SlideShare a Scribd company logo
Survival Outcomes in Patients with
Esophageal Cancer after Complete
Esophagogastrectomies
Kshivets Oleg, MD, PhD
Surgery Department, Roshal Hospital,
Roshal, Moscow, Russia
• Survival Outcomes in Patients with Esophageal Cancer after
• Complete Esophagogastrectomies
• Kshivets Oleg Surgery Department, Roshal Hospital
• Roshal, Moscow, Russia
• OBJECTIVE: Survival outcomes of radical surgery in esophageal cancer (EC) patients (ECP)
• (T1-4N0-2M0) were analyzed.
• METHODS: We analyzed data of 543 consecutive ECP (age=56.4±8.8 years; tumor
• size=6±3.5 cm) radically operated (R0) and monitored in 1975-2018 (m=405, f=138;
• esophagogastrectomies (EG) Garlock=280, EG Lewis=263, combined EG with resection of pancreas, liver, diaphragm, aorta, VCS,
colon transversum, lung, trachea, pericardium, splenectomy=151; adenocarcinoma=308, squamous=225, mix=10; T1=126, T2=114,
T3=178, T4=125; N0=275, N1=69, N2=199; G1=157, G2=139, G3=247; early EC=107, invasive=436; only surgery=420, adjuvant
chemoimmunoradiotherapy-AT=123: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling, clustering, SEPATH,
Monte Carlo, bootstrap and neural networks computing were used to determine any significant dependence.
• RESULTS: Overall life span (LS) was 1892.4±2241 days and cumulative 5-year survival (5YS) reached 51.9%, 10 years – 45.7%, 20
years – 33.5%. 183 ECP lived more than 5 years (LS=4311±2419.7 days), 98 ECP – more than 10 years (LS=5903.4±2299.4 days). 224
ECP died because of EC (LS=629.2±320.1 days). AT significantly improved 5YS (68.2% vs. 48.5%) (P=0.00033 by log-rank test). Cox
modeling displayed that 5YS of ECP significantly depended on: phase transition (PT) N0—N12 in terms of synergetics, cell ratio
factors (ratio between cancer cells- CC and blood cells subpopulations), T, G, histology, age, AT, localization, blood cells, prothrombin
index, coagulation time, residual nitrogen, blood group, Rh, glucose, protein (P=0.000-0.008). Neural networks, genetic algorithm
selection and bootstrap simulation revealed relationships between 5YS and healthy cells/CC (rank=1), PT early-invasive EC (rank=2),
PT N0—N12 (rank=3), erythrocytes/CC (4), thrombocytes/CC (5), stick neutrophils/CC (6), lymphocytes/CC (7), segmented
neutrophils/CC (8), eosinophils/CC (9), leucocytes/CC (10), monocytes/CC (11). Correct prediction of 5YS was 100% by neural
networks computing (area under ROC curve=1.0; error=0.0).
• CONCLUSIONS: Survival outcomes after radical procedures significantly depended on: 1) PT “early-invasive cancer”; 2) PT N0--N12;
3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT; 8) EC characteristics; 9) tumor
localization; 10) anthropometric data. Optimal diagnosis and treatment strategies for EC are: 1) screening and early detection of EC;
2) availability of experienced thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block
surgery and adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for
ECP with unfavorable prognosis.
Data:
• Males………………………………………………………………….405
• Females………..……………………………..................................138
• Age=56.4±8.8 years
• Tumor Size=6±3.5 cm
• Only Surgery.………………………………..................................420
• Adjuvant Chemoimmunoradiotherapy (5FU+thymalin/taktivin,
• 5-6 cycles + Radiotherapy 45-50Gy)…………………………….123
Radical Procedures:
• Esophagogastrectomies Lewis (R0)……………….……..…....…263
• Esophagogastrectomies Garlock (R0)……….............................280
• Combined Esophagogastrectomies with Resection of Pancreas,
Liver, Trachea, Lung, Aorta, Vena Cava Superior, Colon
Transversum, Diaphragm, Pericardium, Splenectomy (R0)…..151
• 2-Field Lymphadenectomy…….…………………………………....374
• 3-Field Lymphadenectomy.……………………………….…...……169
Staging:
• T1……..126 N0..……275 G1…………157
• T2……..114 N1…........69 G2…………139
• T3……..178 N2…......199 G3…………247
• T4……..125 M0……...543
• Adenocarcinoma………………………………………………..……..308
• Squamous Cell Carcinoma…………………………………………..225
• Mix………………….....…………………………………………..............10
• Early Cancer……………………………...……………………………..107
• Invasive Cancer…………………………..………………………..…...436
Survival Rate:
• Alive……………………………………..............................................284 (52.3%)
• 5-Year Survivors………………………………………………............183 (33.7%)
• 10-Year Survivors………………………............................................98 (18%)
• Losses……………………..…………………………………………….224 (41.3%)
• General Life Span=1892.4±2241 days
• For 5-Year Survivors=4311±2419.7 days
• For 10-Year Survivors=5903.4±2299.4 days
• For Losses=629.2±320.1 days
• Cumulative 5-Year Survival……………………………………………...….51.9%
• Cumulative 10-Year Survival………………………………………………..45.7%
• Cumulative 20-Year Survival………………………………………………...33.5%
General Esophageal Cancer Patients Survival after Complete
Esophagogastrectomies (Kaplan-Meier) (n=543):
Survival Function
General Esophageal Cancer Patients Survival, n=543
5-Year Survival=51.9%; 10-Year Survival=45.7%; 20-Year Survival=33.5%
Complete Censored
-5 0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CumulativeProportionSurviving
Results of Univariate Analysis of Phase Transition Early—
Invasive Cancer in Prediction of Esophageal Cancer Patients
Survival (n=543):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of Early ECP=100; 5-Year Survival of Invasive ECP=38.5%,
P=0.00000 by Log-Rank Test
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CumulativeProportionSurviving
Invasive ECP, n=436
Early ECP, n=107
Results of Univariate Analysis of Phase Transition N0—N1-2
in Prediction of Esophageal Cancer Patients Survival (n=543):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of ECP with N0=73.9%; 5-Year Survival of ECP with N1-2=27.5%
P=0.00000 by Log-Rank Test
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CumulativeProportionSurviving
ECP with N1-2, n=268
ECP with N0, n=275
Results of Univariate Analysis of Adjuvant
ChemoimmunoradioTherapy in Prediction of Esophageal
Cancer Patients Survival (n=543):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of ECP after Adjuvant Treatment=68.2%;
5-Year Survival of ECP after Surgery alone=48.5%;
P=0.00033 by Log-Rank Test
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CumulativeProportionSurviving
Adjuvant Chemoimmunoradiotherapy, n=123
Only Surgery, n=420
Results of Univariate Analysis of localization (upper/3 vs.
middle/3 & lower/3) in Prediction of Esophageal Cancer
Patients Survival (n=543):
Cumulative Proportion Surviving (Kaplan-Meier)
5-Year Survival of ECP of Upper/3=64.7%; 5-Year Survival of Others ECP=49.2%;
P=0.00323 by Log Rank Test
Complete Censored
0 5 10 15 20 25 30 35 40
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
CumulativeProportionSurviving
Uper/3 ECP, n=80
Others ECP, n=463
Results of Cox Regression Modeling in Prediction of
Esophageal Cancer Patients Survival after Complete
Esophagogastrectomies (n=543):
Cox Proportional Hazards Results;
ECP=543;
Factors:
Parameter
Estimate
Standard
Error
Chi-square P value
95%
Lower CL
95%
Upper CL
Hazard
Ratio
95%
Hazard
Ratio
Lower CL
95%
Hazard
Ratio
Upper CL
Blood Group 0.23476 0.073446 10.21678 0.001392 0.09081 0.378711 1.264605 1.095060 1.460401
Rh-Factor -0.54240 0.179819 9.09838 0.002558 -0.89483 -0.189958 0.581353 0.408675 0.826993
Hemorrhage Blood 0.00144 0.000421 11.77796 0.000599 0.00062 0.002268 1.001445 1.000619 1.002271
Glucose -0.23830 0.083967 8.05437 0.004539 -0.40287 -0.073728 0.787965 0.668396 0.928924
Residual Nitrogen 0.05252 0.011743 20.00367 0.000008 0.02951 0.075537 1.053925 1.029945 1.078463
Protein 0.02684 0.008990 8.91663 0.002826 0.00922 0.044464 1.027208 1.009267 1.045467
Prothrombin Index 0.02029 0.006681 9.22243 0.002391 0.00719 0.033384 1.020497 1.007221 1.033948
T1-4 0.40732 0.095442 18.21334 0.000020 0.22026 0.594382 1.502783 1.246396 1.811911
N0---N12 0.70052 0.165865 17.83760 0.000024 0.37543 1.025613 2.014807 1.455623 2.788804
Age 0.03072 0.007906 15.10444 0.000102 0.01523 0.046219 1.031201 1.015346 1.047304
Histology -0.34704 0.131313 6.98449 0.008222 -0.60440 -0.089668 0.706780 0.546400 0.914235
G1-3 0.39807 0.089616 19.73142 0.000009 0.22243 0.573719 1.488955 1.249109 1.774855
Adjuvant Chemoimmunoradiotherapy -0.94293 0.202241 21.73792 0.000003 -1.33931 -0.546541 0.389487 0.262026 0.578949
Leucocytes tot -1.37250 0.359513 14.57453 0.000135 -2.07713 -0.667865 0.253473 0.125289 0.512802
Eosinophils tot 1.43485 0.369265 15.09867 0.000102 0.71111 2.158599 4.199029 2.036244 8.659002
Stick Neutrophils tot 1.39116 0.360961 14.85367 0.000116 0.68369 2.098628 4.019503 1.981172 8.154972
Segmented Neutrophils tot 1.39745 0.359085 15.14529 0.000100 0.69366 2.101242 4.044866 2.001016 8.176317
Lymphocytes tot 1.33711 0.361121 13.70979 0.000213 0.62933 2.044896 3.808030 1.876350 7.728351
Monocytes tot 1.32704 0.372737 12.67540 0.000370 0.59649 2.057588 3.769859 1.815728 7.827070
Segmented Neutrophils/Cancer Cells -0.14398 0.045351 10.07984 0.001499 -0.23287 -0.055097 0.865903 0.792258 0.946393
Llocalization: Upper/3 vs. Others -0.52502 0.193950 7.32779 0.006790 -0.90516 -0.144886 0.591543 0.404479 0.865121
Results of Discriminant Function Analysis in Prediction of
Esophageal Cancer Patients Survival after Complete
Esophagogastrectomies (n=407):
Discriminant Function Analysis Summary:
No. of vars in model=32; n=407
Wilks' Lambda: .39522 approx. F (32,374)=17.885 p<0.0000
Wilks'
Lambda
Partial
Lambda
F-remove
(1,374)
p-value Toler.
1-Toler.
(R-Sqr.)
Hemoglobin 0.405250 0.975248 9.492130.0022160.359799 0.640201
Erythrocytes 0.407808 0.969131 11.912960.0006210.024344 0.975657
Leucocytes 0.413786 0.955129 17.570300.0000350.000405 0.999595
Stick Neutrophils (%) 0.401817 0.983580 6.243450.0128940.081515 0.918486
Segmented Neutrophils (%) 0.412991 0.956969 16.817370.0000510.010315 0.989685
Lymphocytes (%) 0.404156 0.977887 8.457150.0038530.010516 0.989484
Hemorrhage Blood 0.404068 0.978100 8.373820.0040300.843012 0.156988
Residual Nitrogen 0.438737 0.900811 41.181470.0000000.742369 0.257631
Prothrombin Index 0.399773 0.988609 4.309160.0385900.836103 0.163898
Segmented Neutrophils (abs) 0.417926 0.945668 21.487700.0000050.000587 0.999413
Lymphocytes (abs) 0.407544 0.969759 11.662840.0007080.002901 0.997099
T1-4 0.436492 0.905444 39.056850.0000000.541731 0.458269
N0--N12 0.424456 0.931120 27.666640.0000000.704162 0.295838
Weight 0.407512 0.969834 11.633060.0007190.011910 0.988090
G1-3 0.407735 0.969303 11.844210.0006440.835999 0.164001
Tumor Growth 0.407466 0.969943 11.589550.0007350.653263 0.346737
Adjuvant Chemoimmunoradiotherapy 0.400524 0.986755 5.020140.0256410.911147 0.088853
Combined Procedures 0.405038 0.975759 9.291320.0024660.720317 0.279683
Erythrocytes (tot) 0.405575 0.974467 9.799760.0018830.008919 0.991081
Leucocytes (tot) 0.409886 0.964218 13.879260.0002250.000036 0.999964
Eosinophils (tot) 0.405589 0.974434 9.812550.0018700.010102 0.989898
Stick Neutrophils (tot) 0.400922 0.985776 5.396570.0207120.003166 0.996834
Segmented Neutrophils (tot) 0.411970 0.959341 15.850910.0000820.000068 0.999933
Lymphocytes (tot) 0.408867 0.966622 12.914500.0003700.000381 0.999619
Monocytes (tot) 0.407706 0.969373 11.816570.0006530.005423 0.994577
Leucocytes/Cancer Cells 0.401196 0.985102 5.656050.0178970.000009 0.999991
Eosinophils/Cancer Cells 0.401077 0.985396 5.542900.0190720.009880 0.990120
Stick Neutrophils/Cancer Cells 0.401480 0.984406 5.924400.0154000.008813 0.991187
Results of Neural Networks Computing in Prediction of
Esophageal Cancer Patients Survival after Complete
esophagogastrectomies (n=407):
Correct Classification Rate=100%
Error=0.000
Area under ROC Curve=1.000
Factors: Rank Sensitivity
Healthy Cells/Cancer Cells
Phase Transition Early---Invasive Cancer
Phase Transition N0---N12
Erythrocytes/Cancer Cells
Thrombocytes/Cancer Cells
Stick Neutrophils/Cancer Cells
Lymphocytes/Cancer Cells
Segmented Neutrophils/Cancer Cells
Eosinophils/Cancer Cells
Leucocytes/Cancer Cells
Monocytes/Cancer Cells
1
2
3
4
5
6
7
8
9
10
11
28794
20554
16562
8666
7464
7425
5836
5771
4024
3734
3230
Results of Bootstrap Simulation in Prediction of esophageal
Cancer Patients Survival after esophagogastrectomies (n=407):
Significant Factors
(Number of Samples=3333)
Rank Kendal
Tau-A
P
Tumor Size 1 -0.316 0.000
Healthy Cells/Cancer Cells 2 0.315 0.000
T1-4 3 -0.307 0.000
Erythrocytes/Cancer Cells 4 0.307 0.000
Leucocytes/Cancer Cells 5 0.298 0.000
Thrombocytes/Cancer Cells 6 0.293 0.000
Lymphocytes/Cancer Cells 7 0.289 0.000
Segmented Neutrophils/Cancer Cells 8 0.280 0.000
Residual Nitrogen 9 -0.277 0.000
Phase Transition N0---N12 10 -0.248 0.000
Monocytes/Cancer Cells 11 0.240 0.000
Hemorrhage Time 12 -0.233 0.000
Phase Transition Early---Invasive Cancer 13 -0.225 0.000
Procedure Type 14 -0.192 0.000
Eosinophils/Cancer Cells 15 0.163 0.000
Chlorides 16 0.163 0.000
G1-3 17 -0.140 0.000
Tumor Growth 18 -0.117 0.001
Stick Neutrophils/Cancer Cells 19 0.105 0.01
Erythrocytes 20 0.103 0.01
Weight 21 0.100 0.01
Combined Procedure 22 0.098 0.01
Localization 23 0.070 0.05
Results of Kohonen Self-Organizing Neural Networks
Computing in Prediction of esophageal Cancer Patients
Survival after Complete esophagogastrectomies (n=407):
Esophageal Cancer
Dynamics:
Prognostic Equation Models of Esophageal Cancer Patients
Survival after Complete Esophagogastrectomies (n=407):
Prognostic SEPATH-Model of Esophageal Cancer Patients
Survival after Complete Esophagogastrectomies (n=407):
5-YEAR SURVIVAL OF ESOPHAGEAL CANCER
PATIENTS AFTER RADICAL PROCEDURES
SIGNIFICANTLY DEPENDED ON:
1) PHASE TRANSITION “EARLY-INVASIVE
CANCER”;
2) PHASE TRANSITION N0--N12;
3) CELL RATIO FACTORS;
4) BLOOD CELL CIRCUIT;
5) BIOCHEMICAL FACTORS;
6) HEMOSTASIS SYSTEM;
7) ADJUVANT CHEMOIMMUNORADIOTHERAPY;
8) CANCER CHARACTERISTICS ;
9) TUMOR LOCALIZATION;
10) ANTHROPOMETRIC DATA.
Conclusion:
OPTIMAL DIAGNOSIS AND TREATMENT STRATEGIES FOR
ESOPHAGEAL CANCER ARE:
1) SCREENING AND EARLY DETECTION OF ESOPHAGEAL
CANCER;
2) AVAILABILITY OF EXPERIENCED THORACOABDOMINAL
SURGEONS BECAUSE OF COMPLEXITY OF RADICAL
PROCEDURES;
3) AGGRESSIVE EN BLOCK SURGERY AND ADEQUATE
LYMPH NODE DISSECTION FOR COMPLETENESS;
4) PRECISE PREDICTION;
5) ADJUVANT CHEMOIMMUNORADIOTHERAPY FOR
ESOPHAGEAL CANCER PATIENTS WITH UNFAVORABLE
PROGNOSIS.
Conclusion:
Address:
Oleg Kshivets, M.D., Ph.D.
Consultant Thoracic, Abdominal,
General Surgeon & Surgical Oncologist
• e-mail: okshivets@yahoo.com
• skype: okshivets
• http: //www.ctsnet.org/home/okshivets

More Related Content

What's hot

Kshivets astana wscts2017
Kshivets astana wscts2017Kshivets astana wscts2017
Kshivets astana wscts2017
Oleg Kshivets
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets
 
Kshivets milan2014
Kshivets milan2014Kshivets milan2014
Kshivets milan2014
Oleg Kshivets
 
Kshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer SurgeryKshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer Surgery
Oleg Kshivets
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
Oleg Kshivets
 
Kshivets iaslc denver2021
Kshivets iaslc denver2021Kshivets iaslc denver2021
Kshivets iaslc denver2021
Oleg Kshivets
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets
 
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Oleg Kshivets
 
Kshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljanaKshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljana
Oleg Kshivets
 
Kshivets barcelona2019
Kshivets barcelona2019Kshivets barcelona2019
Kshivets barcelona2019
Oleg Kshivets
 
Kshivets iaslc singapore2020
Kshivets iaslc singapore2020Kshivets iaslc singapore2020
Kshivets iaslc singapore2020
Oleg Kshivets
 
Kshivets O. Lung Cancer: Early Detection and Diagnosis
Kshivets O. Lung Cancer: Early Detection and Diagnosis Kshivets O. Lung Cancer: Early Detection and Diagnosis
Kshivets O. Lung Cancer: Early Detection and Diagnosis
Oleg Kshivets
 
Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017
Oleg Kshivets
 
Kshivets iaslc toronto2018
Kshivets iaslc toronto2018Kshivets iaslc toronto2018
Kshivets iaslc toronto2018
Oleg Kshivets
 
Kshivets iaslc denver2015
Kshivets iaslc denver2015Kshivets iaslc denver2015
Kshivets iaslc denver2015
Oleg Kshivets
 
Kshivets wscts2015
Kshivets wscts2015Kshivets wscts2015
Kshivets wscts2015
Oleg Kshivets
 
Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival
Oleg Kshivets
 
Kshivets IASLC 2019
Kshivets IASLC 2019Kshivets IASLC 2019
Kshivets IASLC 2019
Oleg Kshivets
 
Kshivets O. Lung Cancer Surgery: Prognosis
Kshivets O. Lung Cancer Surgery: PrognosisKshivets O. Lung Cancer Surgery: Prognosis
Kshivets O. Lung Cancer Surgery: Prognosis
Oleg Kshivets
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
Oleg Kshivets
 

What's hot (20)

Kshivets astana wscts2017
Kshivets astana wscts2017Kshivets astana wscts2017
Kshivets astana wscts2017
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
 
Kshivets milan2014
Kshivets milan2014Kshivets milan2014
Kshivets milan2014
 
Kshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer SurgeryKshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer Surgery
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
 
Kshivets iaslc denver2021
Kshivets iaslc denver2021Kshivets iaslc denver2021
Kshivets iaslc denver2021
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
 
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
Combined Esophagogastrectomies: Survival Outcomes in Patients with Local Adva...
 
Kshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljanaKshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljana
 
Kshivets barcelona2019
Kshivets barcelona2019Kshivets barcelona2019
Kshivets barcelona2019
 
Kshivets iaslc singapore2020
Kshivets iaslc singapore2020Kshivets iaslc singapore2020
Kshivets iaslc singapore2020
 
Kshivets O. Lung Cancer: Early Detection and Diagnosis
Kshivets O. Lung Cancer: Early Detection and Diagnosis Kshivets O. Lung Cancer: Early Detection and Diagnosis
Kshivets O. Lung Cancer: Early Detection and Diagnosis
 
Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017
 
Kshivets iaslc toronto2018
Kshivets iaslc toronto2018Kshivets iaslc toronto2018
Kshivets iaslc toronto2018
 
Kshivets iaslc denver2015
Kshivets iaslc denver2015Kshivets iaslc denver2015
Kshivets iaslc denver2015
 
Kshivets wscts2015
Kshivets wscts2015Kshivets wscts2015
Kshivets wscts2015
 
Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival
 
Kshivets IASLC 2019
Kshivets IASLC 2019Kshivets IASLC 2019
Kshivets IASLC 2019
 
Kshivets O. Lung Cancer Surgery: Prognosis
Kshivets O. Lung Cancer Surgery: PrognosisKshivets O. Lung Cancer Surgery: Prognosis
Kshivets O. Lung Cancer Surgery: Prognosis
 
Kshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer SurgeryKshivets O. Lung Cancer Surgery
Kshivets O. Lung Cancer Surgery
 

Similar to Kshivets eacts milan2018

Kshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdfKshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdf
Oleg Kshivets
 
Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction
Oleg Kshivets
 
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Oleg Kshivets
 
Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018
Oleg Kshivets
 
Kshivets ny2021aats
Kshivets ny2021aatsKshivets ny2021aats
Kshivets ny2021aats
Oleg Kshivets
 
Kshivets esmo2021
Kshivets esmo2021Kshivets esmo2021
Kshivets esmo2021
Oleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
Oleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
Oleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
Oleg Kshivets
 
Kshivets barcelona2017
Kshivets barcelona2017Kshivets barcelona2017
Kshivets barcelona2017
Oleg Kshivets
 
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
Kshivets Oleg  Optimization of Management for Esophageal Cancer Patients (T1-...Kshivets Oleg  Optimization of Management for Esophageal Cancer Patients (T1-...
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
Oleg Kshivets
 
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer SurgeryKshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
Oleg Kshivets
 
Kshivets barcelona2020
Kshivets barcelona2020Kshivets barcelona2020
Kshivets barcelona2020
Oleg Kshivets
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Oleg Kshivets
 
Kshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdfKshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdf
Oleg Kshivets
 
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Oleg Kshivets
 
Kshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse SurgeryKshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse Surgery
Oleg Kshivets
 
Kshivets O. Local Advanced Lung Cancer Surgery
Kshivets O. Local Advanced Lung Cancer Surgery Kshivets O. Local Advanced Lung Cancer Surgery
Kshivets O. Local Advanced Lung Cancer Surgery
Oleg Kshivets
 
• Gastric cancer prognosis and cell ratio factors
•	Gastric cancer prognosis and cell ratio factors           •	Gastric cancer prognosis and cell ratio factors
• Gastric cancer prognosis and cell ratio factors
Oleg Kshivets
 
Lung Cancer: Precise Prediction
Lung Cancer: Precise PredictionLung Cancer: Precise Prediction
Lung Cancer: Precise Prediction
Oleg Kshivets
 

Similar to Kshivets eacts milan2018 (20)

Kshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdfKshivets_SPB_WSCTS2022Eso.pdf
Kshivets_SPB_WSCTS2022Eso.pdf
 
Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction
 
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analy...
 
Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018
 
Kshivets ny2021aats
Kshivets ny2021aatsKshivets ny2021aats
Kshivets ny2021aats
 
Kshivets esmo2021
Kshivets esmo2021Kshivets esmo2021
Kshivets esmo2021
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
Kshivets barcelona2017
Kshivets barcelona2017Kshivets barcelona2017
Kshivets barcelona2017
 
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
Kshivets Oleg  Optimization of Management for Esophageal Cancer Patients (T1-...Kshivets Oleg  Optimization of Management for Esophageal Cancer Patients (T1-...
Kshivets Oleg Optimization of Management for Esophageal Cancer Patients (T1-...
 
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer SurgeryKshivets O. Esophageal and Cardioesophageal Cancer Surgery
Kshivets O. Esophageal and Cardioesophageal Cancer Surgery
 
Kshivets barcelona2020
Kshivets barcelona2020Kshivets barcelona2020
Kshivets barcelona2020
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
 
Kshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdfKshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdf
 
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
 
Kshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse SurgeryKshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse Surgery
 
Kshivets O. Local Advanced Lung Cancer Surgery
Kshivets O. Local Advanced Lung Cancer Surgery Kshivets O. Local Advanced Lung Cancer Surgery
Kshivets O. Local Advanced Lung Cancer Surgery
 
• Gastric cancer prognosis and cell ratio factors
•	Gastric cancer prognosis and cell ratio factors           •	Gastric cancer prognosis and cell ratio factors
• Gastric cancer prognosis and cell ratio factors
 
Lung Cancer: Precise Prediction
Lung Cancer: Precise PredictionLung Cancer: Precise Prediction
Lung Cancer: Precise Prediction
 

More from Oleg Kshivets

Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Oleg Kshivets
 
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Oleg Kshivets
 
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Oleg Kshivets
 
Kshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdfKshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdf
Oleg Kshivets
 
Kshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfKshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdf
Oleg Kshivets
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
Oleg Kshivets
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
Oleg Kshivets
 
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Oleg Kshivets
 
Kshivets elcc2022
Kshivets elcc2022Kshivets elcc2022
Kshivets elcc2022
Oleg Kshivets
 
Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659
Oleg Kshivets
 
Kshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrKshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarr
Oleg Kshivets
 
Kshivets eso10 y2021
Kshivets eso10 y2021Kshivets eso10 y2021
Kshivets eso10 y2021
Oleg Kshivets
 
2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets
Oleg Kshivets
 

More from Oleg Kshivets (13)

Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
Local Advanced Lung Cancer: Artificial Intelligence, Synergetics, Complex Sys...
 
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
Lung Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, S...
 
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
Local Advanced Esophageal Cancer (T3-4N0-2M0): Artificial Intelligence, Syner...
 
Kshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdfKshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdf
 
Kshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfKshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdf
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
 
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
 
Kshivets elcc2022
Kshivets elcc2022Kshivets elcc2022
Kshivets elcc2022
 
Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659
 
Kshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrKshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarr
 
Kshivets eso10 y2021
Kshivets eso10 y2021Kshivets eso10 y2021
Kshivets eso10 y2021
 
2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets
 

Recently uploaded

Recognizing and Managing Bacterial Vaginosis.pptx
Recognizing and Managing Bacterial Vaginosis.pptxRecognizing and Managing Bacterial Vaginosis.pptx
Recognizing and Managing Bacterial Vaginosis.pptx
FFragrant
 
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdfNUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
MatsikoAlex
 
Drug Repurposing for Parasitic Diseases.pptx
Drug Repurposing for Parasitic Diseases.pptxDrug Repurposing for Parasitic Diseases.pptx
Drug Repurposing for Parasitic Diseases.pptx
drebrahiim
 
MALARIA- PowerPoint presentation pptx part 1
MALARIA- PowerPoint presentation pptx part 1MALARIA- PowerPoint presentation pptx part 1
MALARIA- PowerPoint presentation pptx part 1
kavyanshiverma75
 
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
hf66550
 
Veterinary Medicines Manufacturers in India
Veterinary Medicines Manufacturers in IndiaVeterinary Medicines Manufacturers in India
Veterinary Medicines Manufacturers in India
Heilsaa Care
 
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptxApproach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
Bipul Thakur
 
Medical oncologic management of Colorectal cancer-1-1.pptx
Medical oncologic management of Colorectal cancer-1-1.pptxMedical oncologic management of Colorectal cancer-1-1.pptx
Medical oncologic management of Colorectal cancer-1-1.pptx
robel26
 
Respiratory system at glance- Neonatology
Respiratory system at glance- NeonatologyRespiratory system at glance- Neonatology
Respiratory system at glance- Neonatology
Dr. Habibur Rahim
 
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in DohaAbortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
maishakhanam230
 
JULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
JULY 2024 Oncology Cartoons by Dr Kanhu Charan PatroJULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
JULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
Kanhu Charan
 
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
NephroTube - Dr.Gawad
 
Building a Strong Partnership with Your Medical Team
Building a Strong Partnership with Your Medical TeamBuilding a Strong Partnership with Your Medical Team
Building a Strong Partnership with Your Medical Team
bkling
 
2nd week of Human development .embryology
2nd week of Human development .embryology2nd week of Human development .embryology
2nd week of Human development .embryology
Mithilesh Chaurasia
 
Hand Book of Oncology Nursing - Cancer Nursing Book
Hand Book of Oncology Nursing - Cancer Nursing BookHand Book of Oncology Nursing - Cancer Nursing Book
Hand Book of Oncology Nursing - Cancer Nursing Book
BP KOIRALA INSTITUTE OF HELATH SCIENCS,, NEPAL
 
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptxWhy Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
AmandaChou9
 
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptxExploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
FFragrant
 
Text Book of Critical Care Nursing ICU NURSING
Text Book of Critical Care Nursing  ICU NURSINGText Book of Critical Care Nursing  ICU NURSING
Text Book of Critical Care Nursing ICU NURSING
BP KOIRALA INSTITUTE OF HELATH SCIENCS,, NEPAL
 
Text book of comprehensive Medical Surgical Nursing
Text book of comprehensive Medical Surgical NursingText book of comprehensive Medical Surgical Nursing
Text book of comprehensive Medical Surgical Nursing
BP KOIRALA INSTITUTE OF HELATH SCIENCS,, NEPAL
 
medical law and ethics presentation .ppt
medical law and ethics presentation .pptmedical law and ethics presentation .ppt
medical law and ethics presentation .ppt
PseudoPocket
 

Recently uploaded (20)

Recognizing and Managing Bacterial Vaginosis.pptx
Recognizing and Managing Bacterial Vaginosis.pptxRecognizing and Managing Bacterial Vaginosis.pptx
Recognizing and Managing Bacterial Vaginosis.pptx
 
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdfNUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
NUTRICONNECT NEWSLETTER 3RD ISSUE 2ND VOLUME.pdf
 
Drug Repurposing for Parasitic Diseases.pptx
Drug Repurposing for Parasitic Diseases.pptxDrug Repurposing for Parasitic Diseases.pptx
Drug Repurposing for Parasitic Diseases.pptx
 
MALARIA- PowerPoint presentation pptx part 1
MALARIA- PowerPoint presentation pptx part 1MALARIA- PowerPoint presentation pptx part 1
MALARIA- PowerPoint presentation pptx part 1
 
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
High Girls Call Ranchi 000XX00000 Provide Best And Top Girl Service And No1 i...
 
Veterinary Medicines Manufacturers in India
Veterinary Medicines Manufacturers in IndiaVeterinary Medicines Manufacturers in India
Veterinary Medicines Manufacturers in India
 
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptxApproach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
Approach to Head Injuiry, Intracranial Pressure Measurement and Management.pptx
 
Medical oncologic management of Colorectal cancer-1-1.pptx
Medical oncologic management of Colorectal cancer-1-1.pptxMedical oncologic management of Colorectal cancer-1-1.pptx
Medical oncologic management of Colorectal cancer-1-1.pptx
 
Respiratory system at glance- Neonatology
Respiratory system at glance- NeonatologyRespiratory system at glance- Neonatology
Respiratory system at glance- Neonatology
 
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in DohaAbortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
Abortion pills for sale in Qatar(+919707208804)Buy Cytotec tablet in Doha
 
JULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
JULY 2024 Oncology Cartoons by Dr Kanhu Charan PatroJULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
JULY 2024 Oncology Cartoons by Dr Kanhu Charan Patro
 
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
Hemodialysis: Chapter 9, Arteriovenous Fistula and Graft: Basics, Creation, U...
 
Building a Strong Partnership with Your Medical Team
Building a Strong Partnership with Your Medical TeamBuilding a Strong Partnership with Your Medical Team
Building a Strong Partnership with Your Medical Team
 
2nd week of Human development .embryology
2nd week of Human development .embryology2nd week of Human development .embryology
2nd week of Human development .embryology
 
Hand Book of Oncology Nursing - Cancer Nursing Book
Hand Book of Oncology Nursing - Cancer Nursing BookHand Book of Oncology Nursing - Cancer Nursing Book
Hand Book of Oncology Nursing - Cancer Nursing Book
 
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptxWhy Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
Why Does Seminal Vesiculitis Causes Jelly-like Sperm.pptx
 
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptxExploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
Exploring Alternatives- Why Laparoscopy Isn't Always Best for Hydrosalpinx.pptx
 
Text Book of Critical Care Nursing ICU NURSING
Text Book of Critical Care Nursing  ICU NURSINGText Book of Critical Care Nursing  ICU NURSING
Text Book of Critical Care Nursing ICU NURSING
 
Text book of comprehensive Medical Surgical Nursing
Text book of comprehensive Medical Surgical NursingText book of comprehensive Medical Surgical Nursing
Text book of comprehensive Medical Surgical Nursing
 
medical law and ethics presentation .ppt
medical law and ethics presentation .pptmedical law and ethics presentation .ppt
medical law and ethics presentation .ppt
 

Kshivets eacts milan2018

  • 1. Survival Outcomes in Patients with Esophageal Cancer after Complete Esophagogastrectomies Kshivets Oleg, MD, PhD Surgery Department, Roshal Hospital, Roshal, Moscow, Russia
  • 2. • Survival Outcomes in Patients with Esophageal Cancer after • Complete Esophagogastrectomies • Kshivets Oleg Surgery Department, Roshal Hospital • Roshal, Moscow, Russia • OBJECTIVE: Survival outcomes of radical surgery in esophageal cancer (EC) patients (ECP) • (T1-4N0-2M0) were analyzed. • METHODS: We analyzed data of 543 consecutive ECP (age=56.4±8.8 years; tumor • size=6±3.5 cm) radically operated (R0) and monitored in 1975-2018 (m=405, f=138; • esophagogastrectomies (EG) Garlock=280, EG Lewis=263, combined EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium, splenectomy=151; adenocarcinoma=308, squamous=225, mix=10; T1=126, T2=114, T3=178, T4=125; N0=275, N1=69, N2=199; G1=157, G2=139, G3=247; early EC=107, invasive=436; only surgery=420, adjuvant chemoimmunoradiotherapy-AT=123: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling, clustering, SEPATH, Monte Carlo, bootstrap and neural networks computing were used to determine any significant dependence. • RESULTS: Overall life span (LS) was 1892.4±2241 days and cumulative 5-year survival (5YS) reached 51.9%, 10 years – 45.7%, 20 years – 33.5%. 183 ECP lived more than 5 years (LS=4311±2419.7 days), 98 ECP – more than 10 years (LS=5903.4±2299.4 days). 224 ECP died because of EC (LS=629.2±320.1 days). AT significantly improved 5YS (68.2% vs. 48.5%) (P=0.00033 by log-rank test). Cox modeling displayed that 5YS of ECP significantly depended on: phase transition (PT) N0—N12 in terms of synergetics, cell ratio factors (ratio between cancer cells- CC and blood cells subpopulations), T, G, histology, age, AT, localization, blood cells, prothrombin index, coagulation time, residual nitrogen, blood group, Rh, glucose, protein (P=0.000-0.008). Neural networks, genetic algorithm selection and bootstrap simulation revealed relationships between 5YS and healthy cells/CC (rank=1), PT early-invasive EC (rank=2), PT N0—N12 (rank=3), erythrocytes/CC (4), thrombocytes/CC (5), stick neutrophils/CC (6), lymphocytes/CC (7), segmented neutrophils/CC (8), eosinophils/CC (9), leucocytes/CC (10), monocytes/CC (11). Correct prediction of 5YS was 100% by neural networks computing (area under ROC curve=1.0; error=0.0). • CONCLUSIONS: Survival outcomes after radical procedures significantly depended on: 1) PT “early-invasive cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT; 8) EC characteristics; 9) tumor localization; 10) anthropometric data. Optimal diagnosis and treatment strategies for EC are: 1) screening and early detection of EC; 2) availability of experienced thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block surgery and adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for ECP with unfavorable prognosis.
  • 3. Data: • Males………………………………………………………………….405 • Females………..……………………………..................................138 • Age=56.4±8.8 years • Tumor Size=6±3.5 cm • Only Surgery.………………………………..................................420 • Adjuvant Chemoimmunoradiotherapy (5FU+thymalin/taktivin, • 5-6 cycles + Radiotherapy 45-50Gy)…………………………….123
  • 4. Radical Procedures: • Esophagogastrectomies Lewis (R0)……………….……..…....…263 • Esophagogastrectomies Garlock (R0)……….............................280 • Combined Esophagogastrectomies with Resection of Pancreas, Liver, Trachea, Lung, Aorta, Vena Cava Superior, Colon Transversum, Diaphragm, Pericardium, Splenectomy (R0)…..151 • 2-Field Lymphadenectomy…….…………………………………....374 • 3-Field Lymphadenectomy.……………………………….…...……169
  • 5. Staging: • T1……..126 N0..……275 G1…………157 • T2……..114 N1…........69 G2…………139 • T3……..178 N2…......199 G3…………247 • T4……..125 M0……...543 • Adenocarcinoma………………………………………………..……..308 • Squamous Cell Carcinoma…………………………………………..225 • Mix………………….....…………………………………………..............10 • Early Cancer……………………………...……………………………..107 • Invasive Cancer…………………………..………………………..…...436
  • 6. Survival Rate: • Alive……………………………………..............................................284 (52.3%) • 5-Year Survivors………………………………………………............183 (33.7%) • 10-Year Survivors………………………............................................98 (18%) • Losses……………………..…………………………………………….224 (41.3%) • General Life Span=1892.4±2241 days • For 5-Year Survivors=4311±2419.7 days • For 10-Year Survivors=5903.4±2299.4 days • For Losses=629.2±320.1 days • Cumulative 5-Year Survival……………………………………………...….51.9% • Cumulative 10-Year Survival………………………………………………..45.7% • Cumulative 20-Year Survival………………………………………………...33.5%
  • 7. General Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (Kaplan-Meier) (n=543): Survival Function General Esophageal Cancer Patients Survival, n=543 5-Year Survival=51.9%; 10-Year Survival=45.7%; 20-Year Survival=33.5% Complete Censored -5 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CumulativeProportionSurviving
  • 8. Results of Univariate Analysis of Phase Transition Early— Invasive Cancer in Prediction of Esophageal Cancer Patients Survival (n=543): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of Early ECP=100; 5-Year Survival of Invasive ECP=38.5%, P=0.00000 by Log-Rank Test Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CumulativeProportionSurviving Invasive ECP, n=436 Early ECP, n=107
  • 9. Results of Univariate Analysis of Phase Transition N0—N1-2 in Prediction of Esophageal Cancer Patients Survival (n=543): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of ECP with N0=73.9%; 5-Year Survival of ECP with N1-2=27.5% P=0.00000 by Log-Rank Test Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CumulativeProportionSurviving ECP with N1-2, n=268 ECP with N0, n=275
  • 10. Results of Univariate Analysis of Adjuvant ChemoimmunoradioTherapy in Prediction of Esophageal Cancer Patients Survival (n=543): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of ECP after Adjuvant Treatment=68.2%; 5-Year Survival of ECP after Surgery alone=48.5%; P=0.00033 by Log-Rank Test Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CumulativeProportionSurviving Adjuvant Chemoimmunoradiotherapy, n=123 Only Surgery, n=420
  • 11. Results of Univariate Analysis of localization (upper/3 vs. middle/3 & lower/3) in Prediction of Esophageal Cancer Patients Survival (n=543): Cumulative Proportion Surviving (Kaplan-Meier) 5-Year Survival of ECP of Upper/3=64.7%; 5-Year Survival of Others ECP=49.2%; P=0.00323 by Log Rank Test Complete Censored 0 5 10 15 20 25 30 35 40 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CumulativeProportionSurviving Uper/3 ECP, n=80 Others ECP, n=463
  • 12. Results of Cox Regression Modeling in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=543): Cox Proportional Hazards Results; ECP=543; Factors: Parameter Estimate Standard Error Chi-square P value 95% Lower CL 95% Upper CL Hazard Ratio 95% Hazard Ratio Lower CL 95% Hazard Ratio Upper CL Blood Group 0.23476 0.073446 10.21678 0.001392 0.09081 0.378711 1.264605 1.095060 1.460401 Rh-Factor -0.54240 0.179819 9.09838 0.002558 -0.89483 -0.189958 0.581353 0.408675 0.826993 Hemorrhage Blood 0.00144 0.000421 11.77796 0.000599 0.00062 0.002268 1.001445 1.000619 1.002271 Glucose -0.23830 0.083967 8.05437 0.004539 -0.40287 -0.073728 0.787965 0.668396 0.928924 Residual Nitrogen 0.05252 0.011743 20.00367 0.000008 0.02951 0.075537 1.053925 1.029945 1.078463 Protein 0.02684 0.008990 8.91663 0.002826 0.00922 0.044464 1.027208 1.009267 1.045467 Prothrombin Index 0.02029 0.006681 9.22243 0.002391 0.00719 0.033384 1.020497 1.007221 1.033948 T1-4 0.40732 0.095442 18.21334 0.000020 0.22026 0.594382 1.502783 1.246396 1.811911 N0---N12 0.70052 0.165865 17.83760 0.000024 0.37543 1.025613 2.014807 1.455623 2.788804 Age 0.03072 0.007906 15.10444 0.000102 0.01523 0.046219 1.031201 1.015346 1.047304 Histology -0.34704 0.131313 6.98449 0.008222 -0.60440 -0.089668 0.706780 0.546400 0.914235 G1-3 0.39807 0.089616 19.73142 0.000009 0.22243 0.573719 1.488955 1.249109 1.774855 Adjuvant Chemoimmunoradiotherapy -0.94293 0.202241 21.73792 0.000003 -1.33931 -0.546541 0.389487 0.262026 0.578949 Leucocytes tot -1.37250 0.359513 14.57453 0.000135 -2.07713 -0.667865 0.253473 0.125289 0.512802 Eosinophils tot 1.43485 0.369265 15.09867 0.000102 0.71111 2.158599 4.199029 2.036244 8.659002 Stick Neutrophils tot 1.39116 0.360961 14.85367 0.000116 0.68369 2.098628 4.019503 1.981172 8.154972 Segmented Neutrophils tot 1.39745 0.359085 15.14529 0.000100 0.69366 2.101242 4.044866 2.001016 8.176317 Lymphocytes tot 1.33711 0.361121 13.70979 0.000213 0.62933 2.044896 3.808030 1.876350 7.728351 Monocytes tot 1.32704 0.372737 12.67540 0.000370 0.59649 2.057588 3.769859 1.815728 7.827070 Segmented Neutrophils/Cancer Cells -0.14398 0.045351 10.07984 0.001499 -0.23287 -0.055097 0.865903 0.792258 0.946393 Llocalization: Upper/3 vs. Others -0.52502 0.193950 7.32779 0.006790 -0.90516 -0.144886 0.591543 0.404479 0.865121
  • 13. Results of Discriminant Function Analysis in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=407): Discriminant Function Analysis Summary: No. of vars in model=32; n=407 Wilks' Lambda: .39522 approx. F (32,374)=17.885 p<0.0000 Wilks' Lambda Partial Lambda F-remove (1,374) p-value Toler. 1-Toler. (R-Sqr.) Hemoglobin 0.405250 0.975248 9.492130.0022160.359799 0.640201 Erythrocytes 0.407808 0.969131 11.912960.0006210.024344 0.975657 Leucocytes 0.413786 0.955129 17.570300.0000350.000405 0.999595 Stick Neutrophils (%) 0.401817 0.983580 6.243450.0128940.081515 0.918486 Segmented Neutrophils (%) 0.412991 0.956969 16.817370.0000510.010315 0.989685 Lymphocytes (%) 0.404156 0.977887 8.457150.0038530.010516 0.989484 Hemorrhage Blood 0.404068 0.978100 8.373820.0040300.843012 0.156988 Residual Nitrogen 0.438737 0.900811 41.181470.0000000.742369 0.257631 Prothrombin Index 0.399773 0.988609 4.309160.0385900.836103 0.163898 Segmented Neutrophils (abs) 0.417926 0.945668 21.487700.0000050.000587 0.999413 Lymphocytes (abs) 0.407544 0.969759 11.662840.0007080.002901 0.997099 T1-4 0.436492 0.905444 39.056850.0000000.541731 0.458269 N0--N12 0.424456 0.931120 27.666640.0000000.704162 0.295838 Weight 0.407512 0.969834 11.633060.0007190.011910 0.988090 G1-3 0.407735 0.969303 11.844210.0006440.835999 0.164001 Tumor Growth 0.407466 0.969943 11.589550.0007350.653263 0.346737 Adjuvant Chemoimmunoradiotherapy 0.400524 0.986755 5.020140.0256410.911147 0.088853 Combined Procedures 0.405038 0.975759 9.291320.0024660.720317 0.279683 Erythrocytes (tot) 0.405575 0.974467 9.799760.0018830.008919 0.991081 Leucocytes (tot) 0.409886 0.964218 13.879260.0002250.000036 0.999964 Eosinophils (tot) 0.405589 0.974434 9.812550.0018700.010102 0.989898 Stick Neutrophils (tot) 0.400922 0.985776 5.396570.0207120.003166 0.996834 Segmented Neutrophils (tot) 0.411970 0.959341 15.850910.0000820.000068 0.999933 Lymphocytes (tot) 0.408867 0.966622 12.914500.0003700.000381 0.999619 Monocytes (tot) 0.407706 0.969373 11.816570.0006530.005423 0.994577 Leucocytes/Cancer Cells 0.401196 0.985102 5.656050.0178970.000009 0.999991 Eosinophils/Cancer Cells 0.401077 0.985396 5.542900.0190720.009880 0.990120 Stick Neutrophils/Cancer Cells 0.401480 0.984406 5.924400.0154000.008813 0.991187
  • 14. Results of Neural Networks Computing in Prediction of Esophageal Cancer Patients Survival after Complete esophagogastrectomies (n=407): Correct Classification Rate=100% Error=0.000 Area under ROC Curve=1.000 Factors: Rank Sensitivity Healthy Cells/Cancer Cells Phase Transition Early---Invasive Cancer Phase Transition N0---N12 Erythrocytes/Cancer Cells Thrombocytes/Cancer Cells Stick Neutrophils/Cancer Cells Lymphocytes/Cancer Cells Segmented Neutrophils/Cancer Cells Eosinophils/Cancer Cells Leucocytes/Cancer Cells Monocytes/Cancer Cells 1 2 3 4 5 6 7 8 9 10 11 28794 20554 16562 8666 7464 7425 5836 5771 4024 3734 3230
  • 15. Results of Bootstrap Simulation in Prediction of esophageal Cancer Patients Survival after esophagogastrectomies (n=407): Significant Factors (Number of Samples=3333) Rank Kendal Tau-A P Tumor Size 1 -0.316 0.000 Healthy Cells/Cancer Cells 2 0.315 0.000 T1-4 3 -0.307 0.000 Erythrocytes/Cancer Cells 4 0.307 0.000 Leucocytes/Cancer Cells 5 0.298 0.000 Thrombocytes/Cancer Cells 6 0.293 0.000 Lymphocytes/Cancer Cells 7 0.289 0.000 Segmented Neutrophils/Cancer Cells 8 0.280 0.000 Residual Nitrogen 9 -0.277 0.000 Phase Transition N0---N12 10 -0.248 0.000 Monocytes/Cancer Cells 11 0.240 0.000 Hemorrhage Time 12 -0.233 0.000 Phase Transition Early---Invasive Cancer 13 -0.225 0.000 Procedure Type 14 -0.192 0.000 Eosinophils/Cancer Cells 15 0.163 0.000 Chlorides 16 0.163 0.000 G1-3 17 -0.140 0.000 Tumor Growth 18 -0.117 0.001 Stick Neutrophils/Cancer Cells 19 0.105 0.01 Erythrocytes 20 0.103 0.01 Weight 21 0.100 0.01 Combined Procedure 22 0.098 0.01 Localization 23 0.070 0.05
  • 16. Results of Kohonen Self-Organizing Neural Networks Computing in Prediction of esophageal Cancer Patients Survival after Complete esophagogastrectomies (n=407):
  • 18. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=407):
  • 19. Prognostic SEPATH-Model of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=407):
  • 20. 5-YEAR SURVIVAL OF ESOPHAGEAL CANCER PATIENTS AFTER RADICAL PROCEDURES SIGNIFICANTLY DEPENDED ON: 1) PHASE TRANSITION “EARLY-INVASIVE CANCER”; 2) PHASE TRANSITION N0--N12; 3) CELL RATIO FACTORS; 4) BLOOD CELL CIRCUIT; 5) BIOCHEMICAL FACTORS; 6) HEMOSTASIS SYSTEM; 7) ADJUVANT CHEMOIMMUNORADIOTHERAPY; 8) CANCER CHARACTERISTICS ; 9) TUMOR LOCALIZATION; 10) ANTHROPOMETRIC DATA. Conclusion:
  • 21. OPTIMAL DIAGNOSIS AND TREATMENT STRATEGIES FOR ESOPHAGEAL CANCER ARE: 1) SCREENING AND EARLY DETECTION OF ESOPHAGEAL CANCER; 2) AVAILABILITY OF EXPERIENCED THORACOABDOMINAL SURGEONS BECAUSE OF COMPLEXITY OF RADICAL PROCEDURES; 3) AGGRESSIVE EN BLOCK SURGERY AND ADEQUATE LYMPH NODE DISSECTION FOR COMPLETENESS; 4) PRECISE PREDICTION; 5) ADJUVANT CHEMOIMMUNORADIOTHERAPY FOR ESOPHAGEAL CANCER PATIENTS WITH UNFAVORABLE PROGNOSIS. Conclusion:
  • 22. Address: Oleg Kshivets, M.D., Ph.D. Consultant Thoracic, Abdominal, General Surgeon & Surgical Oncologist • e-mail: okshivets@yahoo.com • skype: okshivets • http: //www.ctsnet.org/home/okshivets