Lesson 11 :
Supervised Learning - Regression
Intro to Supervised Learning
Clasification Algorithm
(Logistic Regression, Decision Tree, RF, SVM, Naïve Bayes)
Model Evaluation
Materi
Supervised Learning
● Supervised Learning dilatih menggunakan contoh
berlabel , seperti input di mana output yang
diinginkan diketahui.
● Misalnya, segmen teks dapat memiliki label kategori,
seperti:
○ Spam vs. Email
○ Ulasan Film
Type of Supervised Learning
What is Regression
Types of Regression Models
Types of Regression Models (cont.)
Application of Regression
● Sales forecasting
● Satisfaction Analysis
● Price Estimation
● Employment Income
● etc.
Regression Algorithm
● Ordinal Regression
● Poisson Regression
● Fast Forest Quantile Regression
● Linear, Polynomial, Lasso, Stepwise, Ridge Regression
● Bayesian Linear Regression
● Neural Network Regression
● Decision Forest Regression
● Boosted Decision Tree Regression
● KNN (K-nearest Neighbors
Simple Linear Model
How to find the best fit?
Estimating Parameters
Prediction with Linear Regression
Estimating Multiple Linear Regression Parameters
Making Prediction with multiple Linear Regression
Q&A – On Multiple Linear Regeression
Lesson 11 - Supervised Learning-Regression.pptx

Lesson 11 - Supervised Learning-Regression.pptx