SlideShare a Scribd company logo
1 of 35
Download to read offline
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Nanoparticle Synthesis
via Attrition / Milling
Involves mechanical thermal cycles
Yields
- broad size distribution
(10-1000 nm)
- varied particle shape
or geometry
- impurities
Application:
- Nanocomposites and
- Nano-grained
bulk materials
Via
- Pyrolysis
- Inert gas condensation
- Solvothermal Reaction
- Sol-gel Fabrication
- Structured Media
Top-Down Bottom-Up
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Bottom – Up Synthesis
Phase Classification:
I. Gas (Vapor) Phase Fabrication: Pyrolysis, Inert Gas Condensation, ….
II. Liquid Phase Fabrication: Solvothermal Reaction, Sol-gel, Micellar Structured Media
Part 1: Nanoparticle Synthesis
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Bottom – Up Synthesis
Part 1: Nanoparticle Synthesis
Phase Classification:
I. Gas (Vapor) Phase Fabrication: Pyrolysis, Inert Gas Condensation, ….
II. Liquid Phase Fabrication: Solvothermal Reaction, Sol-gel, Micellar Structured Media
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Homogeneous Condensation
Part 1: Nanoparticle Synthesis
E.E. Finney, R.G. Finke / J. Coll. Inter. Sci. 317 (2008) 351–374
Cluster free energy:
ΔGV
Driving Force: ΔGV
Bulk free energy difference
between old and new phase
CS
CL
* CL
Concentration:
CL
* … Solution in Equilibrium
CL … Supersaturated Solution
CS … Solid phase
G, Gibbs Free Energy
γ
π
π 2
3
4
3
4
r
G
r
G v
*
+
Δ
−
=
Δ
negative volume term positive surface term
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Growth Steps and Limitations
Part 1: Nanoparticle Synthesis
• Steps
– Generation of growth species
(e.g., reduction from minerals)
– Diffusion from bulk to the growth surface
– Adsorption
– Surface growth ( growth modes)
1 2 3 4 5 6 7 8 9 10
VM
Growth Modes:
SK
FM
( ) ∞
−
=
Δ μ
μ
μ n
0
number of monolayers
• Limitation
– Diffusion-limited growth
– Size-limited (Oswald ripening)
– Transport-limited growth
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Vapor Phase Growth
Part 1: Nanoparticle Synthesis
Growth rate of vapor condensation:
Δp = pV – pe
ξ... condensation coefficient (between 0 and 1)
ANP ... surface area of condensate (nanoparticle NP)
m .... mass of gas molecule
kB .... Boltzmann constant, and T … absolute temperature
Driving force: pressure difference Δp
pV ….instantaneous vapor pressure
Pe …. local equilibrium pressure at the growing cluster
;
T
mk
p
A
R
B
NP
π
ξ
2
Δ
=
NP
NP d
A π
4
=
Spherical NP:
Flux from gas kinetic theory
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Mechanism and Effectiveness
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
(i) precursor vaporization (typically involves a catalyst)
(ii) nucleation, and
(iii) growth stage
Effectiveness demands:
- simple process
- low cost
- continuous operation
- high yield
Aerosol Spray Methods
(e.g., Spray Pyrolysis)
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Vapor Phase Synthesis Methods
Part 1: Nanoparticle Synthesis
Discussed are:
• Pyrolysis
(Spray Pyrolysis)
• Inert Gas Condensation
(Chemical Vapor Deposition) inert
gas
inlet
Tube Furnace (~500-1000 oC)
HC Gas
(CnHm)
inert
gas
inlet
Tube Furnace (~500-1000 oC)
HC Gas
(CnHm)
Spray pyrolysis is the aerosol process
that atomizes a solution and heats the
droplets to produce solid particles
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
F. Iskandar, Adv. Powder Techn. 20 (2009) 283
production of droplets and their
dispersion into the gas
can be use only as a dryer or also
as a reactor
solid particle growth
within droplet
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
F. Iskandar, Adv. Powder Techn. 20 (2009) 283
Atomizer Type Furnace Type Precipitator Type
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
Droplet Evolution
Evaporation Precipitation Drying Decomposition Sintering
Messing et al, J. Am. Ceram. Soc., 1993
If the solute concentration at the center of the drop is less than the equilibrium
saturation of the solute at the droplet temperature, then precipitation occurs only in
that part of the drop where the concentration is higher than the equilibrium saturation,
i.e., surface precipitation.
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
Precipitation Control
Che et al, J. Aer. Sci., 1998
Messing et al, J. Am. Ceram. Soc., 1993
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis: Ga(NO3)3 and GaN
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
Goal: Fabricate GaO3 with
- narrow size distribution, and
- homogeneous composition
Ga(NO3)3 + H2O
and LiCl
GaN nanoparticles of
23.4 I 1.7 nm diameter
T. Ogi et al., Adv. Powder Technology 20 (2009) 29
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Spray Pyrolysis: Porous Silica NP
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
F. Iskandar / Advanced Powder Technology 20 (2009) 283
Pyrolysis: Generate droplet mixtures of “Primary Particles” with Polymer Particles
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Porous Silica NP Application: Colloidal Damper
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
Hydraulic Damper (oil is working fluid, energy is dissipated via orifice flow)
Colloidal Damper
Hydrophobized porous silica particle (outside and
inside) suspended in water as the working fluid
Advantage: Little heat generation in colloidal damper.
C.V. Suciu et al., J. Coll. Interf. Sci., 259 (2003) 62.
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Inert Gas Condensation (IGC)
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
F. Iskandar, Adv. Powder Techn. 20 (2009) 283
Entails the evaporation of a course substance in an inert gas atmosphere.
Evaporation Sources
Cold Finger
Methods:
- Physical Vapor Deposition (PVD)
(no catalytic interaction)
- Chemical Vapor Deposition (CVD)
(with catalytic interaction)
Catalytic Surface
inert
gas
inlet
Tube Furnace (~500-1000 oC)
HC Gas
(CnHm)
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Coalescence and Agglomeration
Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis
One of the big challenges in condensation growth is that the particles
coalesce and agglomerate.
A solution proposed: Use of a gas jet stream. A jet stream of carrier
gas positioned above the evaporation sites is used to carry away the
metal vapor.
Utilize that carrier gas vapor mixture cools downstream
Continuous Particle growth
(nucleation, condensation and coagulation)
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Liquid Phase Synthesis Methods
Part 1: Nanoparticle Synthesis
The liquid phase fabrication entails a wet chemistry route.
Methods:
• Solvothermal Methods
(e.g. hydrothermal)
• Sol-Gel Methods
• Synthesis in Structure Media
(e.g., microemulsion)
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Mechanism and Effectiveness
Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis
(i) precursor solution (typically involves a catalyst)
(ii) nucleation, and
(iii) growth stage
Effectiveness demands:
- simple process
- low cost
- continuous operation
- high yield
Sol-Gel and Solvothermal Synthsis
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Solvothermal Synthesis
Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis
• Precursors are dissolved in hot solvents (e.g., n-butyl alcohol)
- Solvent other than water can provide milder and friendlier reaction
conditions If the solvent is water then the process is referred to as
hydrothermal method.
Example: TiO2 Nanocrystallites
Precursor:
Titanium
n-butoxide
Precursor solution with butyl alcohol
Autoclave
X.F. Yang et al., Euro. J. Inorganic Chem., 2229 (2006).
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Sol-Gel Processing
Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis
- Creation of Sol (solid particles in solution)
- Followed by the following two generic sol-gel processes
(assuming as a precursor a metal alkoxide MOR):
hydrolysis: −MOR + H2O  −MOH + ROH
condensation: −MOH + ROM−  −MOM− + ROH
or −MOH + HOM−  −MOM− + H2O
Ex.: Si(OR)4 + 4 H2O → Si(OH)4 + 4 R-OH
(OR)3–Si-OH + HO–Si-(OR)3 → [(OR)3Si–O–Si(OR)3] + H-O-H
(OR)3–Si-OR + HO–Si-(OR)3 → [(OR)3Si–O–Si(OR)3] + R-OH
Condensation towards
network of siloxanes
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Sol-Gel Steps:
Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis
• Formation of stable sol solution
• Gelation via a polycondensation or
polyesterification reaction
• Gel aging into a solid mass.  causes
contraction of the gel network, also
(i) phase transformations and
(ii) Ostwald ripening.
• Drying of the gel to remove liquid phases.
Can lead to fundamental changes in the
structure of the gel.
• Dehydration at temperatures as high as
8000 oC, used to remove M-OH groups for
stabilizing the gel, i.e., to protect it from
rehydration.
• Densification and decomposition of the
gels at high temperatures (T  8000 oC),
i.e., to collapse the pores in the gel
network and to drive out remaining organic
contaminants
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Synthesis in Structured Medium
Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis
Influence Growth Kinetics by Imposing Constraints
in Form of Matrices:
• Zeolites
• Layered Solids
• Molecular Sieves
• Micelles/Microemulsions
• Gels
• Polymers
• Glasses
Ex.: Mixing of two Microemulsion
carrying metal salt and reducing agent
Intermicellar interchange process via coalescence (rate limiting)
(much slower than diffusion: 10 μs and 1 ms
I. Capek, Adv. Coll. Interf. Sci. 110 (2004) 49
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
NP Systems: Unique Properties
Part 1: Nanoparticle Synthesis
Optics:
Electronics:
Catalysis:
Drug Delivery:
Sensors:
Coatings:
High- or low refractive index
Unique density of state
High reactivity
Controlled delivery
High sensitivity
Increased material strength
Ultralow and high adhesion
High impact on composite and fluidic systems.
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Nanofluids: High Thermal Conductivity
Part 1: Nanoparticle Synthesis – Unique Properties
Nanofluids: Nanoparticle suspension
increase of conductivity k up to 60-70%
Maxwell Model :
( )
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
+
−
+
+
=
f
p
f
p
f
p
f
p
f
nf
k
k
k
k
k
k
k
k
k
k
φ
φ
2
2
2
Such classical models cannot account for increased conductivity in nanofluids.
kp , kp ….particle and fluid
thermal conductivity,
φ .…particle free volume
fraction
fluid
le
nanopartic
k
k
f
nf
=
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Nanofluids: High Thermal Conductivity
Part 1: Nanoparticle Synthesis – Unique Properties
Classical models cannot account for increased conductivity in nanofluids
as they lack information about:
• Particle size and surface energy
• Particle dispersion and clustering
• Brownian motion of the particles
• Liquid layering (entropy reduction)
• ….
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
+
=
p
f
p
B
f
nf
r
r
d
T
k
c
k
k
φ
φ
πη 1
2
1 2
D.H. Kumar et al., Phys. Rev. Lett. 93 (2004) 4301)
Dynamic Model (based on kinetic theory
and Fourier’s Law) considers Brownian
motion and particle size:
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Nanofluids: Conduction Models
Part 1: Nanoparticle Synthesis – Unique Properties
Murshed argues:
• Most of the recently developed models
only include one or two postulated
mechanisms of nanofluids heat transfer.
• Moreover, these models were not
validated with a wide range of
experimental data.
• There is, therefore a need to develop
more comprehensive models, which are
based on the first principle, and can
explicitly explain the enhanced thermal
conductivity of nanofluids.
• Particles size, particle dispersions and
clustering should be taken into account in
the model development for nanofluids.
S.M.S. Murshed et al. / Applied Thermal Engineering 28 (2008) 2109–2125
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Strain in Nanoparticles
Part 1: Nanoparticle Synthesis – Unique Properties
High surface energy (tension) causes strain in the material
Isotropic stress: σ = 1/3 P
σ stress
[GPa]
ε strain []
E (Young’s Modulus)
E
σ
ε =
P
Nearest
Atom
Distance
γ…. Surface Tension, r …. Particle Radius
P = 2γ/r …. Laplace Pressure
Pressure caused by interfacial tension:
r
Er
E
P 1
3
2
3
1
∝
=
=
γ
ε
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Bulk Crystal and Heterostructure Growth
Part 1: Nanoparticle Synthesis
Nanotechnology needs: Ultrahigh Quality and Purity
E.g., Crystalline Silicon: impurity levels  0.1 ppb (1 in 1010)
Three Step Process to obtain Polycrystalline Silicon:
SiO2 + 2C  Si + 2CO
Si + 3HCl  HSiCl3 + H2 + impurities
HSiCl3 + H2  2Si + 6HCl
additional reduction reactions with dry hydrochloric acid to drive out impurities
final step: hydrogen conversion reaction of trichlorosilane
using amorphous carbon electrodes in submerged arc furnace
and carbon in the form of mineral carbon, petroleum coke,
charcoal, wood-chips
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Fabrication of Silicon in Nanoelectronics
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
Polycrystalline silicon conversion into single crystal Si ingots:
- poly-Si crushed in a crucible in clean room
and melted
- Convective steams within the melt due to
temperature gradients are suppressed by
big magnetic fields.
- Dopants added to the melt at this point.
- A seed crystal is inserted and slowly
withdrawn (mm/s) under rotational motion to
assure homogeneity,
- Via mechanical processes wafers are
obtained from the single-crystal ingot.
Czochralski method: Yields doped single crystal Si
silicon melt
seed
Si crystal
mm/s
Source: http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/illustr/i6_1_1.html
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Fabrication of Multilayered Crystals
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
Methods excellently suited for heterostructure growth:
- Chemical Vapor Deposition (CVD)
- Molecular beam epitaxy (MBE)
Solution
Injection
Carrier
Gas
Evaporator
Gas
Inlet
Low Pressure Reactor
Substrate
IR Heating
Vent
Precursor
Product
Schematic of one of many CVD setups
E.g. for silicon layer growth on silicon wafer with dopants: SiCl4 + 2H2  Si + 4HCl
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Heteroepitaxial Crystal Growth Modes
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
Wetting: γ1  γ2 + γ12
Δ γ ≡ γ2 + γ12 −γ1  0
“Poor wetting” γ1  γ2 + γ12
Three Growth Modes for Heteroepitaxial Growth:
• Frank-van der Merwe (FM) (“layer-by-layer” growth)
• Volmer-Weber (VW) (“island” growth), and
• Stranski-Krastanow (SK) (combined “layer-by-layer and island” growth)
Surface Energies:
γ1 … substrate
γ2 … epilayer
γ12 ... interfacial energy
FM
Δ γ ≡ γ2 + γ12 −γ1  0 dominating interaction
VW,
SK
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Epilayer (Film) Growth
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
Chemical Energy of nth monolayer:
( ) ( )
[ ] γ
μ
γ
γ
γ
μ
μ
μ
μ Δ
+
=
−
+
+
=
+
= ∞
∞
Σ
∞
2
1
12
2
2
a
n
a
n
∞
μ
γ
μ Δ
=
Σ
2
a surface chemical potential,
bulk chemical potential of the adsorbate material
a … area occupied by an atom
( ) 1
12
2 γ
γ
γ
γ −
+
=
Δ n
( )
⎩
⎨
⎧

≤
−
=
Δ
≡
Δ ∞
growth
VM
growth
FM
;
;
n
a
0
0
2
μ
μ
γ
μ
⎩
⎨
⎧

≤
growth
VM
growth
FM
;
;
0
0
equivalent to the chemical potential difference of the nth layer and bulk
 Surface energy increases for FM growth (and vice versa)
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Epilayer Pseudomorphic Growth
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
Chemical Energy of nth monolayer with interfacial stress:
thickness dependent interfacial stress or difference
( ) ( )
[ ] *
*
*
a
n
a
E
n γ
μ
γ
γ
γ
μ
μ
μ Δ
+
=
−
+
+
=
Δ
+
= ∞
∞
∞
2
1
12
2
2
( )
n
*
12
γ
*
γ
Δ
( )
( )
( ) ( )
⎩
⎨
⎧
+
−
≈
−
=
Δ ∞
n
n
n
'
n
E
e
d
des
des
*
ε
ε
ϕ
ϕ
μ
μ
desorption energy of an adsorbate atom from a wetting layer of the same material
the desorption energy of an adsorbate atom from the substrate
 ΔE*, “adhesion energy between misfitting crystals”
des
ϕ
des
'
ϕ
εd
εe
the per atom misfit dislocation energy
the atom homogeneous strain energy,εe
heteroepitaxial
homoepitaxial
( ) ( ) ( ) ( )
[ ]
n
n
n
'
n
a
E e
d
des
des
*
*
ε
ε
ϕ
ϕ
μ
μ
γ +
+
−
=
−
=
Δ
=
Δ ∞
2
René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010
Chemical Potential and Growth Modes
Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth
1 2 3 4 5 6 7 8 9 10
VM
Growth Modes:
SK
FM
( ) ∞
−
=
Δ μ
μ
μ n
number of monolayers
0
des
des
' ϕ
ϕ 
I. Adhesive forces exceed cohesive forces
and weak interfacial mismatch:
 Frank-van der Merwe Growth (FM)
(Layer-by-layer growth:
chemical potential increases with
increasing layer number)
for larger mismatch
 Stranski-Krastanov Growth (SK)
(three growth regimes  Combined
layer-by-layer and island” growth)
II. Cohesive forces exceed adhesive forces
 Volmer-Weber Growth (VM); i.e., decreasing chemical
portential with layer number  Island growth
des
des
' ϕ
ϕ 
ΔE*

More Related Content

Similar to Lecture4-Overney-NanoParticle-Synthesis.pdf

METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUETMETAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUETA. S. M. Jannatul Islam
 
Parameters affecting synthsis of ZnO nanoparticles
Parameters affecting synthsis of ZnO nanoparticlesParameters affecting synthsis of ZnO nanoparticles
Parameters affecting synthsis of ZnO nanoparticlesMariamJutt1
 
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDI
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDISergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDI
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDICentro Studi Galileo
 
M O C V Dmaterialgrowth
M O C V DmaterialgrowthM O C V Dmaterialgrowth
M O C V DmaterialgrowthNida Amber
 
Synthesis of Nio Nanoparticles by Diffusion Flame Reactor
Synthesis of Nio Nanoparticles by Diffusion Flame ReactorSynthesis of Nio Nanoparticles by Diffusion Flame Reactor
Synthesis of Nio Nanoparticles by Diffusion Flame ReactorIJERA Editor
 
Module 6
Module 6Module 6
Module 6irrzag
 
Lecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfLecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfSelvaBabu2
 
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxNANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxmonishasarai25
 
INERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxINERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxBhargavPanchal20
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxyonasemiru2
 
Enhancement of rate of heat transfer using nano fluids
Enhancement of rate of heat transfer using nano fluidsEnhancement of rate of heat transfer using nano fluids
Enhancement of rate of heat transfer using nano fluidsSharathKumar528
 
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...Gasification Performance Improvement of Treated SRF Residue by Using Minerals...
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...Md Tanvir Alam
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxSriharsha203438
 
Mocv Dmaterialgrowth
Mocv DmaterialgrowthMocv Dmaterialgrowth
Mocv Dmaterialgrowthguestda8318
 
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET Journal
 

Similar to Lecture4-Overney-NanoParticle-Synthesis.pdf (20)

METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUETMETAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
METAL ORGANIC CHEMICAL VAPOR DEPOSITION- MOCVD--ABU SYED KUET
 
Parameters affecting synthsis of ZnO nanoparticles
Parameters affecting synthsis of ZnO nanoparticlesParameters affecting synthsis of ZnO nanoparticles
Parameters affecting synthsis of ZnO nanoparticles
 
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDI
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDISergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDI
Sergio Bobbo - CNR DI PADOVA - APPLICAZIONI DEI NANOFLUIDI
 
Naotechs in refrigeration
Naotechs in refrigerationNaotechs in refrigeration
Naotechs in refrigeration
 
M O C V Dmaterialgrowth
M O C V DmaterialgrowthM O C V Dmaterialgrowth
M O C V Dmaterialgrowth
 
sd
sdsd
sd
 
Synthesis of Nio Nanoparticles by Diffusion Flame Reactor
Synthesis of Nio Nanoparticles by Diffusion Flame ReactorSynthesis of Nio Nanoparticles by Diffusion Flame Reactor
Synthesis of Nio Nanoparticles by Diffusion Flame Reactor
 
Module 6
Module 6Module 6
Module 6
 
F0343042051
F0343042051F0343042051
F0343042051
 
Lecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdfLecture12_Various Fabrication Techniques1.pdf
Lecture12_Various Fabrication Techniques1.pdf
 
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptxNANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
NANOTECHNO;OGY (1)NANOTECHNO;OGY (1).pptx
 
INERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptxINERT GAS CONDENSATION.pptx
INERT GAS CONDENSATION.pptx
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
 
WP1.3 – Transient fluid dynamics of CO2 mixtures in pipelines - Alexandre Mor...
WP1.3 – Transient fluid dynamics of CO2 mixtures in pipelines - Alexandre Mor...WP1.3 – Transient fluid dynamics of CO2 mixtures in pipelines - Alexandre Mor...
WP1.3 – Transient fluid dynamics of CO2 mixtures in pipelines - Alexandre Mor...
 
Understanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic InterfaceUnderstanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic Interface
 
Enhancement of rate of heat transfer using nano fluids
Enhancement of rate of heat transfer using nano fluidsEnhancement of rate of heat transfer using nano fluids
Enhancement of rate of heat transfer using nano fluids
 
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...Gasification Performance Improvement of Treated SRF Residue by Using Minerals...
Gasification Performance Improvement of Treated SRF Residue by Using Minerals...
 
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptxNANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
NANO TECHNOLOGY-UNIT-4-AP-PPT (1).pptx
 
Mocv Dmaterialgrowth
Mocv DmaterialgrowthMocv Dmaterialgrowth
Mocv Dmaterialgrowth
 
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
 

More from SelvaBabu2

TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1
TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1
TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1SelvaBabu2
 
TQM_TAGUCHI.ppt Total Quality Management
TQM_TAGUCHI.ppt Total Quality ManagementTQM_TAGUCHI.ppt Total Quality Management
TQM_TAGUCHI.ppt Total Quality ManagementSelvaBabu2
 
Unit_3_Machine Design.pdf useful for students
Unit_3_Machine Design.pdf useful for studentsUnit_3_Machine Design.pdf useful for students
Unit_3_Machine Design.pdf useful for studentsSelvaBabu2
 
Unit_1_Machine Design.pdf useful for stu
Unit_1_Machine Design.pdf useful for stuUnit_1_Machine Design.pdf useful for stu
Unit_1_Machine Design.pdf useful for stuSelvaBabu2
 
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHARE
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHAREDESIGN OF MACHINE ELEMENTS NOTES.PDF SHARE
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHARESelvaBabu2
 
surface texture parameters 3d parameters
surface texture parameters 3d parameterssurface texture parameters 3d parameters
surface texture parameters 3d parametersSelvaBabu2
 
Pahl and Beitz model systematic approach to conceptual engineering
Pahl and Beitz model systematic approach to conceptual engineeringPahl and Beitz model systematic approach to conceptual engineering
Pahl and Beitz model systematic approach to conceptual engineeringSelvaBabu2
 
Design for Manual Assembly Lecture Rev 4.pdf
Design for Manual Assembly Lecture Rev 4.pdfDesign for Manual Assembly Lecture Rev 4.pdf
Design for Manual Assembly Lecture Rev 4.pdfSelvaBabu2
 

More from SelvaBabu2 (8)

TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1
TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1
TQM UNIT-V.ppt TOTAL QUALITY MANAGEMENT1
 
TQM_TAGUCHI.ppt Total Quality Management
TQM_TAGUCHI.ppt Total Quality ManagementTQM_TAGUCHI.ppt Total Quality Management
TQM_TAGUCHI.ppt Total Quality Management
 
Unit_3_Machine Design.pdf useful for students
Unit_3_Machine Design.pdf useful for studentsUnit_3_Machine Design.pdf useful for students
Unit_3_Machine Design.pdf useful for students
 
Unit_1_Machine Design.pdf useful for stu
Unit_1_Machine Design.pdf useful for stuUnit_1_Machine Design.pdf useful for stu
Unit_1_Machine Design.pdf useful for stu
 
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHARE
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHAREDESIGN OF MACHINE ELEMENTS NOTES.PDF SHARE
DESIGN OF MACHINE ELEMENTS NOTES.PDF SHARE
 
surface texture parameters 3d parameters
surface texture parameters 3d parameterssurface texture parameters 3d parameters
surface texture parameters 3d parameters
 
Pahl and Beitz model systematic approach to conceptual engineering
Pahl and Beitz model systematic approach to conceptual engineeringPahl and Beitz model systematic approach to conceptual engineering
Pahl and Beitz model systematic approach to conceptual engineering
 
Design for Manual Assembly Lecture Rev 4.pdf
Design for Manual Assembly Lecture Rev 4.pdfDesign for Manual Assembly Lecture Rev 4.pdf
Design for Manual Assembly Lecture Rev 4.pdf
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 

Lecture4-Overney-NanoParticle-Synthesis.pdf

  • 1. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Nanoparticle Synthesis via Attrition / Milling Involves mechanical thermal cycles Yields - broad size distribution (10-1000 nm) - varied particle shape or geometry - impurities Application: - Nanocomposites and - Nano-grained bulk materials Via - Pyrolysis - Inert gas condensation - Solvothermal Reaction - Sol-gel Fabrication - Structured Media Top-Down Bottom-Up
  • 2. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Bottom – Up Synthesis Phase Classification: I. Gas (Vapor) Phase Fabrication: Pyrolysis, Inert Gas Condensation, …. II. Liquid Phase Fabrication: Solvothermal Reaction, Sol-gel, Micellar Structured Media Part 1: Nanoparticle Synthesis
  • 3. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Bottom – Up Synthesis Part 1: Nanoparticle Synthesis Phase Classification: I. Gas (Vapor) Phase Fabrication: Pyrolysis, Inert Gas Condensation, …. II. Liquid Phase Fabrication: Solvothermal Reaction, Sol-gel, Micellar Structured Media
  • 4. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Homogeneous Condensation Part 1: Nanoparticle Synthesis E.E. Finney, R.G. Finke / J. Coll. Inter. Sci. 317 (2008) 351–374 Cluster free energy: ΔGV Driving Force: ΔGV Bulk free energy difference between old and new phase CS CL * CL Concentration: CL * … Solution in Equilibrium CL … Supersaturated Solution CS … Solid phase G, Gibbs Free Energy γ π π 2 3 4 3 4 r G r G v * + Δ − = Δ negative volume term positive surface term
  • 5. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Growth Steps and Limitations Part 1: Nanoparticle Synthesis • Steps – Generation of growth species (e.g., reduction from minerals) – Diffusion from bulk to the growth surface – Adsorption – Surface growth ( growth modes) 1 2 3 4 5 6 7 8 9 10 VM Growth Modes: SK FM ( ) ∞ − = Δ μ μ μ n 0 number of monolayers • Limitation – Diffusion-limited growth – Size-limited (Oswald ripening) – Transport-limited growth
  • 6. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Vapor Phase Growth Part 1: Nanoparticle Synthesis Growth rate of vapor condensation: Δp = pV – pe ξ... condensation coefficient (between 0 and 1) ANP ... surface area of condensate (nanoparticle NP) m .... mass of gas molecule kB .... Boltzmann constant, and T … absolute temperature Driving force: pressure difference Δp pV ….instantaneous vapor pressure Pe …. local equilibrium pressure at the growing cluster ; T mk p A R B NP π ξ 2 Δ = NP NP d A π 4 = Spherical NP: Flux from gas kinetic theory
  • 7. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Mechanism and Effectiveness Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis (i) precursor vaporization (typically involves a catalyst) (ii) nucleation, and (iii) growth stage Effectiveness demands: - simple process - low cost - continuous operation - high yield Aerosol Spray Methods (e.g., Spray Pyrolysis)
  • 8. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Vapor Phase Synthesis Methods Part 1: Nanoparticle Synthesis Discussed are: • Pyrolysis (Spray Pyrolysis) • Inert Gas Condensation (Chemical Vapor Deposition) inert gas inlet Tube Furnace (~500-1000 oC) HC Gas (CnHm) inert gas inlet Tube Furnace (~500-1000 oC) HC Gas (CnHm) Spray pyrolysis is the aerosol process that atomizes a solution and heats the droplets to produce solid particles
  • 9. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis F. Iskandar, Adv. Powder Techn. 20 (2009) 283 production of droplets and their dispersion into the gas can be use only as a dryer or also as a reactor solid particle growth within droplet
  • 10. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis F. Iskandar, Adv. Powder Techn. 20 (2009) 283 Atomizer Type Furnace Type Precipitator Type
  • 11. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis Droplet Evolution Evaporation Precipitation Drying Decomposition Sintering Messing et al, J. Am. Ceram. Soc., 1993 If the solute concentration at the center of the drop is less than the equilibrium saturation of the solute at the droplet temperature, then precipitation occurs only in that part of the drop where the concentration is higher than the equilibrium saturation, i.e., surface precipitation.
  • 12. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis Precipitation Control Che et al, J. Aer. Sci., 1998 Messing et al, J. Am. Ceram. Soc., 1993
  • 13. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis: Ga(NO3)3 and GaN Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis Goal: Fabricate GaO3 with - narrow size distribution, and - homogeneous composition Ga(NO3)3 + H2O and LiCl GaN nanoparticles of 23.4 I 1.7 nm diameter T. Ogi et al., Adv. Powder Technology 20 (2009) 29
  • 14. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Spray Pyrolysis: Porous Silica NP Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis F. Iskandar / Advanced Powder Technology 20 (2009) 283 Pyrolysis: Generate droplet mixtures of “Primary Particles” with Polymer Particles
  • 15. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Porous Silica NP Application: Colloidal Damper Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis Hydraulic Damper (oil is working fluid, energy is dissipated via orifice flow) Colloidal Damper Hydrophobized porous silica particle (outside and inside) suspended in water as the working fluid Advantage: Little heat generation in colloidal damper. C.V. Suciu et al., J. Coll. Interf. Sci., 259 (2003) 62.
  • 16. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Inert Gas Condensation (IGC) Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis F. Iskandar, Adv. Powder Techn. 20 (2009) 283 Entails the evaporation of a course substance in an inert gas atmosphere. Evaporation Sources Cold Finger Methods: - Physical Vapor Deposition (PVD) (no catalytic interaction) - Chemical Vapor Deposition (CVD) (with catalytic interaction) Catalytic Surface inert gas inlet Tube Furnace (~500-1000 oC) HC Gas (CnHm)
  • 17. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Coalescence and Agglomeration Part 1: Nanoparticle Synthesis – Vapor Phase Synthesis One of the big challenges in condensation growth is that the particles coalesce and agglomerate. A solution proposed: Use of a gas jet stream. A jet stream of carrier gas positioned above the evaporation sites is used to carry away the metal vapor. Utilize that carrier gas vapor mixture cools downstream Continuous Particle growth (nucleation, condensation and coagulation)
  • 18. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Liquid Phase Synthesis Methods Part 1: Nanoparticle Synthesis The liquid phase fabrication entails a wet chemistry route. Methods: • Solvothermal Methods (e.g. hydrothermal) • Sol-Gel Methods • Synthesis in Structure Media (e.g., microemulsion)
  • 19. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Mechanism and Effectiveness Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis (i) precursor solution (typically involves a catalyst) (ii) nucleation, and (iii) growth stage Effectiveness demands: - simple process - low cost - continuous operation - high yield Sol-Gel and Solvothermal Synthsis
  • 20. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Solvothermal Synthesis Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis • Precursors are dissolved in hot solvents (e.g., n-butyl alcohol) - Solvent other than water can provide milder and friendlier reaction conditions If the solvent is water then the process is referred to as hydrothermal method. Example: TiO2 Nanocrystallites Precursor: Titanium n-butoxide Precursor solution with butyl alcohol Autoclave X.F. Yang et al., Euro. J. Inorganic Chem., 2229 (2006).
  • 21. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Sol-Gel Processing Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis - Creation of Sol (solid particles in solution) - Followed by the following two generic sol-gel processes (assuming as a precursor a metal alkoxide MOR): hydrolysis: −MOR + H2O −MOH + ROH condensation: −MOH + ROM− −MOM− + ROH or −MOH + HOM− −MOM− + H2O Ex.: Si(OR)4 + 4 H2O → Si(OH)4 + 4 R-OH (OR)3–Si-OH + HO–Si-(OR)3 → [(OR)3Si–O–Si(OR)3] + H-O-H (OR)3–Si-OR + HO–Si-(OR)3 → [(OR)3Si–O–Si(OR)3] + R-OH Condensation towards network of siloxanes
  • 22. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Sol-Gel Steps: Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis • Formation of stable sol solution • Gelation via a polycondensation or polyesterification reaction • Gel aging into a solid mass. causes contraction of the gel network, also (i) phase transformations and (ii) Ostwald ripening. • Drying of the gel to remove liquid phases. Can lead to fundamental changes in the structure of the gel. • Dehydration at temperatures as high as 8000 oC, used to remove M-OH groups for stabilizing the gel, i.e., to protect it from rehydration. • Densification and decomposition of the gels at high temperatures (T 8000 oC), i.e., to collapse the pores in the gel network and to drive out remaining organic contaminants
  • 23. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Synthesis in Structured Medium Part 1: Nanoparticle Synthesis – Liquid Phase Synthesis Influence Growth Kinetics by Imposing Constraints in Form of Matrices: • Zeolites • Layered Solids • Molecular Sieves • Micelles/Microemulsions • Gels • Polymers • Glasses Ex.: Mixing of two Microemulsion carrying metal salt and reducing agent Intermicellar interchange process via coalescence (rate limiting) (much slower than diffusion: 10 μs and 1 ms I. Capek, Adv. Coll. Interf. Sci. 110 (2004) 49
  • 24. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 NP Systems: Unique Properties Part 1: Nanoparticle Synthesis Optics: Electronics: Catalysis: Drug Delivery: Sensors: Coatings: High- or low refractive index Unique density of state High reactivity Controlled delivery High sensitivity Increased material strength Ultralow and high adhesion High impact on composite and fluidic systems.
  • 25. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Nanofluids: High Thermal Conductivity Part 1: Nanoparticle Synthesis – Unique Properties Nanofluids: Nanoparticle suspension increase of conductivity k up to 60-70% Maxwell Model : ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + − + + = f p f p f p f p f nf k k k k k k k k k k φ φ 2 2 2 Such classical models cannot account for increased conductivity in nanofluids. kp , kp ….particle and fluid thermal conductivity, φ .…particle free volume fraction fluid le nanopartic k k f nf =
  • 26. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Nanofluids: High Thermal Conductivity Part 1: Nanoparticle Synthesis – Unique Properties Classical models cannot account for increased conductivity in nanofluids as they lack information about: • Particle size and surface energy • Particle dispersion and clustering • Brownian motion of the particles • Liquid layering (entropy reduction) • …. ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + = p f p B f nf r r d T k c k k φ φ πη 1 2 1 2 D.H. Kumar et al., Phys. Rev. Lett. 93 (2004) 4301) Dynamic Model (based on kinetic theory and Fourier’s Law) considers Brownian motion and particle size:
  • 27. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Nanofluids: Conduction Models Part 1: Nanoparticle Synthesis – Unique Properties Murshed argues: • Most of the recently developed models only include one or two postulated mechanisms of nanofluids heat transfer. • Moreover, these models were not validated with a wide range of experimental data. • There is, therefore a need to develop more comprehensive models, which are based on the first principle, and can explicitly explain the enhanced thermal conductivity of nanofluids. • Particles size, particle dispersions and clustering should be taken into account in the model development for nanofluids. S.M.S. Murshed et al. / Applied Thermal Engineering 28 (2008) 2109–2125
  • 28. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Strain in Nanoparticles Part 1: Nanoparticle Synthesis – Unique Properties High surface energy (tension) causes strain in the material Isotropic stress: σ = 1/3 P σ stress [GPa] ε strain [] E (Young’s Modulus) E σ ε = P Nearest Atom Distance γ…. Surface Tension, r …. Particle Radius P = 2γ/r …. Laplace Pressure Pressure caused by interfacial tension: r Er E P 1 3 2 3 1 ∝ = = γ ε
  • 29. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Bulk Crystal and Heterostructure Growth Part 1: Nanoparticle Synthesis Nanotechnology needs: Ultrahigh Quality and Purity E.g., Crystalline Silicon: impurity levels 0.1 ppb (1 in 1010) Three Step Process to obtain Polycrystalline Silicon: SiO2 + 2C Si + 2CO Si + 3HCl HSiCl3 + H2 + impurities HSiCl3 + H2 2Si + 6HCl additional reduction reactions with dry hydrochloric acid to drive out impurities final step: hydrogen conversion reaction of trichlorosilane using amorphous carbon electrodes in submerged arc furnace and carbon in the form of mineral carbon, petroleum coke, charcoal, wood-chips
  • 30. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Fabrication of Silicon in Nanoelectronics Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth Polycrystalline silicon conversion into single crystal Si ingots: - poly-Si crushed in a crucible in clean room and melted - Convective steams within the melt due to temperature gradients are suppressed by big magnetic fields. - Dopants added to the melt at this point. - A seed crystal is inserted and slowly withdrawn (mm/s) under rotational motion to assure homogeneity, - Via mechanical processes wafers are obtained from the single-crystal ingot. Czochralski method: Yields doped single crystal Si silicon melt seed Si crystal mm/s Source: http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/illustr/i6_1_1.html
  • 31. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Fabrication of Multilayered Crystals Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth Methods excellently suited for heterostructure growth: - Chemical Vapor Deposition (CVD) - Molecular beam epitaxy (MBE) Solution Injection Carrier Gas Evaporator Gas Inlet Low Pressure Reactor Substrate IR Heating Vent Precursor Product Schematic of one of many CVD setups E.g. for silicon layer growth on silicon wafer with dopants: SiCl4 + 2H2 Si + 4HCl
  • 32. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Heteroepitaxial Crystal Growth Modes Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth Wetting: γ1 γ2 + γ12 Δ γ ≡ γ2 + γ12 −γ1 0 “Poor wetting” γ1 γ2 + γ12 Three Growth Modes for Heteroepitaxial Growth: • Frank-van der Merwe (FM) (“layer-by-layer” growth) • Volmer-Weber (VW) (“island” growth), and • Stranski-Krastanow (SK) (combined “layer-by-layer and island” growth) Surface Energies: γ1 … substrate γ2 … epilayer γ12 ... interfacial energy FM Δ γ ≡ γ2 + γ12 −γ1 0 dominating interaction VW, SK
  • 33. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Epilayer (Film) Growth Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth Chemical Energy of nth monolayer: ( ) ( ) [ ] γ μ γ γ γ μ μ μ μ Δ + = − + + = + = ∞ ∞ Σ ∞ 2 1 12 2 2 a n a n ∞ μ γ μ Δ = Σ 2 a surface chemical potential, bulk chemical potential of the adsorbate material a … area occupied by an atom ( ) 1 12 2 γ γ γ γ − + = Δ n ( ) ⎩ ⎨ ⎧ ≤ − = Δ ≡ Δ ∞ growth VM growth FM ; ; n a 0 0 2 μ μ γ μ ⎩ ⎨ ⎧ ≤ growth VM growth FM ; ; 0 0 equivalent to the chemical potential difference of the nth layer and bulk Surface energy increases for FM growth (and vice versa)
  • 34. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Epilayer Pseudomorphic Growth Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth Chemical Energy of nth monolayer with interfacial stress: thickness dependent interfacial stress or difference ( ) ( ) [ ] * * * a n a E n γ μ γ γ γ μ μ μ Δ + = − + + = Δ + = ∞ ∞ ∞ 2 1 12 2 2 ( ) n * 12 γ * γ Δ ( ) ( ) ( ) ( ) ⎩ ⎨ ⎧ + − ≈ − = Δ ∞ n n n ' n E e d des des * ε ε ϕ ϕ μ μ desorption energy of an adsorbate atom from a wetting layer of the same material the desorption energy of an adsorbate atom from the substrate ΔE*, “adhesion energy between misfitting crystals” des ϕ des ' ϕ εd εe the per atom misfit dislocation energy the atom homogeneous strain energy,εe heteroepitaxial homoepitaxial ( ) ( ) ( ) ( ) [ ] n n n ' n a E e d des des * * ε ε ϕ ϕ μ μ γ + + − = − = Δ = Δ ∞ 2
  • 35. René Overney / UW Nanothermodynamics and Nanoparticle Synthesis NME 498A / A 2010 Chemical Potential and Growth Modes Part 1: Nanoparticle Synthesis – Bulk Crystal and Heterostructure Growth 1 2 3 4 5 6 7 8 9 10 VM Growth Modes: SK FM ( ) ∞ − = Δ μ μ μ n number of monolayers 0 des des ' ϕ ϕ I. Adhesive forces exceed cohesive forces and weak interfacial mismatch: Frank-van der Merwe Growth (FM) (Layer-by-layer growth: chemical potential increases with increasing layer number) for larger mismatch Stranski-Krastanov Growth (SK) (three growth regimes Combined layer-by-layer and island” growth) II. Cohesive forces exceed adhesive forces Volmer-Weber Growth (VM); i.e., decreasing chemical portential with layer number Island growth des des ' ϕ ϕ ΔE*