SlideShare a Scribd company logo
1 of 52
Download to read offline
Multiple kernel Self-Organizing Maps
Madalina Olteanu(2), Nathalie Villa-Vialaneix(1,2), Christine
Cierco-Ayrolles(1)
http://www.nathalievilla.org
nathalie.villa@univ-paris1.fr, madalina.olteanu@univ-paris1.fr,
christine.cierco@toulouse.inra.fr
Groupe de travail SAMM-Graph (25/01/2013)
(1) (2)
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 1 / 25
Introduction
Outline
1 Introduction
2 MK-SOM
3 Applications
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 2 / 25
Introduction
Data, notations and objectives
Data: D datasets (xd
i
)i=1,...,n,d=1,...,D all measured on the same individuals
or on the same objects, {i, . . . , n}, each taking values in an arbitrary space
Gd.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
Introduction
Data, notations and objectives
Data: D datasets (xd
i
)i=1,...,n,d=1,...,D all measured on the same individuals
or on the same objects, {i, . . . , n}, each taking values in an arbitrary space
Gd.
Examples:
• (xd
i
)i is p numeric variables;
• (xd
i
)i is n nodes of a graph;
• (xd
i
)i is p factors;
• (xd
i
)i is a text...
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
Introduction
Data, notations and objectives
Data: D datasets (xd
i
)i=1,...,n,d=1,...,D all measured on the same individuals
or on the same objects, {i, . . . , n}, each taking values in an arbitrary space
Gd.
Examples:
• (xd
i
)i is p numeric variables;
• (xd
i
)i is n nodes of a graph;
• (xd
i
)i is p factors;
• (xd
i
)i is a text...
Purpose: Combine all datasets to obtain a map of individuals/objects:
self-organizing maps for clustering {i, . . . , n} using all datasets
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
Introduction
Particular case [Villa-Vialaneix et al., 2013]
Data: A weighted undirected network represented by a graph G with n
nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
Introduction
Particular case [Villa-Vialaneix et al., 2013]
Data: A weighted undirected network represented by a graph G with n
nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0.
For every node, additional information is provided: either numerical
variables, factors, textual information... or a combination of all of them.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
Introduction
Particular case [Villa-Vialaneix et al., 2013]
Data: A weighted undirected network represented by a graph G with n
nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0.
For every node, additional information is provided: either numerical
variables, factors, textual information... or a combination of all of them.
Examples: Gender in a social network, Functional group of a gene in a
gene interaction network...
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
Introduction
Particular case [Villa-Vialaneix et al., 2013]
Data: A weighted undirected network represented by a graph G with n
nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0.
For every node, additional information is provided: either numerical
information, factors, textual information... or a combination of all of them.
Examples: Weight of people in a social network, Number of visits of a
web page in WWW...
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
Introduction
Purpose
Node clustering: find communities, i.e., groups of “close” nodes in the
graph; close meaning:
• densely connected and sharing (comparatively) a few links with the
other groups (“communities”);
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
Introduction
Purpose
Node clustering: find communities, i.e., groups of “close” nodes in the
graph; close meaning:
• densely connected and sharing (comparatively) a few links with the
other groups (“communities”);
• but also having similar labels.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
Introduction
Purpose
Node clustering: find communities, i.e., groups of “close” nodes in the
graph; close meaning:
• densely connected and sharing (comparatively) a few links with the
other groups (“communities”);
• but also having similar labels.
Here: self-organizing map approach to produce a map of the nodes
(clutering+visualization).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
Introduction
Purpose
Node clustering: find communities, i.e., groups of “close” nodes in the
graph; close meaning:
• densely connected and sharing (comparatively) a few links with the
other groups (“communities”);
• but also having similar labels.
Here: self-organizing map approach to produce a map of the nodes
(clutering+visualization). Multiple sources of information are handled by
combining kernels.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
MK-SOM
Outline
1 Introduction
2 MK-SOM
3 Applications
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 6 / 25
MK-SOM
Basics on SOM
Project the data on a squared grid (each square of the grid is a cluster)
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 7 / 25
MK-SOM
Basics on SOM
Project the data on a squared grid (each square of the grid is a cluster)
such that:
• the nodes in a same cluster are highly connected
• the nodes in two close clusters are also (less) connected
• the nodes in two distant clusters are (almost) not connected
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 7 / 25
MK-SOM
Basics on SOM
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, each associated to a prototype pi (a prototype is a
“representer” of the neuron in the original dataset);
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
MK-SOM
Basics on SOM
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, each associated to a prototype pi (a prototype is a
“representer” of the neuron in the original dataset);
• the map is equipped with a neighborhood relationship, i.e., a
“distance” (actually a dissimilarity) between neurons, δ;
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
MK-SOM
Basics on SOM
• the map is made of neurons (visually symbolized by, e.g.,
rectangles), 1...M, each associated to a prototype pi (a prototype is a
“representer” of the neuron in the original dataset);
• the map is equipped with a neighborhood relationship, i.e., a
“distance” (actually a dissimilarity) between neurons, δ;
• goal: find the best mapping f(xi) ∈ {1, . . . , M} of the observations xi
on the map minimizing the energy
E =
n
i=1
M
j=1
h(δ(f(xi), j)) xi − pi
2
.
i.e., each data is assigned to a neuron so that xi is:
• “close” to the prototype of f(xi);
• “close” (to a lesser extent) to the prototypes of the neighboring neurons
of f(xi);
• “distant” to the prototypes of the neurons that are distant of f(xi).
(topology preservation)
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
MK-SOM
on-line SOM
Data: x1, . . . , xn ∈ Rd
1: Initialization: randomly set p0
1
,...,p0
M
in Rd
2: for t = 1 → T do
3: Randomly choose i ∈ {1, . . . , n}
4: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j Rd
5: for all j = 1 → M do Representation
6: pt
j
← pt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − pt−1
j
7: end for
8: end for
where ht
is a decreasing function which reduces the neighborhood when t
increases and µt is generally of order 1/t.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 9 / 25
MK-SOM
on-line SOM
Data: x1, . . . , xn ∈ Rd
1: Initialization: randomly set p0
1
,...,p0
M
in Rd
2: for t = 1 → T do
3: Randomly choose i ∈ {1, . . . , n}
4: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j Rd
5: for all j = 1 → M do Representation
6: pt
j
← pt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − pt−1
j
7: end for
8: end for
where ht
is a decreasing function which reduces the neighborhood when t
increases and µt is generally of order 1/t.
Problem with non numerical data: definitions of . and pj???
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 9 / 25
MK-SOM
Kernels/Multiple kernel
What is a kernel?
(xi) ∈ G, (K(xi, xj))ij st: K(xi, xj) = K(xj, xi) and
∀ (αi)i, ij αiαjK(xi, xj) ≥ 0. In this case [Aronszajn, 1950],
∃ (H, ., . ) , Φ : G → H st : K(xi, xj) = Φ(xi), Φ(xj)
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 10 / 25
MK-SOM
Kernels/Multiple kernel
What is a kernel?
(xi) ∈ G, (K(xi, xj))ij st: K(xi, xj) = K(xj, xi) and
∀ (αi)i, ij αiαjK(xi, xj) ≥ 0. In this case [Aronszajn, 1950],
∃ (H, ., . ) , Φ : G → H st : K(xi, xj) = Φ(xi), Φ(xj)
Examples:
• nodes of a graph: Heat kernel K = e−βL
or K = L+ where L is the
Laplacian [Kondor and Lafferty, 2002, Smola and Kondor, 2003,
Fouss et al., 2007]
• numerical variables: Gaussian kernel K(xi, xj) = e−β xi−xj
2
;
• text: [Watkins, 2000]...
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 10 / 25
MK-SOM
Kernel SOM
[Mac Donald and Fyfe, 2000, Andras, 2002, Villa and Rossi, 2007]
(xi)i ⊂ G described by a kernel (K(xi, xi ))ii . Prototypes are defined in the
feature space: pj = i γjiφ(xi); energy calculated calculated in H:
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ij
Φ(xi) st γ0
ij
≥ 0
and i γ0
ij
= 1
2: for t = 1 → T do
3: Randomly choose i ∈ {1, . . . , n}
4: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j H
5: for all j = 1 → M do Representation
6: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
7: end for
8: end for
Usually, µt ∼ 1/t.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 11 / 25
MK-SOM
Kernel SOM
[Mac Donald and Fyfe, 2000, Andras, 2002, Villa and Rossi, 2007]
(xi)i ⊂ G described by a kernel (K(xi, xi ))ii . Prototypes are defined in the
feature space: pj = i γjiφ(xi); energy calculated calculated in H:
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ij
Φ(xi) st γ0
ij
≥ 0
and i γ0
ij
= 1
2: for t = 1 → T do
3: Randomly choose i ∈ {1, . . . , n}
4: Assignment
ft
(xi) ← arg min
j=1,...,M
ll
γt−1
jl γt−1
jl Kt
(xl, xl ) − 2
l
γt−1
jl Kt
(xl, xi)
5: for all j = 1 → M do Representation
6: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
7: end for
8: end for
Usually, µt ∼ 1/t.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 11 / 25
MK-SOM
Combining kernels
Suppose: each (xd
i
)i is described by a kernel Kd, kernels can be
combined (e.g., [Rakotomamonjy et al., 2008] for SVM):
K =
D
d=1
αdKd,
with αd ≥ 0 and d αd = 1.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 12 / 25
MK-SOM
Combining kernels
Suppose: each (xd
i
)i is described by a kernel Kd, kernels can be
combined (e.g., [Rakotomamonjy et al., 2008] for SVM):
K =
D
d=1
αdKd,
with αd ≥ 0 and d αd = 1.
Remark: Also useful to integrate different types of information coming
from different kernels on the same dataset.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 12 / 25
MK-SOM
multiple kernel SOM
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ji
Φ(xi) st γ0
ji
≥ 0 and
i γ0
ji
= 1
2: Kernel initialization: set (α0
d
) st α0
d
≥ 0 and d αd = 1 (e.g., α0
d
= 1/D);
K0
← d α0
d
Kd
3: for t = 1 → T do
4: Randomly choose i ∈ {1, . . . , n}
5: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j
2
H(Kt )
6: for all j = 1 → M do Representation
7: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
8: end for
9: empty state ;-)
10: end for
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 13 / 25
MK-SOM
multiple kernel SOM
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ji
Φ(xi) st γ0
ji
≥ 0 and
i γ0
ji
= 1
2: Kernel initialization: set (α0
d
) st α0
d
≥ 0 and d αd = 1 (e.g., α0
d
= 1/D);
K0
← d α0
d
Kd
3: for t = 1 → T do
4: Randomly choose i ∈ {1, . . . , n}
5: Assignment
ft
(xi) ← arg min
j=1,...,M
ll
γt−1
jl γt−1
jl Kt
(xl, xl ) − 2
l
γt−1
jl Kt
(xl, xi)
6: for all j = 1 → M do Representation
7: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
8: end for
9: empty state ;-)
10: end for
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 13 / 25
MK-SOM
Tuning (αd)d on-line
Purpose: minimize over (γji)ji and (αd)d the energy
E((γji)ji, (αd)d) =
n
i=1
M
j=1
h (f(xi), j) φα
(xi) − pα
j (γj)
2
α
,
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
MK-SOM
Tuning (αd)d on-line
Purpose: minimize over (γji)ji and (αd)d the energy
E((γji)ji, (αd)d) =
n
i=1
M
j=1
h (f(xi), j) φα
(xi) − pα
j (γj)
2
α
,
KSOM picks up an observation xi whose contribution to the energy is:
E|xi
=
M
j=1
h (f(xi), j) φα
(xi) − pα
j (γj)
2
α
(1)
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
MK-SOM
Tuning (αd)d on-line
Purpose: minimize over (γji)ji and (αd)d the energy
E((γji)ji, (αd)d) =
n
i=1
M
j=1
h (f(xi), j) φα
(xi) − pα
j (γj)
2
α
,
KSOM picks up an observation xi whose contribution to the energy is:
E|xi
=
M
j=1
h (f(xi), j) φα
(xi) − pα
j (γj)
2
α
(1)
Idea: Add a gradient descent step based on the derivative of (1):
∂E|xi
∂αd
=
M
j=1
h(f(xi), j)

Kd(xd
i , xd
i ) − 2
n
l=1
γjlKd(xd
i , xd
l )+
n
l,l =1
γjlγjl Kd(xd
l , xd
l )

 =
M
j=1
h(f(xi), j) φ(xi) − pd
j (γj) 2
Kd
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
MK-SOM
adaptive multiple kernel SOM
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ji
Φ(xi) st γ0
ji
≥ 0 and
i γ0
ji
= 1
2: Kernel initialization: set (α0
d
) st α0
d
≥ 0 and d αd = 1 (e.g., α0
d
= 1/D);
K0
← d α0
d
Kd
3: for t = 1 → T do
4: Randomly choose i ∈ {1, . . . , n}
5: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j
2
H(Kt )
6: for all j = 1 → M do Representation
7: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
8: end for
9:
10: end for
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 15 / 25
MK-SOM
adaptive multiple kernel SOM
1: Prototypes initialization: randomly set p0
j
= n
i=1 γ0
ji
Φ(xi) st γ0
ji
≥ 0 and
i γ0
ji
= 1
2: Kernel initialization: set (α0
d
) st α0
d
≥ 0 and d αd = 1 (e.g., α0
d
= 1/D);
K0
← d α0
d
Kd
3: for t = 1 → T do
4: Randomly choose i ∈ {1, . . . , n}
5: Assignment
ft
(xi) ← arg min
j=1,...,M
xi − pt−1
j
2
H(Kt )
6: for all j = 1 → M do Representation
7: γt
j
← γt−1
j
+ µt ht
(δ(ft
(xi), j)) 1i − γt−1
j
8: end for
9: Kernel update αt
d
← αt−1
d
+ νt
∂E|xi
∂αd
and Kt
← d αt
d
Kd
10: end for
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 15 / 25
Applications
Outline
1 Introduction
2 MK-SOM
3 Applications
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 16 / 25
Applications
Example1: simulated data
Graph with 200 nodes classified in 8 groups:
• graph: Erdös Reyni models: groups 1 to 4 and groups 5 to 8 with
intra-group edge probability 0.3 and inter-group edge probability 0.01;
• numerical data: nodes labelled with 2-dimensional Gaussian
vectors: odd groups N
0
0
,
0.3 0
0 0.3
;
• factor with two levels: groups 1, 2, 5 and 7: first level; other groups:
second level.
Only the knownledge
on the three datasets
can discriminate all 8
groups.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 17 / 25
Applications
Experiment
Kernels: graph: L+, numerical data: Gaussian kernel; factor: another
Gaussian kernel on the disjunctive recoding
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 18 / 25
Applications
Experiment
Kernels: graph: L+, numerical data: Gaussian kernel; factor: another
Gaussian kernel on the disjunctive recoding
Comparison: on 100 randomly generated datasets as previously
described:
• multiple kernel SOM with all three data;
• kernel SOM with a single dataset;
• kernel SOM with two datasets or all three datasets in a single
(Gaussian) kernel.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 18 / 25
Applications
An example
MK-SOM All in one kernel
Graph only Numerical variables only
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 19 / 25
Applications
Numerical comparison
(over 100 simulations) with mutual information
ij
|Ci ∩ ˜Cj|
200
log
|Ci ∩ ˜Cj|
|Ci| × | ˜Cj|
(adjusted version, equal to 1 if partitions are identical
[Danon et al., 2005]).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 20 / 25
Applications
Numerical comparison
(over 100 simulations) with mutual information
ij
|Ci ∩ ˜Cj|
200
log
|Ci ∩ ˜Cj|
|Ci| × | ˜Cj|
(adjusted version, equal to 1 if partitions are identical
[Danon et al., 2005]).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 20 / 25
Applications
Example 2: Data coming from a medieval corpus
Example from [Boulet et al., 2008]
http://graphcomp.univ-tlse2.fr/ In the “Archive départementales
du Lot” (Cahors, France), big corpus of 5000 transactions (mostly land
charters)
• coming from 4 “seigneuries” (about 25 little villages) in South West of
France;
• being established between 1240 and 1520 (just before and after the
hundred years’ war).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 21 / 25
Applications
Graph description
Graph:
• nodes: 1446 individuals directly involved in the transactions (1 446
individuals);
• edges: the two individuals are involved in the same transaction (3 192
edges).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
Applications
Graph description
Graph:
• nodes: 1446 individuals directly involved in the transactions (1 446
individuals);
• edges: the two individuals are involved in the same transaction (3 192
edges).
Labels on nodes:
• numerical: average date of activity;
• text: family name of the individual.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
Applications
Graph description
Graph:
• nodes: 1446 individuals directly involved in the transactions (1 446
individuals);
• edges: the two individuals are involved in the same transaction (3 192
edges).
Labels on nodes:
• numerical: average date of activity;
• text: family name of the individual.
Kernels:
• L+ for the graph;
• linear kernel for the dates;
• spectral string kernel for the family names
[Karatzoglou and Feinerer, 2010] (uses common strings having a
length larger than 4).
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
Applications
Date and graph maps
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 23 / 25
Applications
Name map
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 24 / 25
Applications
Conclusion
Summary
• finding communities in graph, while taking into account labels;
• uses multiple kernel and automatically tunes the combination;
• the method gives relevant communities according to all sources of
information and a well-organized map.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
Applications
Conclusion
Summary
• finding communities in graph, while taking into account labels;
• uses multiple kernel and automatically tunes the combination;
• the method gives relevant communities according to all sources of
information and a well-organized map.
Possible developments
• currently studying a similar approach for dissimilarity/relational SOM;
• Main issue: computational time; currently studying a sparse version.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
Applications
Conclusion
Summary
• finding communities in graph, while taking into account labels;
• uses multiple kernel and automatically tunes the combination;
• the method gives relevant communities according to all sources of
information and a well-organized map.
Possible developments
• currently studying a similar approach for dissimilarity/relational SOM;
• Main issue: computational time; currently studying a sparse version.
Thank you for your attention...
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
Applications
References
Andras, P. (2002).
Kernel-Kohonen networks.
International Journal of Neural Systems, 12:117–135.
Aronszajn, N. (1950).
Theory of reproducing kernels.
Transactions of the American Mathematical Society, 68(3):337–404.
Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008).
Batch kernel SOM and related laplacian methods for social network analysis.
Neurocomputing, 71(7-9):1257–1273.
Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005).
Comparing community structure identification.
Journal of Statistical Mechanics, page P09008.
Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007).
Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation.
IEEE Trans Knowl Data En, 19(3):355–369.
Karatzoglou, A. and Feinerer, I. (2010).
Kernel-based machine learning for fast text mining in R.
Comput Statist Data Anal, 54:290–297.
Kondor, R. and Lafferty, J. (2002).
Diffusion kernels on graphs and other discrete structures.
In Proceedings of the 19th International Conference on Machine Learning, pages 315–322.
Mac Donald, D. and Fyfe, C. (2000).
The kernel self organising map.
In Proceedings of 4th International Conference on knowledge-based intelligence engineering systems and applied technologies,
pages 317–320.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
Applications
Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008).
SimpleMKL.
J Mach Learn Res, 9:2491–2521.
Smola, A. and Kondor, R. (2003).
Kernels and regularization on graphs.
In Warmuth, M. and Schölkopf, B., editors, Proceedings of the Conference on Learning Theory (COLT) and Kernel Workshop,
Lecture Notes in Computer Science, pages 144–158.
Villa, N. and Rossi, F. (2007).
A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph.
In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield
University.
Villa-Vialaneix, N., Olteanu, M., and Cierco-Ayrolles, C. (2013).
Carte auto-organisatrice pour graphes étiquetés.
In Actes des Ateliers FGG (Fouille de Grands Graphes), colloque EGC (Extraction et Gestion de Connaissances), Toulouse,
France.
Watkins, C. (2000).
Dynamic alignment kernels.
In Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D., editors, Advances in Large Margin Classifiers, pages 39–50,
Cambridge, MA, USA. MIT P.
MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25

More Related Content

What's hot

Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
Convolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernelsConvolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernelstuxette
 
Graphical Models 4dummies
Graphical Models 4dummiesGraphical Models 4dummies
Graphical Models 4dummiesxamdam
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...tuxette
 
Pattern learning and recognition on statistical manifolds: An information-geo...
Pattern learning and recognition on statistical manifolds: An information-geo...Pattern learning and recognition on statistical manifolds: An information-geo...
Pattern learning and recognition on statistical manifolds: An information-geo...Frank Nielsen
 
Differential analyses of structures in HiC data
Differential analyses of structures in HiC dataDifferential analyses of structures in HiC data
Differential analyses of structures in HiC datatuxette
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task LearningMasahiro Suzuki
 
Redundancy and synergy in dynamical systems
Redundancy and synergy in dynamical systemsRedundancy and synergy in dynamical systems
Redundancy and synergy in dynamical systemsdanielemarinazzo
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIRtuxette
 
Kernel methods for data integration in systems biology
Kernel methods for data integration in systems biologyKernel methods for data integration in systems biology
Kernel methods for data integration in systems biologytuxette
 
Random Forest for Big Data
Random Forest for Big DataRandom Forest for Big Data
Random Forest for Big Datatuxette
 
Probability distributions for ml
Probability distributions for mlProbability distributions for ml
Probability distributions for mlSung Yub Kim
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIRtuxette
 
Higher-order organization of complex networks
Higher-order organization of complex networksHigher-order organization of complex networks
Higher-order organization of complex networksDavid Gleich
 
Spike timing dependent plasticity to make robot navigation more intelligent. ...
Spike timing dependent plasticity to make robot navigation more intelligent. ...Spike timing dependent plasticity to make robot navigation more intelligent. ...
Spike timing dependent plasticity to make robot navigation more intelligent. ...Lietuvos kompiuterininkų sąjunga
 
An introduction to deep learning
An introduction to deep learningAn introduction to deep learning
An introduction to deep learningVan Thanh
 
Continuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform NetworksContinuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform NetworksYang Zhang
 
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco Scutari
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco ScutariBayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco Scutari
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco ScutariBayes Nets meetup London
 
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...Constrained Support Vector Quantile Regression for Conditional Quantile Estim...
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...Kostas Hatalis, PhD
 

What's hot (20)

Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
Convolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernelsConvolutional networks and graph networks through kernels
Convolutional networks and graph networks through kernels
 
Graphical Models 4dummies
Graphical Models 4dummiesGraphical Models 4dummies
Graphical Models 4dummies
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...
 
Pattern learning and recognition on statistical manifolds: An information-geo...
Pattern learning and recognition on statistical manifolds: An information-geo...Pattern learning and recognition on statistical manifolds: An information-geo...
Pattern learning and recognition on statistical manifolds: An information-geo...
 
Differential analyses of structures in HiC data
Differential analyses of structures in HiC dataDifferential analyses of structures in HiC data
Differential analyses of structures in HiC data
 
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
(研究会輪読) Facial Landmark Detection by Deep Multi-task Learning
 
Redundancy and synergy in dynamical systems
Redundancy and synergy in dynamical systemsRedundancy and synergy in dynamical systems
Redundancy and synergy in dynamical systems
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIR
 
Kernel methods for data integration in systems biology
Kernel methods for data integration in systems biologyKernel methods for data integration in systems biology
Kernel methods for data integration in systems biology
 
Random Forest for Big Data
Random Forest for Big DataRandom Forest for Big Data
Random Forest for Big Data
 
Probability distributions for ml
Probability distributions for mlProbability distributions for ml
Probability distributions for ml
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIR
 
Higher-order organization of complex networks
Higher-order organization of complex networksHigher-order organization of complex networks
Higher-order organization of complex networks
 
Spike timing dependent plasticity to make robot navigation more intelligent. ...
Spike timing dependent plasticity to make robot navigation more intelligent. ...Spike timing dependent plasticity to make robot navigation more intelligent. ...
Spike timing dependent plasticity to make robot navigation more intelligent. ...
 
2010 mainz
2010 mainz2010 mainz
2010 mainz
 
An introduction to deep learning
An introduction to deep learningAn introduction to deep learning
An introduction to deep learning
 
Continuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform NetworksContinuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform Networks
 
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco Scutari
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco ScutariBayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco Scutari
Bayes Nets Meetup Sept 29th 2016 - Bayesian Network Modelling by Marco Scutari
 
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...Constrained Support Vector Quantile Regression for Conditional Quantile Estim...
Constrained Support Vector Quantile Regression for Conditional Quantile Estim...
 

Viewers also liked

Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVMtuxette
 
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...tuxette
 
Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVMtuxette
 
Large network analysis : visualization and clustering
Large network analysis : visualization and clusteringLarge network analysis : visualization and clustering
Large network analysis : visualization and clusteringtuxette
 
Combiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxCombiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxtuxette
 
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...Définition et analyse de graphes d’interactions de gènes pour la qualité de l...
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...tuxette
 
What is a MOOC?
What is a MOOC?What is a MOOC?
What is a MOOC?tuxette
 
Traitement de données fonctionnelles par Support Vector Machine
Traitement de données fonctionnelles par Support Vector MachineTraitement de données fonctionnelles par Support Vector Machine
Traitement de données fonctionnelles par Support Vector Machinetuxette
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014tuxette
 
A short introduction to statistical learning
A short introduction to statistical learningA short introduction to statistical learning
A short introduction to statistical learningtuxette
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
Interpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional dataInterpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional datatuxette
 
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans RVisualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans Rtuxette
 
Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVMtuxette
 
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...tuxette
 
A comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingA comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingtuxette
 
Dynamique de l’occupation des sols de la région des Garrotxes
Dynamique de l’occupation des sols de la région des GarrotxesDynamique de l’occupation des sols de la région des Garrotxes
Dynamique de l’occupation des sols de la région des Garrotxestuxette
 
Réseaux de neurones à entrées fonctionnelles
Réseaux de neurones à entrées fonctionnellesRéseaux de neurones à entrées fonctionnelles
Réseaux de neurones à entrées fonctionnellestuxette
 
Cartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringCartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringtuxette
 

Viewers also liked (20)

Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVM
 
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...
Réseaux de neurones et SVM à entrées fonctionnelles : une approche par régres...
 
Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVM
 
Large network analysis : visualization and clustering
Large network analysis : visualization and clusteringLarge network analysis : visualization and clustering
Large network analysis : visualization and clustering
 
Combiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseauxCombiner classification et visualisation pour l’exploration de grands réseaux
Combiner classification et visualisation pour l’exploration de grands réseaux
 
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...Définition et analyse de graphes d’interactions de gènes pour la qualité de l...
Définition et analyse de graphes d’interactions de gènes pour la qualité de l...
 
What is a MOOC?
What is a MOOC?What is a MOOC?
What is a MOOC?
 
Traitement de données fonctionnelles par Support Vector Machine
Traitement de données fonctionnelles par Support Vector MachineTraitement de données fonctionnelles par Support Vector Machine
Traitement de données fonctionnelles par Support Vector Machine
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014Slides Lycée Jules Fil 2014
Slides Lycée Jules Fil 2014
 
A short introduction to statistical learning
A short introduction to statistical learningA short introduction to statistical learning
A short introduction to statistical learning
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
Interpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional dataInterpretable Sparse Sliced Inverse Regression for digitized functional data
Interpretable Sparse Sliced Inverse Regression for digitized functional data
 
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans RVisualiser et fouiller des réseaux - Méthodes et exemples dans R
Visualiser et fouiller des réseaux - Méthodes et exemples dans R
 
Discrimination de courbes par SVM
Discrimination de courbes par SVMDiscrimination de courbes par SVM
Discrimination de courbes par SVM
 
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
 
A comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leachingA comparison of learning methods to predict N2O fluxes and N leaching
A comparison of learning methods to predict N2O fluxes and N leaching
 
Dynamique de l’occupation des sols de la région des Garrotxes
Dynamique de l’occupation des sols de la région des GarrotxesDynamique de l’occupation des sols de la région des Garrotxes
Dynamique de l’occupation des sols de la région des Garrotxes
 
Réseaux de neurones à entrées fonctionnelles
Réseaux de neurones à entrées fonctionnellesRéseaux de neurones à entrées fonctionnelles
Réseaux de neurones à entrées fonctionnelles
 
Cartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clusteringCartes auto-organisée de Kohonen et clustering
Cartes auto-organisée de Kohonen et clustering
 

Similar to Multiple kernel Self-Organizing Maps

http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf
http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdfhttp://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf
http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdftuxette
 
Topographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodsTopographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodstuxette
 
Classification and regression based on derivatives: a consistency result for ...
Classification and regression based on derivatives: a consistency result for ...Classification and regression based on derivatives: a consistency result for ...
Classification and regression based on derivatives: a consistency result for ...tuxette
 
Computational Social Science, Lecture 06: Networks, Part II
Computational Social Science, Lecture 06: Networks, Part IIComputational Social Science, Lecture 06: Networks, Part II
Computational Social Science, Lecture 06: Networks, Part IIjakehofman
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricestuxette
 
Graph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningGraph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningtuxette
 
Transport and routing on coupled spatial networks
Transport and routing on coupled spatial networksTransport and routing on coupled spatial networks
Transport and routing on coupled spatial networksrichardgmorris
 
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesOana Tifrea-Marciuska
 
Proportional and decentralized rule mcst games
Proportional and decentralized rule mcst gamesProportional and decentralized rule mcst games
Proportional and decentralized rule mcst gamesvinnief
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsFabian Pedregosa
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Frank Nielsen
 

Similar to Multiple kernel Self-Organizing Maps (17)

http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf
http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdfhttp://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf
http://old.nathalievilla.org/IMG/pdf/Presentation-27.pdf
 
Topographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methodsTopographic graph clustering with kernel and dissimilarity methods
Topographic graph clustering with kernel and dissimilarity methods
 
Classification and regression based on derivatives: a consistency result for ...
Classification and regression based on derivatives: a consistency result for ...Classification and regression based on derivatives: a consistency result for ...
Classification and regression based on derivatives: a consistency result for ...
 
Computational Social Science, Lecture 06: Networks, Part II
Computational Social Science, Lecture 06: Networks, Part IIComputational Social Science, Lecture 06: Networks, Part II
Computational Social Science, Lecture 06: Networks, Part II
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
 
QMC: Transition Workshop - Approximating Multivariate Functions When Function...
QMC: Transition Workshop - Approximating Multivariate Functions When Function...QMC: Transition Workshop - Approximating Multivariate Functions When Function...
QMC: Transition Workshop - Approximating Multivariate Functions When Function...
 
Graph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph miningGraph mining 2: Statistical approaches for graph mining
Graph mining 2: Statistical approaches for graph mining
 
Transport and routing on coupled spatial networks
Transport and routing on coupled spatial networksTransport and routing on coupled spatial networks
Transport and routing on coupled spatial networks
 
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group PreferencesQuery Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
Query Answering in Probabilistic Datalog+/– Ontologies under Group Preferences
 
Wi13 otm
Wi13 otmWi13 otm
Wi13 otm
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Proportional and decentralized rule mcst games
Proportional and decentralized rule mcst gamesProportional and decentralized rule mcst games
Proportional and decentralized rule mcst games
 
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
 
MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...
MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...
MUMS Undergraduate Workshop - Quantifying Uncertainty in Hazard Forecasting -...
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and Algorithms
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 
Teknik Simulasi
Teknik SimulasiTeknik Simulasi
Teknik Simulasi
 

More from tuxette

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathstuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènestuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquestuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-Ctuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquestuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeantuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquestuxette
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...tuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation datatuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysistuxette
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Predictiontuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random foresttuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNNtuxette
 

More from tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
 
Graph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype PredictionGraph Neural Network for Phenotype Prediction
Graph Neural Network for Phenotype Prediction
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNN
 

Recently uploaded

Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 

Recently uploaded (20)

Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 

Multiple kernel Self-Organizing Maps

  • 1. Multiple kernel Self-Organizing Maps Madalina Olteanu(2), Nathalie Villa-Vialaneix(1,2), Christine Cierco-Ayrolles(1) http://www.nathalievilla.org nathalie.villa@univ-paris1.fr, madalina.olteanu@univ-paris1.fr, christine.cierco@toulouse.inra.fr Groupe de travail SAMM-Graph (25/01/2013) (1) (2) MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 1 / 25
  • 2. Introduction Outline 1 Introduction 2 MK-SOM 3 Applications MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 2 / 25
  • 3. Introduction Data, notations and objectives Data: D datasets (xd i )i=1,...,n,d=1,...,D all measured on the same individuals or on the same objects, {i, . . . , n}, each taking values in an arbitrary space Gd. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
  • 4. Introduction Data, notations and objectives Data: D datasets (xd i )i=1,...,n,d=1,...,D all measured on the same individuals or on the same objects, {i, . . . , n}, each taking values in an arbitrary space Gd. Examples: • (xd i )i is p numeric variables; • (xd i )i is n nodes of a graph; • (xd i )i is p factors; • (xd i )i is a text... MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
  • 5. Introduction Data, notations and objectives Data: D datasets (xd i )i=1,...,n,d=1,...,D all measured on the same individuals or on the same objects, {i, . . . , n}, each taking values in an arbitrary space Gd. Examples: • (xd i )i is p numeric variables; • (xd i )i is n nodes of a graph; • (xd i )i is p factors; • (xd i )i is a text... Purpose: Combine all datasets to obtain a map of individuals/objects: self-organizing maps for clustering {i, . . . , n} using all datasets MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 3 / 25
  • 6. Introduction Particular case [Villa-Vialaneix et al., 2013] Data: A weighted undirected network represented by a graph G with n nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
  • 7. Introduction Particular case [Villa-Vialaneix et al., 2013] Data: A weighted undirected network represented by a graph G with n nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0. For every node, additional information is provided: either numerical variables, factors, textual information... or a combination of all of them. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
  • 8. Introduction Particular case [Villa-Vialaneix et al., 2013] Data: A weighted undirected network represented by a graph G with n nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0. For every node, additional information is provided: either numerical variables, factors, textual information... or a combination of all of them. Examples: Gender in a social network, Functional group of a gene in a gene interaction network... MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
  • 9. Introduction Particular case [Villa-Vialaneix et al., 2013] Data: A weighted undirected network represented by a graph G with n nodes x1, . . . , xn with weight matrix W: Wij = Wji and Wii = 0. For every node, additional information is provided: either numerical information, factors, textual information... or a combination of all of them. Examples: Weight of people in a social network, Number of visits of a web page in WWW... MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 4 / 25
  • 10. Introduction Purpose Node clustering: find communities, i.e., groups of “close” nodes in the graph; close meaning: • densely connected and sharing (comparatively) a few links with the other groups (“communities”); MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
  • 11. Introduction Purpose Node clustering: find communities, i.e., groups of “close” nodes in the graph; close meaning: • densely connected and sharing (comparatively) a few links with the other groups (“communities”); • but also having similar labels. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
  • 12. Introduction Purpose Node clustering: find communities, i.e., groups of “close” nodes in the graph; close meaning: • densely connected and sharing (comparatively) a few links with the other groups (“communities”); • but also having similar labels. Here: self-organizing map approach to produce a map of the nodes (clutering+visualization). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
  • 13. Introduction Purpose Node clustering: find communities, i.e., groups of “close” nodes in the graph; close meaning: • densely connected and sharing (comparatively) a few links with the other groups (“communities”); • but also having similar labels. Here: self-organizing map approach to produce a map of the nodes (clutering+visualization). Multiple sources of information are handled by combining kernels. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 5 / 25
  • 14. MK-SOM Outline 1 Introduction 2 MK-SOM 3 Applications MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 6 / 25
  • 15. MK-SOM Basics on SOM Project the data on a squared grid (each square of the grid is a cluster) MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 7 / 25
  • 16. MK-SOM Basics on SOM Project the data on a squared grid (each square of the grid is a cluster) such that: • the nodes in a same cluster are highly connected • the nodes in two close clusters are also (less) connected • the nodes in two distant clusters are (almost) not connected MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 7 / 25
  • 17. MK-SOM Basics on SOM • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, each associated to a prototype pi (a prototype is a “representer” of the neuron in the original dataset); MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
  • 18. MK-SOM Basics on SOM • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, each associated to a prototype pi (a prototype is a “representer” of the neuron in the original dataset); • the map is equipped with a neighborhood relationship, i.e., a “distance” (actually a dissimilarity) between neurons, δ; MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
  • 19. MK-SOM Basics on SOM • the map is made of neurons (visually symbolized by, e.g., rectangles), 1...M, each associated to a prototype pi (a prototype is a “representer” of the neuron in the original dataset); • the map is equipped with a neighborhood relationship, i.e., a “distance” (actually a dissimilarity) between neurons, δ; • goal: find the best mapping f(xi) ∈ {1, . . . , M} of the observations xi on the map minimizing the energy E = n i=1 M j=1 h(δ(f(xi), j)) xi − pi 2 . i.e., each data is assigned to a neuron so that xi is: • “close” to the prototype of f(xi); • “close” (to a lesser extent) to the prototypes of the neighboring neurons of f(xi); • “distant” to the prototypes of the neurons that are distant of f(xi). (topology preservation) MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 8 / 25
  • 20. MK-SOM on-line SOM Data: x1, . . . , xn ∈ Rd 1: Initialization: randomly set p0 1 ,...,p0 M in Rd 2: for t = 1 → T do 3: Randomly choose i ∈ {1, . . . , n} 4: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j Rd 5: for all j = 1 → M do Representation 6: pt j ← pt−1 j + µt ht (δ(ft (xi), j)) 1i − pt−1 j 7: end for 8: end for where ht is a decreasing function which reduces the neighborhood when t increases and µt is generally of order 1/t. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 9 / 25
  • 21. MK-SOM on-line SOM Data: x1, . . . , xn ∈ Rd 1: Initialization: randomly set p0 1 ,...,p0 M in Rd 2: for t = 1 → T do 3: Randomly choose i ∈ {1, . . . , n} 4: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j Rd 5: for all j = 1 → M do Representation 6: pt j ← pt−1 j + µt ht (δ(ft (xi), j)) 1i − pt−1 j 7: end for 8: end for where ht is a decreasing function which reduces the neighborhood when t increases and µt is generally of order 1/t. Problem with non numerical data: definitions of . and pj??? MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 9 / 25
  • 22. MK-SOM Kernels/Multiple kernel What is a kernel? (xi) ∈ G, (K(xi, xj))ij st: K(xi, xj) = K(xj, xi) and ∀ (αi)i, ij αiαjK(xi, xj) ≥ 0. In this case [Aronszajn, 1950], ∃ (H, ., . ) , Φ : G → H st : K(xi, xj) = Φ(xi), Φ(xj) MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 10 / 25
  • 23. MK-SOM Kernels/Multiple kernel What is a kernel? (xi) ∈ G, (K(xi, xj))ij st: K(xi, xj) = K(xj, xi) and ∀ (αi)i, ij αiαjK(xi, xj) ≥ 0. In this case [Aronszajn, 1950], ∃ (H, ., . ) , Φ : G → H st : K(xi, xj) = Φ(xi), Φ(xj) Examples: • nodes of a graph: Heat kernel K = e−βL or K = L+ where L is the Laplacian [Kondor and Lafferty, 2002, Smola and Kondor, 2003, Fouss et al., 2007] • numerical variables: Gaussian kernel K(xi, xj) = e−β xi−xj 2 ; • text: [Watkins, 2000]... MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 10 / 25
  • 24. MK-SOM Kernel SOM [Mac Donald and Fyfe, 2000, Andras, 2002, Villa and Rossi, 2007] (xi)i ⊂ G described by a kernel (K(xi, xi ))ii . Prototypes are defined in the feature space: pj = i γjiφ(xi); energy calculated calculated in H: 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ij Φ(xi) st γ0 ij ≥ 0 and i γ0 ij = 1 2: for t = 1 → T do 3: Randomly choose i ∈ {1, . . . , n} 4: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j H 5: for all j = 1 → M do Representation 6: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 7: end for 8: end for Usually, µt ∼ 1/t. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 11 / 25
  • 25. MK-SOM Kernel SOM [Mac Donald and Fyfe, 2000, Andras, 2002, Villa and Rossi, 2007] (xi)i ⊂ G described by a kernel (K(xi, xi ))ii . Prototypes are defined in the feature space: pj = i γjiφ(xi); energy calculated calculated in H: 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ij Φ(xi) st γ0 ij ≥ 0 and i γ0 ij = 1 2: for t = 1 → T do 3: Randomly choose i ∈ {1, . . . , n} 4: Assignment ft (xi) ← arg min j=1,...,M ll γt−1 jl γt−1 jl Kt (xl, xl ) − 2 l γt−1 jl Kt (xl, xi) 5: for all j = 1 → M do Representation 6: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 7: end for 8: end for Usually, µt ∼ 1/t. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 11 / 25
  • 26. MK-SOM Combining kernels Suppose: each (xd i )i is described by a kernel Kd, kernels can be combined (e.g., [Rakotomamonjy et al., 2008] for SVM): K = D d=1 αdKd, with αd ≥ 0 and d αd = 1. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 12 / 25
  • 27. MK-SOM Combining kernels Suppose: each (xd i )i is described by a kernel Kd, kernels can be combined (e.g., [Rakotomamonjy et al., 2008] for SVM): K = D d=1 αdKd, with αd ≥ 0 and d αd = 1. Remark: Also useful to integrate different types of information coming from different kernels on the same dataset. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 12 / 25
  • 28. MK-SOM multiple kernel SOM 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ji Φ(xi) st γ0 ji ≥ 0 and i γ0 ji = 1 2: Kernel initialization: set (α0 d ) st α0 d ≥ 0 and d αd = 1 (e.g., α0 d = 1/D); K0 ← d α0 d Kd 3: for t = 1 → T do 4: Randomly choose i ∈ {1, . . . , n} 5: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j 2 H(Kt ) 6: for all j = 1 → M do Representation 7: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 8: end for 9: empty state ;-) 10: end for MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 13 / 25
  • 29. MK-SOM multiple kernel SOM 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ji Φ(xi) st γ0 ji ≥ 0 and i γ0 ji = 1 2: Kernel initialization: set (α0 d ) st α0 d ≥ 0 and d αd = 1 (e.g., α0 d = 1/D); K0 ← d α0 d Kd 3: for t = 1 → T do 4: Randomly choose i ∈ {1, . . . , n} 5: Assignment ft (xi) ← arg min j=1,...,M ll γt−1 jl γt−1 jl Kt (xl, xl ) − 2 l γt−1 jl Kt (xl, xi) 6: for all j = 1 → M do Representation 7: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 8: end for 9: empty state ;-) 10: end for MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 13 / 25
  • 30. MK-SOM Tuning (αd)d on-line Purpose: minimize over (γji)ji and (αd)d the energy E((γji)ji, (αd)d) = n i=1 M j=1 h (f(xi), j) φα (xi) − pα j (γj) 2 α , MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
  • 31. MK-SOM Tuning (αd)d on-line Purpose: minimize over (γji)ji and (αd)d the energy E((γji)ji, (αd)d) = n i=1 M j=1 h (f(xi), j) φα (xi) − pα j (γj) 2 α , KSOM picks up an observation xi whose contribution to the energy is: E|xi = M j=1 h (f(xi), j) φα (xi) − pα j (γj) 2 α (1) MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
  • 32. MK-SOM Tuning (αd)d on-line Purpose: minimize over (γji)ji and (αd)d the energy E((γji)ji, (αd)d) = n i=1 M j=1 h (f(xi), j) φα (xi) − pα j (γj) 2 α , KSOM picks up an observation xi whose contribution to the energy is: E|xi = M j=1 h (f(xi), j) φα (xi) − pα j (γj) 2 α (1) Idea: Add a gradient descent step based on the derivative of (1): ∂E|xi ∂αd = M j=1 h(f(xi), j)  Kd(xd i , xd i ) − 2 n l=1 γjlKd(xd i , xd l )+ n l,l =1 γjlγjl Kd(xd l , xd l )   = M j=1 h(f(xi), j) φ(xi) − pd j (γj) 2 Kd MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 14 / 25
  • 33. MK-SOM adaptive multiple kernel SOM 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ji Φ(xi) st γ0 ji ≥ 0 and i γ0 ji = 1 2: Kernel initialization: set (α0 d ) st α0 d ≥ 0 and d αd = 1 (e.g., α0 d = 1/D); K0 ← d α0 d Kd 3: for t = 1 → T do 4: Randomly choose i ∈ {1, . . . , n} 5: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j 2 H(Kt ) 6: for all j = 1 → M do Representation 7: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 8: end for 9: 10: end for MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 15 / 25
  • 34. MK-SOM adaptive multiple kernel SOM 1: Prototypes initialization: randomly set p0 j = n i=1 γ0 ji Φ(xi) st γ0 ji ≥ 0 and i γ0 ji = 1 2: Kernel initialization: set (α0 d ) st α0 d ≥ 0 and d αd = 1 (e.g., α0 d = 1/D); K0 ← d α0 d Kd 3: for t = 1 → T do 4: Randomly choose i ∈ {1, . . . , n} 5: Assignment ft (xi) ← arg min j=1,...,M xi − pt−1 j 2 H(Kt ) 6: for all j = 1 → M do Representation 7: γt j ← γt−1 j + µt ht (δ(ft (xi), j)) 1i − γt−1 j 8: end for 9: Kernel update αt d ← αt−1 d + νt ∂E|xi ∂αd and Kt ← d αt d Kd 10: end for MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 15 / 25
  • 35. Applications Outline 1 Introduction 2 MK-SOM 3 Applications MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 16 / 25
  • 36. Applications Example1: simulated data Graph with 200 nodes classified in 8 groups: • graph: Erdös Reyni models: groups 1 to 4 and groups 5 to 8 with intra-group edge probability 0.3 and inter-group edge probability 0.01; • numerical data: nodes labelled with 2-dimensional Gaussian vectors: odd groups N 0 0 , 0.3 0 0 0.3 ; • factor with two levels: groups 1, 2, 5 and 7: first level; other groups: second level. Only the knownledge on the three datasets can discriminate all 8 groups. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 17 / 25
  • 37. Applications Experiment Kernels: graph: L+, numerical data: Gaussian kernel; factor: another Gaussian kernel on the disjunctive recoding MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 18 / 25
  • 38. Applications Experiment Kernels: graph: L+, numerical data: Gaussian kernel; factor: another Gaussian kernel on the disjunctive recoding Comparison: on 100 randomly generated datasets as previously described: • multiple kernel SOM with all three data; • kernel SOM with a single dataset; • kernel SOM with two datasets or all three datasets in a single (Gaussian) kernel. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 18 / 25
  • 39. Applications An example MK-SOM All in one kernel Graph only Numerical variables only MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 19 / 25
  • 40. Applications Numerical comparison (over 100 simulations) with mutual information ij |Ci ∩ ˜Cj| 200 log |Ci ∩ ˜Cj| |Ci| × | ˜Cj| (adjusted version, equal to 1 if partitions are identical [Danon et al., 2005]). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 20 / 25
  • 41. Applications Numerical comparison (over 100 simulations) with mutual information ij |Ci ∩ ˜Cj| 200 log |Ci ∩ ˜Cj| |Ci| × | ˜Cj| (adjusted version, equal to 1 if partitions are identical [Danon et al., 2005]). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 20 / 25
  • 42. Applications Example 2: Data coming from a medieval corpus Example from [Boulet et al., 2008] http://graphcomp.univ-tlse2.fr/ In the “Archive départementales du Lot” (Cahors, France), big corpus of 5000 transactions (mostly land charters) • coming from 4 “seigneuries” (about 25 little villages) in South West of France; • being established between 1240 and 1520 (just before and after the hundred years’ war). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 21 / 25
  • 43. Applications Graph description Graph: • nodes: 1446 individuals directly involved in the transactions (1 446 individuals); • edges: the two individuals are involved in the same transaction (3 192 edges). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
  • 44. Applications Graph description Graph: • nodes: 1446 individuals directly involved in the transactions (1 446 individuals); • edges: the two individuals are involved in the same transaction (3 192 edges). Labels on nodes: • numerical: average date of activity; • text: family name of the individual. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
  • 45. Applications Graph description Graph: • nodes: 1446 individuals directly involved in the transactions (1 446 individuals); • edges: the two individuals are involved in the same transaction (3 192 edges). Labels on nodes: • numerical: average date of activity; • text: family name of the individual. Kernels: • L+ for the graph; • linear kernel for the dates; • spectral string kernel for the family names [Karatzoglou and Feinerer, 2010] (uses common strings having a length larger than 4). MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 22 / 25
  • 46. Applications Date and graph maps MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 23 / 25
  • 47. Applications Name map MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 24 / 25
  • 48. Applications Conclusion Summary • finding communities in graph, while taking into account labels; • uses multiple kernel and automatically tunes the combination; • the method gives relevant communities according to all sources of information and a well-organized map. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
  • 49. Applications Conclusion Summary • finding communities in graph, while taking into account labels; • uses multiple kernel and automatically tunes the combination; • the method gives relevant communities according to all sources of information and a well-organized map. Possible developments • currently studying a similar approach for dissimilarity/relational SOM; • Main issue: computational time; currently studying a sparse version. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
  • 50. Applications Conclusion Summary • finding communities in graph, while taking into account labels; • uses multiple kernel and automatically tunes the combination; • the method gives relevant communities according to all sources of information and a well-organized map. Possible developments • currently studying a similar approach for dissimilarity/relational SOM; • Main issue: computational time; currently studying a sparse version. Thank you for your attention... MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
  • 51. Applications References Andras, P. (2002). Kernel-Kohonen networks. International Journal of Neural Systems, 12:117–135. Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337–404. Boulet, R., Jouve, B., Rossi, F., and Villa, N. (2008). Batch kernel SOM and related laplacian methods for social network analysis. Neurocomputing, 71(7-9):1257–1273. Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics, page P09008. Fouss, F., Pirotte, A., Renders, J., and Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph, with application to collaborative recommendation. IEEE Trans Knowl Data En, 19(3):355–369. Karatzoglou, A. and Feinerer, I. (2010). Kernel-based machine learning for fast text mining in R. Comput Statist Data Anal, 54:290–297. Kondor, R. and Lafferty, J. (2002). Diffusion kernels on graphs and other discrete structures. In Proceedings of the 19th International Conference on Machine Learning, pages 315–322. Mac Donald, D. and Fyfe, C. (2000). The kernel self organising map. In Proceedings of 4th International Conference on knowledge-based intelligence engineering systems and applied technologies, pages 317–320. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25
  • 52. Applications Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008). SimpleMKL. J Mach Learn Res, 9:2491–2521. Smola, A. and Kondor, R. (2003). Kernels and regularization on graphs. In Warmuth, M. and Schölkopf, B., editors, Proceedings of the Conference on Learning Theory (COLT) and Kernel Workshop, Lecture Notes in Computer Science, pages 144–158. Villa, N. and Rossi, F. (2007). A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph. In 6th International Workshop on Self-Organizing Maps (WSOM), Bielefield, Germany. Neuroinformatics Group, Bielefield University. Villa-Vialaneix, N., Olteanu, M., and Cierco-Ayrolles, C. (2013). Carte auto-organisatrice pour graphes étiquetés. In Actes des Ateliers FGG (Fouille de Grands Graphes), colloque EGC (Extraction et Gestion de Connaissances), Toulouse, France. Watkins, C. (2000). Dynamic alignment kernels. In Smola, A., Bartlett, P., Schölkopf, B., and Schuurmans, D., editors, Advances in Large Margin Classifiers, pages 39–50, Cambridge, MA, USA. MIT P. MK-SOM (SAMM-Graph) Nathalie Villa-Vialaneix Toulouse, 25 Janvier 2013 25 / 25