SlideShare a Scribd company logo
Identifying G, k, and ωn from Bode
• Directly measure ωr and |Mss|
10
0
10
1
10
2
-200
-150
-100
-50
Frequency [Hz]
Magnitude[dB]
|Mss|= G/m
r nω ω≈
2 2
2 2
2
( )
( ) 2 n n
A s s G m s G m
B kI s s s s s
m m
ζω ω
=
+ + + +
2
nk mω=
ssG m M=
Important:
Swept sine frequency response
Jonathan LeSage, TA
ME 144L – Dynamic Systems and
Controls Lab
Frequency Response Overview
• Frequency response vs. impulse response?
– Impulse response -> Beam setup in 144L
• No inputs, other than the initial deflection, x(0) = x0
• Second order system (homogeneous):
• Time domain (Transient plots)
– Frequency response -> Shaker (subwoofer)
• Sinusoidal input:
• Second order system (inhomogeneous):
• Frequency domain (Bode plots)
2
2 0n nx x xζω ω+ + = 
2
2 ( )n nx x x F tζω ω+ + = 
[ ]0( ) sin iF t A wt φ= +
System
Swept Sine Testing
• Directly measure magnitude response of system
– Input sinusoid at specified frequency
– Measure the magnitude response (output/input)
– Build magnitude frequency response chart
10
0
10
1
10
2
-200
-150
-100
-50
Frequency [Hz]
Magnitude[dB]
10
0
10
1
10
2
-280
-260
-240
-220
-200
-180
-160
-140
Frequency [Hz]
Magnitude[dB]
Yet another way to characterized/find parameters
for a dynamic system!
Shaker Dynamic Model
• Actuated second order system
( )mx bx kx F t+ + = 
( )mx bx kx Gi t+ + = 
( ) ( )V t Ri t Gx= +  (Apply KVL)
1
( ) ( )
G
i t V t x
R R
= − 
(Newton’s 2nd)
2
( )
G G
mx bx kx V t x
R R
+ += −  
2
( )
G G
mx b x kx V t
R R
 
+ + + = 
 
 
( )
G
mx Bx kx V t
R
+ + = 
Into the Laplace Domain
• Take Laplace transform
• Second order system form
• For simplicity, assume I(s) = V(s)/R where R = 2Ω
2
( )
( )
X s G mR
B kV s s s
m m
=
+ +
( )
G
mx Bx kx V t
R
+ + =  ( )
B k G
x x x V t
m m mR
+ + = 
2
( ) ( )
B k G
s s X s V s
m m mR
 
+ + =  
2 2
( )
( ) 2 n n
X s G mR
V s s sζω ω
=
+ +
2 2
( )
( ) 2 n n
X s G m
I s s sζω ω
=
+ +
2
2 2
( )
( ) 2 n n
A s s G m
I s s sζω ω
=
+ +
Lab Outline
• Build measurement VI
– Read two voltage signals with myDAQ. (Accelerometer voltage and shaker voltage)
– Add calibration equation to VI for accelerometer ( a(t) = 98.1*Vaccel(t) )
– Add equation to calculate I(t), ( I(t) = Vshaker(t)/2 )
– Compute RMS of both signals (“AC and DC Estimator.vi”) -> Magnitude
– Compute Gain ratio
• Swept sine testing
– Measure gain ratio from 10 Hz to 150 Hz (plot values in excel)
– Fill in peak detail if necessary
• System identification
– Using swept sine data, measure the resonance frequency
– Assume
– Compute the shaker stiffness (k), using mass of block + 240grams (armature mass)
– Compute shaker gyrator modulus
• Model fit VI to find damping coefficient
– Find viscous damping factor, B, by fitting data
n rω ω=
2
nk mω=
ssG m M=
2 2
2 2
2
( )
( ) 2 n n
A s s G m s G m
B kI s s s s s
m m
ζω ω
= =
+ + + +

More Related Content

What's hot

電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
Simen Li
 
Analysis of Electro-Mechanical System
Analysis of Electro-Mechanical SystemAnalysis of Electro-Mechanical System
Analysis of Electro-Mechanical System
COMSATS Abbottabad
 
Multirate modulation
Multirate modulationMultirate modulation
Multirate modulation
Khalid Ibrahim
 
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuenciaIngeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
SANTIAGO PABLO ALBERTO
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Amr E. Mohamed
 
Chapter 8 Root Locus Techniques
Chapter 8 Root Locus TechniquesChapter 8 Root Locus Techniques
Chapter 8 Root Locus Techniques
guesta0c38c3
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
Simen Li
 
Mathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in MatlabMathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in Matlab
COMSATS Abbottabad
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
Simen Li
 
Ayush exp 2
Ayush exp 2Ayush exp 2
Ayush exp 2
DivyanshuAgrey
 
Filter design1
Filter design1Filter design1
Filter design1
Mohamad Ariffin Mutalib
 
Csl9 4 f15
Csl9 4 f15Csl9 4 f15
Csl9 4 f15
kodam2512
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Simen Li
 
Introduction to neural networks
Introduction to neural networks Introduction to neural networks
Introduction to neural networks
Ahmad Hammoudeh
 
Filter design and simulation
Filter design and simulationFilter design and simulation
Filter design and simulation
Sandesh Agrawal
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
Simen Li
 
Fourier3
Fourier3Fourier3
Fourier3
bubud75
 
Applications laplace transform
Applications laplace transformApplications laplace transform
Applications laplace transform
Muhammad Fadli
 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Syed Ali Raza Rizvi
 

What's hot (20)

電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
Analysis of Electro-Mechanical System
Analysis of Electro-Mechanical SystemAnalysis of Electro-Mechanical System
Analysis of Electro-Mechanical System
 
Multirate modulation
Multirate modulationMultirate modulation
Multirate modulation
 
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuenciaIngeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
 
Chapter 8 Root Locus Techniques
Chapter 8 Root Locus TechniquesChapter 8 Root Locus Techniques
Chapter 8 Root Locus Techniques
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Mathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in MatlabMathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in Matlab
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
Ayush exp 2
Ayush exp 2Ayush exp 2
Ayush exp 2
 
Filter design1
Filter design1Filter design1
Filter design1
 
Csl9 4 f15
Csl9 4 f15Csl9 4 f15
Csl9 4 f15
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Introduction to neural networks
Introduction to neural networks Introduction to neural networks
Introduction to neural networks
 
Filter design and simulation
Filter design and simulationFilter design and simulation
Filter design and simulation
 
電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法電路學 - [第二章] 電路分析方法
電路學 - [第二章] 電路分析方法
 
Fourier3
Fourier3Fourier3
Fourier3
 
Applications laplace transform
Applications laplace transformApplications laplace transform
Applications laplace transform
 
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systemsLecture 14 15-time_domain_analysis_of_2nd_order_systems
Lecture 14 15-time_domain_analysis_of_2nd_order_systems
 

Similar to Lab 5

Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
Israel Gbati
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
Simen Li
 
signals and systems_isooperations.pptx
signals and   systems_isooperations.pptxsignals and   systems_isooperations.pptx
signals and systems_isooperations.pptx
MrFanatic1
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
Simen Li
 
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEYEC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
VISHNUPRABHANKAIMAL
 
Ph ddefence
Ph ddefencePh ddefence
Chapter 2
Chapter 2Chapter 2
Chapter 2
wafaa_A7
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
wafaa_A7
 
Multiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisMultiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response Analysis
VijayalaxmiKumbhar
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
s2021677
 
Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)
Mario Faragalla
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
IbrahimKhawaji3
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Stefan Oprea
 
Control chap10
Control chap10Control chap10
Control chap10
Mohd Ashraf Shabarshah
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
Csl3 19 j15
Csl3 19 j15Csl3 19 j15
Csl3 19 j15
kodam2512
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
PatrickMumba7
 

Similar to Lab 5 (20)

Digital signal processing on arm new
Digital signal processing on arm newDigital signal processing on arm new
Digital signal processing on arm new
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
signals and systems_isooperations.pptx
signals and   systems_isooperations.pptxsignals and   systems_isooperations.pptx
signals and systems_isooperations.pptx
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEYEC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
EC202 SIGNALS & SYSTEMS PREVIOUS ANSWER KEY
 
Ph ddefence
Ph ddefencePh ddefence
Ph ddefence
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Multiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response AnalysisMultiple Choice Questions on Frequency Response Analysis
Multiple Choice Questions on Frequency Response Analysis
 
Time-Response Lecture
Time-Response LectureTime-Response Lecture
Time-Response Lecture
 
Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)Opto-Mechanical accelerometer sensor (FBG)
Opto-Mechanical accelerometer sensor (FBG)
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.pptQuadrature Amplitude Modulation. QAM Transmitter.ppt
Quadrature Amplitude Modulation. QAM Transmitter.ppt
 
Control chap10
Control chap10Control chap10
Control chap10
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Csl3 19 j15
Csl3 19 j15Csl3 19 j15
Csl3 19 j15
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
 

Lab 5

  • 1. Identifying G, k, and ωn from Bode • Directly measure ωr and |Mss| 10 0 10 1 10 2 -200 -150 -100 -50 Frequency [Hz] Magnitude[dB] |Mss|= G/m r nω ω≈ 2 2 2 2 2 ( ) ( ) 2 n n A s s G m s G m B kI s s s s s m m ζω ω = + + + + 2 nk mω= ssG m M= Important:
  • 2. Swept sine frequency response Jonathan LeSage, TA ME 144L – Dynamic Systems and Controls Lab
  • 3. Frequency Response Overview • Frequency response vs. impulse response? – Impulse response -> Beam setup in 144L • No inputs, other than the initial deflection, x(0) = x0 • Second order system (homogeneous): • Time domain (Transient plots) – Frequency response -> Shaker (subwoofer) • Sinusoidal input: • Second order system (inhomogeneous): • Frequency domain (Bode plots) 2 2 0n nx x xζω ω+ + =  2 2 ( )n nx x x F tζω ω+ + =  [ ]0( ) sin iF t A wt φ= + System
  • 4. Swept Sine Testing • Directly measure magnitude response of system – Input sinusoid at specified frequency – Measure the magnitude response (output/input) – Build magnitude frequency response chart 10 0 10 1 10 2 -200 -150 -100 -50 Frequency [Hz] Magnitude[dB] 10 0 10 1 10 2 -280 -260 -240 -220 -200 -180 -160 -140 Frequency [Hz] Magnitude[dB] Yet another way to characterized/find parameters for a dynamic system!
  • 5. Shaker Dynamic Model • Actuated second order system ( )mx bx kx F t+ + =  ( )mx bx kx Gi t+ + =  ( ) ( )V t Ri t Gx= +  (Apply KVL) 1 ( ) ( ) G i t V t x R R = −  (Newton’s 2nd) 2 ( ) G G mx bx kx V t x R R + += −   2 ( ) G G mx b x kx V t R R   + + + =      ( ) G mx Bx kx V t R + + = 
  • 6. Into the Laplace Domain • Take Laplace transform • Second order system form • For simplicity, assume I(s) = V(s)/R where R = 2Ω 2 ( ) ( ) X s G mR B kV s s s m m = + + ( ) G mx Bx kx V t R + + =  ( ) B k G x x x V t m m mR + + =  2 ( ) ( ) B k G s s X s V s m m mR   + + =   2 2 ( ) ( ) 2 n n X s G mR V s s sζω ω = + + 2 2 ( ) ( ) 2 n n X s G m I s s sζω ω = + + 2 2 2 ( ) ( ) 2 n n A s s G m I s s sζω ω = + +
  • 7. Lab Outline • Build measurement VI – Read two voltage signals with myDAQ. (Accelerometer voltage and shaker voltage) – Add calibration equation to VI for accelerometer ( a(t) = 98.1*Vaccel(t) ) – Add equation to calculate I(t), ( I(t) = Vshaker(t)/2 ) – Compute RMS of both signals (“AC and DC Estimator.vi”) -> Magnitude – Compute Gain ratio • Swept sine testing – Measure gain ratio from 10 Hz to 150 Hz (plot values in excel) – Fill in peak detail if necessary • System identification – Using swept sine data, measure the resonance frequency – Assume – Compute the shaker stiffness (k), using mass of block + 240grams (armature mass) – Compute shaker gyrator modulus • Model fit VI to find damping coefficient – Find viscous damping factor, B, by fitting data n rω ω= 2 nk mω= ssG m M= 2 2 2 2 2 ( ) ( ) 2 n n A s s G m s G m B kI s s s s s m m ζω ω = = + + + +