: randomly set γ0 ji in R 2: for l = 1 → L do 3: Randomly chose an input xi 4: Assignment ft (xi) ← arg minj=1,...,M γl−1 j ∆ i − 1 2 γl−1 j ∆(γl−1 j )T 5: for all j = 1 → M do Update of the prototypes 6: γl j ← γl−1 j + αl hl (D(fl (xi), j)) 1i − γl−1 j where 1i is a vector with a single non null coefficient at the ith position, equal to one 7: end for 8: end for Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 11 / 35
  • 26. Self-organizing maps approaches Which dissimilarities/kernels for graphs? Laplacian [Kondor and Lafferty, 2002] For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n (positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where Li,j = −wi,j if i j di = j i wi,j if i = j ; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
  • 27. Self-organizing maps approaches Which dissimilarities/kernels for graphs? Laplacian [Kondor and Lafferty, 2002] For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n (positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where Li,j = −wi,j if i j di = j i wi,j if i = j ; 1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0, Kβ = e−βL = +∞ k=1 (−βL)k k! heat kernel (or diffusion kernel); Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
  • 28. Self-organizing maps approaches Which dissimilarities/kernels for graphs? Laplacian [Kondor and Lafferty, 2002] For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n (positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where Li,j = −wi,j if i j di = j i wi,j if i = j ; 1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0, Kβ = e−βL = +∞ k=1 (−βL)k k! heat kernel (or diffusion kernel); 2 Generalized inverse of the Laplacian [Fouss et al., 2007] : K = L+; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
  • 29. Self-organizing maps approaches Which dissimilarities/kernels for graphs? Laplacian [Kondor and Lafferty, 2002] For a graph with vertices V = {x1, . . . , xn} and weights (wi,j)i,j=1,...,n (positive, symmetric), the Laplacian is: L = (Li,j)i,j=1,...,n where Li,j = −wi,j if i j di = j i wi,j if i = j ; 1 Diffusion matrix [Kondor and Lafferty, 2002]: for β > 0, Kβ = e−βL = +∞ k=1 (−βL)k k! heat kernel (or diffusion kernel); 2 Generalized inverse of the Laplacian [Fouss et al., 2007] : K = L+; 3 Dissimilarity: length of the shortest path between two nodes. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 12 / 35
  • 30. Self-organizing maps approaches A first example: a medieval social network Example from [Boulet et al., 2008] , http://graphcomp.univ-tlse2.fr/ In the “Archive départementales du Lot” (Cahors, France), big corpus of 5000 transactions (mostly land charters) • coming from 4 “seigneuries” (about 25 little villages) in South West of France; • being established between 1240 and 1520 (just before and after the hundred years’ war). Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 13 / 35
  • 31. Self-organizing maps approaches Simplification of this network by kernel SOM nodes: individuals ( 600) named in the transactions, re- stricted to transactions estab- lished before the HYW; edges: the fact that two individuals are named in a common transac- tion or have a common lord Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 14 / 35
  • 32. Self-organizing maps approaches Simplification of this network by kernel SOM Kernel SOM with heat kernel Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 14 / 35
  • 33. Self-organizing maps approaches A brief comparison with spectral clustering Number of clusters: 35 50 Maximum size of the clusters: 255 268 Modularity: 0.597 0.420 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 15 / 35
  • 34. Self-organizing maps approaches A brief comparison with spectral clustering Number of clusters: 35 29 Maximum size of the clusters: 255 325 Modularity: 0.597 0.433 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 15 / 35
  • 35. Self-organizing maps approaches Online relational SOM (faster) Description: • nodes: 105 American political books; • edges weighted by the number of co-purchasing of the two books on the internet (Amazon.com). FDP representation Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 16 / 35
  • 36. Self-organizing maps approaches Online relational SOM (faster) Description: • nodes: 105 American political books; • edges weighted by the number of co-purchasing of the two books on the internet (Amazon.com). Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 16 / 35
  • 37. Modularity based approaches Outline 1 Self-organizing maps approaches 2 Modularity based approaches 3 Soft modularity Hierarchical clustering and visualization Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 17 / 35
  • 38. Modularity based approaches Modularity [Newman and Girvan, 2004] Popular quality measure for graph clustering: a partition of the vertices in C clusters, (Ck )k=1,...,C has modularity: Q(C) = 1 2m C k=1 i,j∈Ck (Wij − Pij) where Pij are weights corresponding to a “null model” where the weights only depend on the nodes properties and not on the cluster they belong to. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
  • 39. Modularity based approaches Modularity [Newman and Girvan, 2004] Popular quality measure for graph clustering: a partition of the vertices in C clusters, (Ck )k=1,...,C has modularity: Q(C) = 1 2m C k=1 i,j∈Ck (Wij − Pij) where Pij are weights corresponding to a “null model” where the weights only depend on the nodes properties and not on the cluster they belong to. More precisely, Pij = didj 2m with di = 1 2 j i Wij is the degree of a vertex xi. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
  • 40. Modularity based approaches Modularity [Newman and Girvan, 2004] Popular quality measure for graph clustering: a partition of the vertices in C clusters, (Ck )k=1,...,C has modularity: Q(C) = 1 2m C k=1 i,j∈Ck (Wij − Pij) where Pij are weights corresponding to a “null model” where the weights only depend on the nodes properties and not on the cluster they belong to. More precisely, Pij = didj 2m with di = 1 2 j i Wij is the degree of a vertex xi. A “good” clustering should maximize Q. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 18 / 35
  • 41. Modularity based approaches Interpretation • Q increases when (xi, xj) are in a same cluster and have true weight Wij greater than the ones expected in the null model, Pij • Q increases when (xi, xj) are in a two different clusters and have true weight Wij smaller than the ones expected in the null model, Pij because Q(C) + 1 2m k k i∈Ck , j∈Ck (Wij − Pij) = 0. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 19 / 35
  • 42. Modularity based approaches Interpretation • Q increases when (xi, xj) are in a same cluster and have true weight Wij greater than the ones expected in the null model, Pij • Q increases when (xi, xj) are in a two different clusters and have true weight Wij smaller than the ones expected in the null model, Pij because Q(C) + 1 2m k k i∈Ck , j∈Ck (Wij − Pij) = 0. • Contrary to the minimization of the number of edges between clusters, modularity can help to separate nodes with high degrees into different clusters more easily Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 19 / 35
  • 43. Modularity based approaches Drawing optimized clustering Combine: • high modularity to ensure high intra clusters density and low external connectivity • little edge crossing Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
  • 44. Modularity based approaches Drawing optimized clustering Combine: • high modularity to ensure high intra clusters density and low external connectivity • little edge crossing by: • Classic solution: relying on graph drawing algorithm after maximization of the modularity Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
  • 45. Modularity based approaches Drawing optimized clustering Combine: • high modularity to ensure high intra clusters density and low external connectivity • little edge crossing by: • Classic solution: relying on graph drawing algorithm after maximization of the modularity • Extend the modularity to a criterium adapted to a prior structure (like a grid) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 20 / 35
  • 46. Soft modularity Outline 1 Self-organizing maps approaches 2 Modularity based approaches 3 Soft modularity Hierarchical clustering and visualization Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 21 / 35
  • 47. Soft modularity Self Organizing Map principle For data in Rd , SOM minimizes (over the clustering and the prototypes (pk )) M j=1 n i=1 Sf(xi),j xi − pj 2 Rd where Skl encodes the prior structure: close to 1 for close clusters and close to 0 for distant clusters Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 22 / 35
  • 48. Soft modularity Self Organizing Map principle For data in Rd , SOM minimizes (over the clustering and the prototypes (pk )) M j=1 n i=1 Sf(xi),j xi − pj 2 Rd where Skl encodes the prior structure: close to 1 for close clusters and close to 0 for distant clusters This corresponds to a soft membership: xi belongs to Cj with membership Sf(xi),j. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 22 / 35
  • 49. Soft modularity Organized modularity [Rossi and Villa-Vialaneix, 2010] Same idea: encode a prior structure via a matrix S. Maximize: SQ = 1 2m i,j Sf(i)f(j)(Wij − Pij) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 23 / 35
  • 50. Soft modularity Organized modularity [Rossi and Villa-Vialaneix, 2010] Same idea: encode a prior structure via a matrix S. Maximize: SQ = 1 2m i,j Sf(i)f(j)(Wij − Pij) Hence: • if a pair of vertices (xi, xj) is such that Wij > Pij, SQ increases with the closeness of f(xi) and f(xj) in the prior structure • if a pair of vertices (xi, xj) is such that Wij < Pij, SQ increases if f(xi) and f(xj) are distant in the prior structure Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 23 / 35
  • 51. Soft modularity Optimization The clustering is represented by a n × C assignment matrix M with Mik = δf(i)=k . The goal is then to maximize SQ = F(M) = 1 2m i,j k,l Mik SklMlj(Wij − Pij) Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 24 / 35
  • 52. Soft modularity Optimization The clustering is represented by a n × C assignment matrix M with Mik = δf(i)=k . The goal is then to maximize SQ = F(M) = 1 2m i,j k,l Mik SklMlj(Wij − Pij) Combinatorial problem is NP-complet ⇒ use of deterministic algorithm Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 24 / 35
  • 53. Soft modularity Comparison on the co-appearance network from “Les Misérables” Co-appearance network from “Les Misérables” [Knuth, 1993] q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Myriel Napoleon MlleBaptistine MmeMagloire CountessDeLo Geborand Champtercier Cravatte Count OldMan Labarre Valjean Marguerite MmeDeR Isabeau Gervais Tholomyes Listolier Fameuil Blacheville Favourite Dahlia Zephine Fantine MmeThenardier Thenardier Cosette Javert Fauchelevent Bamatabois Perpetue Simplice Scaufflaire Woman1 Judge Champmathieu Brevet ChenildieuCochepaille PontmercyBoulatruelle Eponine Anzelma Woman2 MotherInnocent Gribier Jondrette MmeBurgon Gavroche Gillenormand Magnon MlleGillenormand MmePontmercy MlleVaubois LtGillenormand Marius BaronessT Mabeuf Enjolras Combeferre Prouvaire Feuilly Courfeyrac BahorelBossuet Joly Grantaire MotherPlutarch GueulemerBabet Claquesous Montparnasse Toussaint Child1Child2 Brujon MmeHucheloup 77 nodes density = 8.7% transitivity = 49.9 % Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 25 / 35
  • 54. Soft modularity Methodology Comparison of: • Kernel SOM with various kernels: heat kernel, generalized inverse of the Laplacian, modularity kernel (i.e., the positive part of W − P which mimics the optimization of the modularity) and spectral SOM (based on the first M eigenvectors of the Laplacian) • SQ optimization Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
  • 55. Soft modularity Methodology Comparison of: • Kernel SOM with various kernels: heat kernel, generalized inverse of the Laplacian, modularity kernel (i.e., the positive part of W − P which mimics the optimization of the modularity) and spectral SOM (based on the first M eigenvectors of the Laplacian) • SQ optimization Parameters varied: • size of the prior grid or number of clusters • for organized clusterings, type of neighborhood on the grid • for SOM, random or PCA initialization and kernel parameter for the heat kernel Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
  • 56. Soft modularity Methodology Comparison of: • Kernel SOM with various kernels: heat kernel, generalized inverse of the Laplacian, modularity kernel (i.e., the positive part of W − P which mimics the optimization of the modularity) and spectral SOM (based on the first M eigenvectors of the Laplacian) • SQ optimization Parameters varied: • size of the prior grid or number of clusters • for organized clusterings, type of neighborhood on the grid • for SOM, random or PCA initialization and kernel parameter for the heat kernel Selection of the solutions: Pareto points according to modularity and number of edge crossing Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 26 / 35
  • 57. Soft modularity A brief comment on the kernel SOM solutions qq qq qqq qq qq q qq qq q q q qq qqqq 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0100200300400500 Generalized inverse Modularity Crossingedges q q q q q q q qq q q q q q q q q q q qq q q qq q q q q q q q q q q q q qqq qq q qq qqq q q q q q Size 3 Size 4 Size 5 Pareto point qqq qqqqq qqqqq qqqqq qqqqq q qqqq q qqqq q qqqq q qq q q q q q q q q q q qqq qq q qq q qqqq q q qq q q q q q qqqq qq qqq qq qq qqq qqq qq qq q qq q 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0100200300400500 Heat kernel Modularity Crossingedges q q q q q q q q q q q qq q qq q q q q q qq q q qqq q q q q q q q q q q q q q q q q q q q q q q qq q q q qq qqq q q qq q q qq q q q qq q q q qqq q qq q q qq qq qqq qq q qqqq q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q qq q q q q qq q q q qq q qqq q qq qq q qq qq q q q Size 3 Size 4 Size 5 Pareto point qq q qq qq qq q qq qq q qq qq q qqq q q 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0100200300400500 Modularity kernel Modularity Crossingedges qq qq q q q q q q q q qq q q q q q q q q q q q q q qq q q q q q q q q q q q qq q q q q qq q q q q q Size 3 Size 4 Size 5 qqqqq qq q qq q q qqq q qq qq q q qqq 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0100200300400500 Spectral SOM Modularity Crossingedges q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q qq q q q q q q Size 3 Size 4 Size 5 Spectral SOM and Modularity kernel obtain poor results Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 27 / 35
  • 58. Soft modularity Analysis of the Pareto points for “Les Misérables” Method Number Modularity Nb of pairs of clusters of cut edges Organized mod. 42 (7) 0.5638 1 Organized mod. 52 (7) 0.5652 3 32 (6) 0.5472 0 kernel SOM (HK) 52 (22) 0.5327 27 32 (8) 0.5276 2 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 28 / 35
  • 59. Soft modularity Analysis of the Pareto points for “Les Misérables” Method Number Modularity Nb of pairs of clusters of cut edges Organized mod. 42 (7) 0.5638 1 Organized mod. 52 (7) 0.5652 3 32 (6) 0.5472 0 kernel SOM (HK) 52 (22) 0.5327 27 32 (8) 0.5276 2 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq qq q q q q q q q q q q q q q q q q q qq q q q q qq q q qq q q q q q q q q Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 28 / 35
  • 60. Soft modularity Hierarchical clustering and visualization Outline 1 Self-organizing maps approaches 2 Modularity based approaches 3 Soft modularity Hierarchical clustering and visualization Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 29 / 35
  • 61. Soft modularity Hierarchical clustering and visualization Global overview [Rossi and Villa-Vialaneix, 2011] 2 combined steps: • Find out a clustering hierarchy (by repeating modularity optimization in clusters) + test of the significativity of the partition at each step; • Display the different levels of the hierarchy by a modified force directed algorithm. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 30 / 35
  • 62. Soft modularity Hierarchical clustering and visualization A hierarchy of clustering Aim: Limiting the resolution default of modularity (see [Fortunato, 2010]. How to do so? Iterate the modularity optimization in each cluster. The modularity is optimized by a greedy algorithm with multi-levels refinement similar to that of [Noack and Rotta, 2009]. Step 1 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
  • 63. Soft modularity Hierarchical clustering and visualization A hierarchy of clustering Aim: Limiting the resolution default of modularity (see [Fortunato, 2010]. How to do so? Iterate the modularity optimization in each cluster. The modularity is optimized by a greedy algorithm with multi-levels refinement similar to that of [Noack and Rotta, 2009]. Step 2 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
  • 64. Soft modularity Hierarchical clustering and visualization A hierarchy of clustering Aim: Limiting the resolution default of modularity (see [Fortunato, 2010]. How to do so? Iterate the modularity optimization in each cluster. The modularity is optimized by a greedy algorithm with multi-levels refinement similar to that of [Noack and Rotta, 2009]. Step 3 Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 31 / 35
  • 65. Soft modularity Hierarchical clustering and visualization Stopping criterion A clustering algorithm always provides a solution, relevant or not! Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
  • 66. Soft modularity Hierarchical clustering and visualization Stopping criterion A clustering algorithm always provides a solution, relevant or not! Significativity of a node clustering: 1 Generate random graphs with the same degree distribution than the original graph; Simulation process: MCMC algorithm of [Roberts Jr., 2000] which permutes edges on random couples of pairs of connected nodes; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
  • 67. Soft modularity Hierarchical clustering and visualization Stopping criterion A clustering algorithm always provides a solution, relevant or not! Significativity of a node clustering: 1 Generate random graphs with the same degree distribution than the original graph; Simulation process: MCMC algorithm of [Roberts Jr., 2000] which permutes edges on random couples of pairs of connected nodes; After Q|E| permutations, the obtained graph is random for the uniform distribution on the set of graphs with the same degre distribution. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
  • 68. Soft modularity Hierarchical clustering and visualization Stopping criterion A clustering algorithm always provides a solution, relevant or not! Significativity of a node clustering: 1 Generate random graphs with the same degree distribution than the original graph; 2 Optimize the modularity on these random graphs; 3 Find out the p-value of the observed modularity compared to the empirical distribution on random graphs; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
  • 69. Soft modularity Hierarchical clustering and visualization Stopping criterion A clustering algorithm always provides a solution, relevant or not! Significativity of a node clustering: 1 Generate random graphs with the same degree distribution than the original graph; 2 Optimize the modularity on these random graphs; 3 Find out the p-value of the observed modularity compared to the empirical distribution on random graphs; 4 If the new clustering is not found to be significant, the algorithm is stopped. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 32 / 35
  • 70. Soft modularity Hierarchical clustering and visualization Display a clustering hierarchy Basics • start from the first step of the clustering; • expand the clusters by order of minimal decrease in modularity. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
  • 71. Soft modularity Hierarchical clustering and visualization Display a clustering hierarchy Basics • start from the first step of the clustering; • expand the clusters by order of minimal decrease in modularity. Issues 1 taking into account the size of the clusters: [Tunkelang, 1999] for a modification of the FDR algorithm to nodes that have different sizes; Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
  • 72. Soft modularity Hierarchical clustering and visualization Display a clustering hierarchy Basics • start from the first step of the clustering; • expand the clusters by order of minimal decrease in modularity. Issues 1 taking into account the size of the clusters: [Tunkelang, 1999] for a modification of the FDR algorithm to nodes that have different sizes; 2 estimating in advance the place needed to represent a cluster when it is expanded. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 33 / 35
  • 73. Soft modularity Hierarchical clustering and visualization Another medieval network... From the same corpus of medieval documents: • nodes: transactions and active individuals. 3 918 individuals and 6 455 transactions (total: 10 373 sommets); • edges model the active involvement of an individual in a transaction. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 74. Soft modularity Hierarchical clustering and visualization Another medieval network... From the same corpus of medieval documents: • nodes: transactions and active individuals. 3 918 individuals and 6 455 transactions (total: 10 373 sommets); • edges model the active involvement of an individual in a transaction. Modularity optimization: 48 clusters having from 10 to 740 nodes. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 75. Soft modularity Hierarchical clustering and visualization Another medieval network... From the same corpus of medieval documents: • nodes: transactions and active individuals. 3 918 individuals and 6 455 transactions (total: 10 373 sommets); • edges model the active involvement of an individual in a transaction. Modularity optimization: 48 clusters having from 10 to 740 nodes. Hierarchy : 4 levels, 89 classes on the latest levels. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 76. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 77. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 78. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 79. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 80. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 81. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 82. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 83. Soft modularity Hierarchical clustering and visualization Another medieval network... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 34 / 35
  • 84. Soft modularity Hierarchical clustering and visualization Conclusion Mining a graph from a clustering • clustering can be used to provide a simplified representation of the network and to help the user understand its macroscopic structure; • optimizing the modularity seems to provide better results than approaches based on the Laplacian (it helps for separating hubs and thus results in more balanced clusters); • approaches presented here are almost fully automated: solutions to tune the parameters are provided in the corresponding articles. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
  • 85. Soft modularity Hierarchical clustering and visualization Conclusion Mining a graph from a clustering • clustering can be used to provide a simplified representation of the network and to help the user understand its macroscopic structure; • optimizing the modularity seems to provide better results than approaches based on the Laplacian (it helps for separating hubs and thus results in more balanced clusters); • approaches presented here are almost fully automated: solutions to tune the parameters are provided in the corresponding articles. Perspectives: improve the representation of the hierarchy, incorporate additional information on nodes and edges in the clustering... Merci pour votre attention... Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
  • 86. Soft modularity Hierarchical clustering and visualization References Auber, D., Chiricota, Y., Jourdan, F., and Melançon, G. (2003). Multiscale visualization of small world networks. In INFOVIS’03. Auber, D. and Jourdan, F. (2005). Interactive refinement of multi-scale network clusterings. In International Conference on Information Visualisation, pages 703–709, Los Alamitos, CA, USA. IEEE Computer Society. Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008). Batch kernel SOM and related laplacian methods for social network analysis. Neurocomputing, 71(7-9):1257–1273. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486:75–174. Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Trans Knowl Data En, 19(3):355–369. Fruchterman, T. and Reingold, B. (1991). Graph drawing by force-directed placement. Software Pract Exper, 21:1129–1164. Herman, I., Melançon, G., and Scott Marshall, M. (2000). Graph visualization and navigation in information visualisation. 6(1):24–43. Knuth, D. (1993). The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading, MA. Kohohen, T. and Somervuo, P. (1998). Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
  • 87. Soft modularity Hierarchical clustering and visualization Self-Organizing maps of symbol strings. Neurocomputing, 21:19–30. Kohonen, T. and Somervuo, P. (2002). How to make large self-organizing maps for nonvectorial data. Neural Networks, 15(8):945–952. Kondor, R. and Lafferty, J. (2002). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th International Conference on Machine Learning, pages 315–322. Newman, M. and Girvan, M. (2004). Finding and evaluating community structure in networks. Phys Rev E, 69:026113. Noack, A. (2007). Energy models for graph clustering. J Graph Algorithms Appl, 11(2):453–480. Noack, A. and Rotta, R. (2009). Multi-level algorithms for modularity clustering. In SEA ’09: Proceedings of the 8th International Symposium on Experimental Algorithms, pages 257–268, Berlin, Heidelberg. Springer-Verlag. Olteanu, M., Villa-Vialaneix, N., and Cottrell, M. (2013). On-line relational som for dissimilarity data. In Estevez, P., Principe, J., Zegers, P., and Barreto, G., editors, Advances in Self-Organizing Maps (Proceedings of WSOM 2012), volume 198 of AISC, pages 13–22, Springer Verlag, Berlin, Heidelberg. To appear. Roberts Jr., J. M. (2000). Simple methods for simulating sociomatrices with given marginal totals. Social Networks, 22(3):273 – 283. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35
  • 88. Soft modularity Hierarchical clustering and visualization Rossi, F., Hasenfuss, A., and Hammer, B. (2007). Accelerating relational clustering algorithms with sparse prototype representation. In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield University. Rossi, F. and Villa-Vialaneix, N. (2010). Optimizing an organized modularity measure for topographic graph clustering: a deterministic annealing approach. Neurocomputing, 73(7-9):1142–1163. Rossi, F. and Villa-Vialaneix, N. (2011). Représentation d’un grand réseau à partir d’une classification hiérarchique de ses sommets. Journal de la Société Française de Statistique, 152(3):34–65. Seifi, M., Guillaume, J., Latapy, M., and Le Grand, B. (2010). Visualisation interactive multi-échelle des grands graphes : application à un réseau de blogs. In Atelier EGC 2010, Visualisation et Extraction de Connaissances, Hammamet, Tunisie. Tunkelang, D. (1999). A Numerical Optimization Approach to General Graph Drawing. PhD thesis, School of Computer Science, Carnegie Mellon University. CMU-CS-98-189. Villa, N. and Rossi, F. (2007). A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield University. Graph mining (Séminaire LIPN) Nathalie Villa-Vialaneix Paris, 11/15 2012 35 / 35