SlideShare a Scribd company logo
1 of 25
Download to read offline
Esophageal Cancer: Artificial Intelligence,
Synergetics, Complex System Analysis,
Statistics and Modeling for Optimal
Management.
Kshivets Oleg Surgery Department, Bagrationovsk Hospital,
Bagrationovsk, Kaliningrad, Russia
ABSTRACT
OBJECTIVE: 5-survival (5YS) and life span after radical surgery for esophageal cancer (EC) patients (ECP)(T1-4N0-
2M0) - alive supersysems was analyzed. The importance must be stressed of using complex system analysis, artificial
intelligence (neural networks computing), simulation modeling and statistical methods in combination, because the
different approaches yield complementary pieces of prognostic information.
METHODS: We analyzed data of 563 consecutive ECP (age=56.6±8.9 years; tumor size=6±3.5 cm) radically operated
(R0) and monitored in 1975-2024 (m=419, f=144; esophagogastrectomies (EG) Garlock=289, EG Lewis=274, combined
EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium,
splenectomy=170; adenocarcinoma=323, squamous=230, mix=10; T1=131, T2=119, T3=185, T4=128; N0=285, N1=71,
N2=207; G1=161, G2=143, G3=259; early EC=112, invasive=451; only surgery=428, adjuvant
chemoimmunoradiotherapy-AT=135: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling,
clustering, SEPATH, Monte Carlo, bootstrap and neural networks computing were used to determine any significant
dependence.
RESULTS: Overall life span (LS) was 1915.4±2284.8 days and cumulative 5-year survival (5YS) reached 52.6%, 10
years – 46.3%, 20 years – 33.3%, 30 years – 27.5%. 193 ECP lived more than 5 years (LS=4309.1±2507.4 days), 105 ECP
– more than 10 years (LS=5860.8±2469.2 days). 228 ECP died because of EC (LS=629.8±324.1 days). AT significantly
improved 5YS (69% vs. 49.1%) (P=0.0007 by log-rank test). 5YS of ECP of upper/3 was significantly better than others
(65.3% vs.50.3%) (P=0.003). Cox modeling displayed that 5YS of ECP significantly depended on: phase transition (PT)
N0—N12 in terms of synergetics, cell ratio factors (ratio between cancer cells- CC and blood cells subpopulations), T,
G, histology, age, AT, localization, prothrombin index, hemorrhage time, residual nitrogen, protein (P=0.000-0.019).
Neural networks, genetic algorithm selection and bootstrap simulation revealed relationships between 5YS and
healthy cells/CC (rank=1), PT N0—N12 (2), PT early-invasive EC (3), erythrocytes/CC (4), thrombocytes/CC (5);
segmented neutrophils/CC (6), stick neutrophils/CC (7), lymphocytes/CC (8), eosinophils/CC (9), monocytes/CC (10),
leucocytes/CC (11). Correct prediction of 5YS was 100% by neural networks computing (area under ROC curve=1.0;
error=0.0).
CONCLUSIONS: 5-year survival of ECP after radical procedures significantly depended on: 1) PT “early-invasive
cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT;
8) EC cell dynamics; 9) EC characteristics; 10) tumor localization; 11) anthropometric data; 12) surgery type. Optimal
diagnosis and treatment strategies for EC are: 1) screening and early detection of EC; 2) availability of experienced
thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block surgery and
adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for
ECP with unfavorable prognosis.
Data:
• Males…………………………………………………...419
• Females………..……………………………...............144
• Age=56.6±8.9 years
• Tumor Size=6±3.5 cm
• Only Surgery.……………………………………........428
• Adjuvant Chemoimmunoradiotherapy
• (5FU+thymalin/taktivin, 5-6 cycles+ Radiotherapy
• 45-50Gy)………………………...................................135
:Radical Procedures
• Esophagogastrectomies Lewis (R0)…………………274
• Esophagogastrectomies Garlock (R0)………...........289
• Combined Esophagogastrectomies with Resection
• of Pancreas, Liver, Trachea, Lung, Aorta, Vena
• Cava Superior, Colon Transversum, Diaphragm,
Pericardium, Splenectomy (R0)……………...............170
• 2-Field Lymphadenectomy…………………………….362
• 3-Field Lymphadenectomy.………………………….…201
Staging:
• T1……131 N0..….285 G1…………161
• T2……119 N1….....71 G2…………143
• T3……185 N2…...207 G3…………259
• T4……128 M0…..563
• Adenocarcinoma…………………………….323
• Squamos Cell Carcinoma…………………..230
• Mix………………….....…………………...........10
• Early Cancer……………………………...…...112
• Invasive Cancer…………………………..…..451
Survival Rate:
• Alive……………………………………….....296 (52.6%)
• 5-Year Survivors…………..……………….193 (34.3%)
• 10-Year Survivors………………………….105 (18.7%)
• Losses………………………………………..228 (40.5%)
• General Life Span=1915.4±2284.8 days
• For 5-Year Survivors=4309.1±2507.4 days
• For 10-Year Survivors=5860.8±2469.2 days
• For Losses=629.8±324.1 days
• Cumulative 5-Year Survival……………………..52.6%
• Cumulative 10-Year Survival…………………....46.3%
• Cumulative 20-Year Survival…………………....33.3%
• Cumulative 30-Year Survival…………………....27.5%
General Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (Kaplan-Meier)
(n=563):
Survival Function
5YS=52.6%; 10YS=46.3%;
20YS=33.3%; 30YS=27.5%.
Complete Censored
-5 0 5 10 15 20 25 30 35 40 45
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Results of Univariate Analysis of Phase
Transition Early—Invasive Cancer in Prediction
of Esophageal Cancer Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Invasive ECP
Early ECP
Results of Univariate Analysis of Phase Transition
N0—N1-2 in Prediction of Esophageal Cancer
Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Time
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
N0
N1-2
Results of Univariate Analysis of Localization
(Upper/3 vs. Others) in Prediction of
Esophageal Cancer Patients Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Others
Upper/3
Results of Univariate Analysis of Localization
(Cardioesophageal vs. Esophageal) in
Prediction of Esophageal Cancer Patients
Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.000
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Cardioesophageal CP
Esophageal CP
Results of Univariate Analysis of Adjuvant
Treatment (Adjuvant
Chemoimmunoradiotherapy vs Surgery along)
in Prediction of Esophageal Cancer Patients
Survival (n=563):
Cumulative Proportion Surviving (Kaplan-Meier)
P=0.00375
Complete Censored
0 5 10 15 20 25 30 35 40 45 50
Years after Esophagogastrectomies
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Cumulative
Proportion
Surviving
Adjuvant Chemoradiotherapy
Surgery along
Results of Cox Regression Modeling in Prediction of Esophageal Cancer Patients
Survival after Complete Esophagogastrectomies (n=563):
Cox Regression, ECP=563
Parameter
Estimate
Standard
Error
Chi-
square
P value
95%
Lower CL
95%
Upper CL
Hazard
Ratio
Segmented Neutrophils (%) 0.060757 0.017913 11.50399 0.000694 0.02565 0.095867 1.062641
Hemorrhage of Blood 0.001559 0.000400 15.16684 0.000098 0.00077 0.002343 1.001560
Protein 0.020805 0.008677 5.74991 0.016489 0.00380 0.037811 1.021023
Residual Nitrogen 0.046396 0.010866 18.23261 0.000020 0.02510 0.067693 1.047490
Prothrombin Index 0.021704 0.006456 11.30163 0.000774 0.00905 0.034358 1.021942
Segmented Neutrophils (abs) -0.761788 0.204580 13.86576 0.000196 -1.16276 -0.360820 0.466831
Lymphocytes (abs) 0.546870 0.228784 5.71370 0.016833 0.09846 0.995277 1.727836
T1-4 0.418271 0.094110 19.75331 0.000009 0.23382 0.602724 1.519332
PT N0---N12 0.642382 0.161510 15.81930 0.000070 0.32583 0.958936 1.901004
Age 0.028998 0.007691 14.21475 0.000163 0.01392 0.044073 1.029423
Weight -0.034970 0.013244 6.97240 0.008278 -0.06093 -0.009013 0.965634
Histology -0.285581 0.125754 5.15725 0.023150 -0.53205 -0.039108 0.751577
G1-3 0.426268 0.091239 21.82750 0.000003 0.24744 0.605094 1.531532
Adjuvant Chemoimmunoradiotherapy -0.870165 0.190510 20.86250 0.000005 -1.24356 -0.496772 0.418882
Segmented Neutrophils (tot) 0.124208 0.040804 9.26585 0.002335 0.04423 0.204183 1.132252
Leucocytes/Cancer Cells -0.132461 0.037769 12.30035 0.000453 -0.20649 -0.058436 0.875937
Monocytes/Cancer Cells 1.046746 0.401192 6.80736 0.009078 0.26042 1.833067 2.848367
Upper/3 vs Others -0.456165 0.195540 5.44218 0.019656 -0.83942 -0.072914 0.633709
Eosinophils (abs) 0.887039 0.450614 3.87504 0.049009 0.00385 1.770226 2.427929
Results of Neural Networks and Monte Carlo
Computing in Prediction of Esophageal Cancer
Patients Survival after Complete
Esophagogastrectomies (n=421):
Corect Classification Rate=100%
Error=0.000
Area under ROC Curve=1.000
Factors n=421 (Neural Networks) Rank Sensitivity
Healthy Cells/Cancer Cells 1 47967
Phase Transition N0---N12 2 32041
Phase Transition Early---Invasive Esophageal Cancer 3 32029
Erythrocytes/ Cancer Cells 4 21816
Thrombocytes/ Cancer Cells 5 20377
Segmented Neutrophils/ Cancer Cells 6 16849
Stick Neutrophils/ Cancer Cells 7 11869
Lymphocyes/ Cancer Cells 8 10648
Eosinophils/ Cancer Cells 9 10401
Monocytes/ Cancer Cells 10 9258
Leucocytes/ Cancer Cells 11 9196
Results of Bootstrap Simulation in Prediction
of Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (n=421):
Significant Factors (Number of Samples=3333) Rank Kendal Tau-A P
Tumor Size 1 -0.308 0.000
Healthy Cells/Cancer Cells 2 0.305 0.000
T1-4 3 -0.299 0.000
Erythrocytes/Cancer Cells 4 0.299 0.000
Leucocytes/Cancer Cells 5 0.290 0.000
Thrombocytes/Cancer Cells 6 0.285 0.000
Lymphocytes/Cancer Cells 7 0.281 0.000
Residual Nitrogen 8 -0.275 0.000
Segmented Neutrophils/Cancer Cells 9 0.273 0.000
Phase Transition N0---N12 10 -0.239 0.000
Hemorrhage Time 11 -0.228 0.000
Monocytes/Cancer Cells 12 0.227 0.000
Phase Transition Early---Invasive Cancer 13 -0.222 0.000
Esophageal/Cardioesophageal Cancer 14 -0.191 0.000
Operation Type 15 -0.187 0.000
Eosinophils/Cancer Cells 16 0.173 0.000
Stick Neutrophils/Cancer Cells 17 0.144 0.001
G1-3 18 -0.140 0.001
Tumor Growth 19 -0.113 0.01
Erythrocytes 20 0.100 0.01
Combined Procedure 21 0.095 0.01
Weight 22 0.092 0.01
Localization 23 0.069 0.05
Results of Kohonen Self-Organizing Neural
Networks Computing in Prediction of
Esophageal Cancer Patients Survival after
Complete Esophagogastrectomies (n=421):
Esophageal Cancer Cell Dynamics:
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
Prognostic Equation Models of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
SEPATH Modeling in Prediction of Esophageal
Cancer Patients Survival after Complete
Esophagogastrectomies (n=421):
5-year survival of ECP after radical
procedures significantly depended on:
1) PT “Early-Invasive Cancer”;
2) PT N0--N12;
3) Cell Ratio Factors;
4) Blood Cell Circuit;
5) Biochemical Factors;
6) Hemostasis System;
7) Adjuvant Treatment;
8) EC Characteristics;
9) EC Cell Dynamics;
10) Tumor Localization;
11) Anthropometric Data;
12) Surgery Type.
Conclusion:
Optimal diagnosis and treatment
strategies for ECP are:
1) Screening and Early Detection
of EC;
2) Availability of Sufficient
Quantity of Very Experienced
Thoracoabdominal Surgeons
because of Extreme Complexity of
Radical Procedures;
3) Aggressive en block Surgery
and Adequate Lymph Node
Dissection for Completeness;
4) Precise Prediction;
5) Adjuvant
Chemoimmunoradiotherapy for
ECP with Unfavorable Prognosis.
Conclusion:
Address:
Oleg Kshivets,
M.D.,Ph.D.
Consultant Thoracic, Abdominal,
General Surgeon & Surgical
Oncologist
• e-mail: okshivets@yahoo.com
• skype: okshivets
• http: //www.ctsnet.org/home/okshivets

More Related Content

Similar to Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management.

Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction Oleg Kshivets
 
Kshivets iaslc denver2021
Kshivets iaslc denver2021Kshivets iaslc denver2021
Kshivets iaslc denver2021Oleg Kshivets
 
Kshivets barcelona2016
Kshivets barcelona2016Kshivets barcelona2016
Kshivets barcelona2016Oleg Kshivets
 
Kshivets astana wscts2017
Kshivets astana wscts2017Kshivets astana wscts2017
Kshivets astana wscts2017Oleg Kshivets
 
Kshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse SurgeryKshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse SurgeryOleg Kshivets
 
Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017Oleg Kshivets
 
Kshivets aats new_york2019
Kshivets aats new_york2019Kshivets aats new_york2019
Kshivets aats new_york2019Oleg Kshivets
 
Kshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljanaKshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljanaOleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfOleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfOleg Kshivets
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfOleg Kshivets
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Oleg Kshivets
 
Kshivets wscts2019 sofia
Kshivets wscts2019 sofiaKshivets wscts2019 sofia
Kshivets wscts2019 sofiaOleg Kshivets
 
Lung Cancer: Precise Prediction
Lung Cancer: Precise PredictionLung Cancer: Precise Prediction
Lung Cancer: Precise PredictionOleg Kshivets
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfOleg Kshivets
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfOleg Kshivets
 
Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018Oleg Kshivets
 
Kshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer SurgeryKshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer SurgeryOleg Kshivets
 

Similar to Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management. (20)

Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction      Esophageal Cancer: Precise Prediction
Esophageal Cancer: Precise Prediction
 
Kshivets iaslc denver2021
Kshivets iaslc denver2021Kshivets iaslc denver2021
Kshivets iaslc denver2021
 
Kshivets barcelona2016
Kshivets barcelona2016Kshivets barcelona2016
Kshivets barcelona2016
 
Kshivets astana wscts2017
Kshivets astana wscts2017Kshivets astana wscts2017
Kshivets astana wscts2017
 
Kshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse SurgeryKshivets O. Gastric Cancer Relapse Surgery
Kshivets O. Gastric Cancer Relapse Surgery
 
Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017Kshivets yokohama iaslc2017
Kshivets yokohama iaslc2017
 
Kshivets aats new_york2019
Kshivets aats new_york2019Kshivets aats new_york2019
Kshivets aats new_york2019
 
Kshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljanaKshivets wscts2018 ljubljana
Kshivets wscts2018 ljubljana
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
KshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdfKshivetsWSCTS2023_Brazil.pdf
KshivetsWSCTS2023_Brazil.pdf
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
 
Kshivets wscts2019 sofia
Kshivets wscts2019 sofiaKshivets wscts2019 sofia
Kshivets wscts2019 sofia
 
Kshivets esmo2021
Kshivets esmo2021Kshivets esmo2021
Kshivets esmo2021
 
Lung Cancer: Precise Prediction
Lung Cancer: Precise PredictionLung Cancer: Precise Prediction
Lung Cancer: Precise Prediction
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
 
Kshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdfKshivets_ELCC2023.pdf
Kshivets_ELCC2023.pdf
 
Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018Kshivets ASCVTS Moscow2018
Kshivets ASCVTS Moscow2018
 
Kshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer SurgeryKshivets O. Esophagogastric Cancer Surgery
Kshivets O. Esophagogastric Cancer Surgery
 
Kshivets ny2021aats
Kshivets ny2021aatsKshivets ny2021aats
Kshivets ny2021aats
 

More from Oleg Kshivets

Kshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdfKshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdfOleg Kshivets
 
Kshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfKshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfOleg Kshivets
 
Kshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdfKshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdfOleg Kshivets
 
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...Oleg Kshivets
 
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Oleg Kshivets
 
• Gastric cancer prognosis and cell ratio factors
•	Gastric cancer prognosis and cell ratio factors           •	Gastric cancer prognosis and cell ratio factors
• Gastric cancer prognosis and cell ratio factors Oleg Kshivets
 
Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659Oleg Kshivets
 
Kshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrKshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrOleg Kshivets
 
Kshivets eso10 y2021
Kshivets eso10 y2021Kshivets eso10 y2021
Kshivets eso10 y2021Oleg Kshivets
 
2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivetsOleg Kshivets
 
Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival Oleg Kshivets
 
Kshivets iaslc singapore2020
Kshivets iaslc singapore2020Kshivets iaslc singapore2020
Kshivets iaslc singapore2020Oleg Kshivets
 
Kshivets barcelona2020
Kshivets barcelona2020Kshivets barcelona2020
Kshivets barcelona2020Oleg Kshivets
 
Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020Oleg Kshivets
 

More from Oleg Kshivets (15)

Kshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdfKshivets_IASLC_Singapore2023.pdf
Kshivets_IASLC_Singapore2023.pdf
 
Kshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdfKshivets_WCGIC2023.pdf
Kshivets_WCGIC2023.pdf
 
Kshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdfKshivets_SPB_WSCTS2022Lung.pdf
Kshivets_SPB_WSCTS2022Lung.pdf
 
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
Lung cancer cell dynamics significantly depended on blood cell circuit, bioch...
 
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
Survival of Lung Cancer Patients after Lobectomies was Significantly Superior...
 
• Gastric cancer prognosis and cell ratio factors
•	Gastric cancer prognosis and cell ratio factors           •	Gastric cancer prognosis and cell ratio factors
• Gastric cancer prognosis and cell ratio factors
 
Kshivets elcc2022
Kshivets elcc2022Kshivets elcc2022
Kshivets elcc2022
 
Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659Kshivets gc 10_ys_wjarr-2021-0659
Kshivets gc 10_ys_wjarr-2021-0659
 
Kshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarrKshivets lc10 ys_wjarr
Kshivets lc10 ys_wjarr
 
Kshivets eso10 y2021
Kshivets eso10 y2021Kshivets eso10 y2021
Kshivets eso10 y2021
 
2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets2021 esmo world_gi_poster_kshivets
2021 esmo world_gi_poster_kshivets
 
Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival           Lung Cancer: 10-Year Survival
Lung Cancer: 10-Year Survival
 
Kshivets iaslc singapore2020
Kshivets iaslc singapore2020Kshivets iaslc singapore2020
Kshivets iaslc singapore2020
 
Kshivets barcelona2020
Kshivets barcelona2020Kshivets barcelona2020
Kshivets barcelona2020
 
Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020Kshivets ASCO Chicago2020
Kshivets ASCO Chicago2020
 

Recently uploaded

Technology transfer documentation and strategies
Technology transfer documentation and strategiesTechnology transfer documentation and strategies
Technology transfer documentation and strategiesNidhi Joshi
 
Catheterization Procedure by Anushri Srivastav.pptx
Catheterization Procedure by Anushri Srivastav.pptxCatheterization Procedure by Anushri Srivastav.pptx
Catheterization Procedure by Anushri Srivastav.pptxAnushriSrivastav
 
Leading large scale change: a life at the interface between theory and practice
Leading large scale change: a life at the interface between theory and practiceLeading large scale change: a life at the interface between theory and practice
Leading large scale change: a life at the interface between theory and practiceHelenBevan4
 
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptx
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptxclostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptx
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptxMuzammil Ahmed Siddiqui
 
Personnel and Equipment - Code and Rapid Response Workshop
Personnel and Equipment - Code and Rapid Response WorkshopPersonnel and Equipment - Code and Rapid Response Workshop
Personnel and Equipment - Code and Rapid Response WorkshopBrian Locke
 
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogja
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogjaobat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogja
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogjanitatalita796
 
Communication disorder and it's management
Communication disorder and it's managementCommunication disorder and it's management
Communication disorder and it's managementkeerti Gour (PT) Shakya
 
End of Response issues - Code and Rapid Response Workshop
End of Response issues - Code and Rapid Response WorkshopEnd of Response issues - Code and Rapid Response Workshop
End of Response issues - Code and Rapid Response WorkshopBrian Locke
 
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...Health Catalyst
 
Session-1-MBFHI-A-part-of-the-Global-Strategy.ppt
Session-1-MBFHI-A-part-of-the-Global-Strategy.pptSession-1-MBFHI-A-part-of-the-Global-Strategy.ppt
Session-1-MBFHI-A-part-of-the-Global-Strategy.pptMedidas Medical Center INC
 
Top 20 Famous Indian Female Pornstars Name List 2024
Top 20 Famous Indian Female Pornstars Name List 2024Top 20 Famous Indian Female Pornstars Name List 2024
Top 20 Famous Indian Female Pornstars Name List 2024minkseocompany
 
ISO 15189 2022 standards for laboratory quality and competence
ISO 15189 2022 standards for laboratory quality and competenceISO 15189 2022 standards for laboratory quality and competence
ISO 15189 2022 standards for laboratory quality and competencePathKind Labs
 
Bobath Technique (Samrth Pareta) .ppt.pptx
Bobath Technique (Samrth Pareta) .ppt.pptxBobath Technique (Samrth Pareta) .ppt.pptx
Bobath Technique (Samrth Pareta) .ppt.pptxSamrth Pareta
 
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...rightmanforbloodline
 
Leadership Style - Code and Rapid Response Workshop
Leadership Style - Code and Rapid Response WorkshopLeadership Style - Code and Rapid Response Workshop
Leadership Style - Code and Rapid Response WorkshopBrian Locke
 
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di bali
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di baliobat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di bali
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di balinitatalita796
 
Pulse Check Decisions - RRT and Code Blue Workshop
Pulse Check Decisions - RRT and Code Blue WorkshopPulse Check Decisions - RRT and Code Blue Workshop
Pulse Check Decisions - RRT and Code Blue WorkshopBrian Locke
 
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassar
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di MakassarObat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassar
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassarclarintahafafa
 
Communicable Disease.pptxgfgfggfffdfxfsdddf
Communicable Disease.pptxgfgfggfffdfxfsdddfCommunicable Disease.pptxgfgfggfffdfxfsdddf
Communicable Disease.pptxgfgfggfffdfxfsdddfnuradinman89
 

Recently uploaded (20)

Technology transfer documentation and strategies
Technology transfer documentation and strategiesTechnology transfer documentation and strategies
Technology transfer documentation and strategies
 
Catheterization Procedure by Anushri Srivastav.pptx
Catheterization Procedure by Anushri Srivastav.pptxCatheterization Procedure by Anushri Srivastav.pptx
Catheterization Procedure by Anushri Srivastav.pptx
 
Leading large scale change: a life at the interface between theory and practice
Leading large scale change: a life at the interface between theory and practiceLeading large scale change: a life at the interface between theory and practice
Leading large scale change: a life at the interface between theory and practice
 
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptx
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptxclostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptx
clostridiumbotulinum- BY Muzammil Ahmed Siddiqui.pptx
 
Personnel and Equipment - Code and Rapid Response Workshop
Personnel and Equipment - Code and Rapid Response WorkshopPersonnel and Equipment - Code and Rapid Response Workshop
Personnel and Equipment - Code and Rapid Response Workshop
 
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogja
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogjaobat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogja
obat aborsi jogja wa 081313339699 jual obat aborsi cytotec asli di jogja
 
Communication disorder and it's management
Communication disorder and it's managementCommunication disorder and it's management
Communication disorder and it's management
 
End of Response issues - Code and Rapid Response Workshop
End of Response issues - Code and Rapid Response WorkshopEnd of Response issues - Code and Rapid Response Workshop
End of Response issues - Code and Rapid Response Workshop
 
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
Unlock the Secrets to Optimizing Ambulatory Operations Efficiency and Change ...
 
Session-1-MBFHI-A-part-of-the-Global-Strategy.ppt
Session-1-MBFHI-A-part-of-the-Global-Strategy.pptSession-1-MBFHI-A-part-of-the-Global-Strategy.ppt
Session-1-MBFHI-A-part-of-the-Global-Strategy.ppt
 
Top 20 Famous Indian Female Pornstars Name List 2024
Top 20 Famous Indian Female Pornstars Name List 2024Top 20 Famous Indian Female Pornstars Name List 2024
Top 20 Famous Indian Female Pornstars Name List 2024
 
@Safe Abortion pills IN Jeddah(+918133066128) Un_wanted kit Buy Jeddah
@Safe Abortion pills IN Jeddah(+918133066128) Un_wanted kit Buy Jeddah@Safe Abortion pills IN Jeddah(+918133066128) Un_wanted kit Buy Jeddah
@Safe Abortion pills IN Jeddah(+918133066128) Un_wanted kit Buy Jeddah
 
ISO 15189 2022 standards for laboratory quality and competence
ISO 15189 2022 standards for laboratory quality and competenceISO 15189 2022 standards for laboratory quality and competence
ISO 15189 2022 standards for laboratory quality and competence
 
Bobath Technique (Samrth Pareta) .ppt.pptx
Bobath Technique (Samrth Pareta) .ppt.pptxBobath Technique (Samrth Pareta) .ppt.pptx
Bobath Technique (Samrth Pareta) .ppt.pptx
 
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...
TEST BANK For Robbins & Kumar Basic Pathology, 11th Edition by Vinay Kumar, A...
 
Leadership Style - Code and Rapid Response Workshop
Leadership Style - Code and Rapid Response WorkshopLeadership Style - Code and Rapid Response Workshop
Leadership Style - Code and Rapid Response Workshop
 
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di bali
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di baliobat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di bali
obat aborsi bali wa 081313339699 jual obat aborsi cytotec asli di bali
 
Pulse Check Decisions - RRT and Code Blue Workshop
Pulse Check Decisions - RRT and Code Blue WorkshopPulse Check Decisions - RRT and Code Blue Workshop
Pulse Check Decisions - RRT and Code Blue Workshop
 
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassar
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di MakassarObat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassar
Obat Aborsi Makassar WA 085226114443 Jual Obat Aborsi Cytotec Asli Di Makassar
 
Communicable Disease.pptxgfgfggfffdfxfsdddf
Communicable Disease.pptxgfgfggfffdfxfsdddfCommunicable Disease.pptxgfgfggfffdfxfsdddf
Communicable Disease.pptxgfgfggfffdfxfsdddf
 

Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management.

  • 1. Esophageal Cancer: Artificial Intelligence, Synergetics, Complex System Analysis, Statistics and Modeling for Optimal Management. Kshivets Oleg Surgery Department, Bagrationovsk Hospital, Bagrationovsk, Kaliningrad, Russia
  • 2. ABSTRACT OBJECTIVE: 5-survival (5YS) and life span after radical surgery for esophageal cancer (EC) patients (ECP)(T1-4N0- 2M0) - alive supersysems was analyzed. The importance must be stressed of using complex system analysis, artificial intelligence (neural networks computing), simulation modeling and statistical methods in combination, because the different approaches yield complementary pieces of prognostic information. METHODS: We analyzed data of 563 consecutive ECP (age=56.6±8.9 years; tumor size=6±3.5 cm) radically operated (R0) and monitored in 1975-2024 (m=419, f=144; esophagogastrectomies (EG) Garlock=289, EG Lewis=274, combined EG with resection of pancreas, liver, diaphragm, aorta, VCS, colon transversum, lung, trachea, pericardium, splenectomy=170; adenocarcinoma=323, squamous=230, mix=10; T1=131, T2=119, T3=185, T4=128; N0=285, N1=71, N2=207; G1=161, G2=143, G3=259; early EC=112, invasive=451; only surgery=428, adjuvant chemoimmunoradiotherapy-AT=135: 5-FU+thymalin/taktivin+radiotherapy 45-50Gy). Multivariate Cox modeling, clustering, SEPATH, Monte Carlo, bootstrap and neural networks computing were used to determine any significant dependence. RESULTS: Overall life span (LS) was 1915.4±2284.8 days and cumulative 5-year survival (5YS) reached 52.6%, 10 years – 46.3%, 20 years – 33.3%, 30 years – 27.5%. 193 ECP lived more than 5 years (LS=4309.1±2507.4 days), 105 ECP – more than 10 years (LS=5860.8±2469.2 days). 228 ECP died because of EC (LS=629.8±324.1 days). AT significantly improved 5YS (69% vs. 49.1%) (P=0.0007 by log-rank test). 5YS of ECP of upper/3 was significantly better than others (65.3% vs.50.3%) (P=0.003). Cox modeling displayed that 5YS of ECP significantly depended on: phase transition (PT) N0—N12 in terms of synergetics, cell ratio factors (ratio between cancer cells- CC and blood cells subpopulations), T, G, histology, age, AT, localization, prothrombin index, hemorrhage time, residual nitrogen, protein (P=0.000-0.019). Neural networks, genetic algorithm selection and bootstrap simulation revealed relationships between 5YS and healthy cells/CC (rank=1), PT N0—N12 (2), PT early-invasive EC (3), erythrocytes/CC (4), thrombocytes/CC (5); segmented neutrophils/CC (6), stick neutrophils/CC (7), lymphocytes/CC (8), eosinophils/CC (9), monocytes/CC (10), leucocytes/CC (11). Correct prediction of 5YS was 100% by neural networks computing (area under ROC curve=1.0; error=0.0). CONCLUSIONS: 5-year survival of ECP after radical procedures significantly depended on: 1) PT “early-invasive cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) blood cell circuit; 5) biochemical factors; 6) hemostasis system; 7) AT; 8) EC cell dynamics; 9) EC characteristics; 10) tumor localization; 11) anthropometric data; 12) surgery type. Optimal diagnosis and treatment strategies for EC are: 1) screening and early detection of EC; 2) availability of experienced thoracoabdominal surgeons because of complexity of radical procedures; 3) aggressive en block surgery and adequate lymph node dissection for completeness; 4) precise prediction; 5) adjuvant chemoimmunoradiotherapy for ECP with unfavorable prognosis.
  • 3. Data: • Males…………………………………………………...419 • Females………..……………………………...............144 • Age=56.6±8.9 years • Tumor Size=6±3.5 cm • Only Surgery.……………………………………........428 • Adjuvant Chemoimmunoradiotherapy • (5FU+thymalin/taktivin, 5-6 cycles+ Radiotherapy • 45-50Gy)………………………...................................135
  • 4. :Radical Procedures • Esophagogastrectomies Lewis (R0)…………………274 • Esophagogastrectomies Garlock (R0)………...........289 • Combined Esophagogastrectomies with Resection • of Pancreas, Liver, Trachea, Lung, Aorta, Vena • Cava Superior, Colon Transversum, Diaphragm, Pericardium, Splenectomy (R0)……………...............170 • 2-Field Lymphadenectomy…………………………….362 • 3-Field Lymphadenectomy.………………………….…201
  • 5. Staging: • T1……131 N0..….285 G1…………161 • T2……119 N1….....71 G2…………143 • T3……185 N2…...207 G3…………259 • T4……128 M0…..563 • Adenocarcinoma…………………………….323 • Squamos Cell Carcinoma…………………..230 • Mix………………….....…………………...........10 • Early Cancer……………………………...…...112 • Invasive Cancer…………………………..…..451
  • 6. Survival Rate: • Alive……………………………………….....296 (52.6%) • 5-Year Survivors…………..……………….193 (34.3%) • 10-Year Survivors………………………….105 (18.7%) • Losses………………………………………..228 (40.5%) • General Life Span=1915.4±2284.8 days • For 5-Year Survivors=4309.1±2507.4 days • For 10-Year Survivors=5860.8±2469.2 days • For Losses=629.8±324.1 days • Cumulative 5-Year Survival……………………..52.6% • Cumulative 10-Year Survival…………………....46.3% • Cumulative 20-Year Survival…………………....33.3% • Cumulative 30-Year Survival…………………....27.5%
  • 7. General Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (Kaplan-Meier) (n=563): Survival Function 5YS=52.6%; 10YS=46.3%; 20YS=33.3%; 30YS=27.5%. Complete Censored -5 0 5 10 15 20 25 30 35 40 45 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving
  • 8. Results of Univariate Analysis of Phase Transition Early—Invasive Cancer in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Invasive ECP Early ECP
  • 9. Results of Univariate Analysis of Phase Transition N0—N1-2 in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving N0 N1-2
  • 10. Results of Univariate Analysis of Localization (Upper/3 vs. Others) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Others Upper/3
  • 11. Results of Univariate Analysis of Localization (Cardioesophageal vs. Esophageal) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.000 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Cardioesophageal CP Esophageal CP
  • 12. Results of Univariate Analysis of Adjuvant Treatment (Adjuvant Chemoimmunoradiotherapy vs Surgery along) in Prediction of Esophageal Cancer Patients Survival (n=563): Cumulative Proportion Surviving (Kaplan-Meier) P=0.00375 Complete Censored 0 5 10 15 20 25 30 35 40 45 50 Years after Esophagogastrectomies 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cumulative Proportion Surviving Adjuvant Chemoradiotherapy Surgery along
  • 13. Results of Cox Regression Modeling in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=563): Cox Regression, ECP=563 Parameter Estimate Standard Error Chi- square P value 95% Lower CL 95% Upper CL Hazard Ratio Segmented Neutrophils (%) 0.060757 0.017913 11.50399 0.000694 0.02565 0.095867 1.062641 Hemorrhage of Blood 0.001559 0.000400 15.16684 0.000098 0.00077 0.002343 1.001560 Protein 0.020805 0.008677 5.74991 0.016489 0.00380 0.037811 1.021023 Residual Nitrogen 0.046396 0.010866 18.23261 0.000020 0.02510 0.067693 1.047490 Prothrombin Index 0.021704 0.006456 11.30163 0.000774 0.00905 0.034358 1.021942 Segmented Neutrophils (abs) -0.761788 0.204580 13.86576 0.000196 -1.16276 -0.360820 0.466831 Lymphocytes (abs) 0.546870 0.228784 5.71370 0.016833 0.09846 0.995277 1.727836 T1-4 0.418271 0.094110 19.75331 0.000009 0.23382 0.602724 1.519332 PT N0---N12 0.642382 0.161510 15.81930 0.000070 0.32583 0.958936 1.901004 Age 0.028998 0.007691 14.21475 0.000163 0.01392 0.044073 1.029423 Weight -0.034970 0.013244 6.97240 0.008278 -0.06093 -0.009013 0.965634 Histology -0.285581 0.125754 5.15725 0.023150 -0.53205 -0.039108 0.751577 G1-3 0.426268 0.091239 21.82750 0.000003 0.24744 0.605094 1.531532 Adjuvant Chemoimmunoradiotherapy -0.870165 0.190510 20.86250 0.000005 -1.24356 -0.496772 0.418882 Segmented Neutrophils (tot) 0.124208 0.040804 9.26585 0.002335 0.04423 0.204183 1.132252 Leucocytes/Cancer Cells -0.132461 0.037769 12.30035 0.000453 -0.20649 -0.058436 0.875937 Monocytes/Cancer Cells 1.046746 0.401192 6.80736 0.009078 0.26042 1.833067 2.848367 Upper/3 vs Others -0.456165 0.195540 5.44218 0.019656 -0.83942 -0.072914 0.633709 Eosinophils (abs) 0.887039 0.450614 3.87504 0.049009 0.00385 1.770226 2.427929
  • 14. Results of Neural Networks and Monte Carlo Computing in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421): Corect Classification Rate=100% Error=0.000 Area under ROC Curve=1.000 Factors n=421 (Neural Networks) Rank Sensitivity Healthy Cells/Cancer Cells 1 47967 Phase Transition N0---N12 2 32041 Phase Transition Early---Invasive Esophageal Cancer 3 32029 Erythrocytes/ Cancer Cells 4 21816 Thrombocytes/ Cancer Cells 5 20377 Segmented Neutrophils/ Cancer Cells 6 16849 Stick Neutrophils/ Cancer Cells 7 11869 Lymphocyes/ Cancer Cells 8 10648 Eosinophils/ Cancer Cells 9 10401 Monocytes/ Cancer Cells 10 9258 Leucocytes/ Cancer Cells 11 9196
  • 15. Results of Bootstrap Simulation in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421): Significant Factors (Number of Samples=3333) Rank Kendal Tau-A P Tumor Size 1 -0.308 0.000 Healthy Cells/Cancer Cells 2 0.305 0.000 T1-4 3 -0.299 0.000 Erythrocytes/Cancer Cells 4 0.299 0.000 Leucocytes/Cancer Cells 5 0.290 0.000 Thrombocytes/Cancer Cells 6 0.285 0.000 Lymphocytes/Cancer Cells 7 0.281 0.000 Residual Nitrogen 8 -0.275 0.000 Segmented Neutrophils/Cancer Cells 9 0.273 0.000 Phase Transition N0---N12 10 -0.239 0.000 Hemorrhage Time 11 -0.228 0.000 Monocytes/Cancer Cells 12 0.227 0.000 Phase Transition Early---Invasive Cancer 13 -0.222 0.000 Esophageal/Cardioesophageal Cancer 14 -0.191 0.000 Operation Type 15 -0.187 0.000 Eosinophils/Cancer Cells 16 0.173 0.000 Stick Neutrophils/Cancer Cells 17 0.144 0.001 G1-3 18 -0.140 0.001 Tumor Growth 19 -0.113 0.01 Erythrocytes 20 0.100 0.01 Combined Procedure 21 0.095 0.01 Weight 22 0.092 0.01 Localization 23 0.069 0.05
  • 16. Results of Kohonen Self-Organizing Neural Networks Computing in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 18. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 19. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 20. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 21. Prognostic Equation Models of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 22. SEPATH Modeling in Prediction of Esophageal Cancer Patients Survival after Complete Esophagogastrectomies (n=421):
  • 23. 5-year survival of ECP after radical procedures significantly depended on: 1) PT “Early-Invasive Cancer”; 2) PT N0--N12; 3) Cell Ratio Factors; 4) Blood Cell Circuit; 5) Biochemical Factors; 6) Hemostasis System; 7) Adjuvant Treatment; 8) EC Characteristics; 9) EC Cell Dynamics; 10) Tumor Localization; 11) Anthropometric Data; 12) Surgery Type. Conclusion:
  • 24. Optimal diagnosis and treatment strategies for ECP are: 1) Screening and Early Detection of EC; 2) Availability of Sufficient Quantity of Very Experienced Thoracoabdominal Surgeons because of Extreme Complexity of Radical Procedures; 3) Aggressive en block Surgery and Adequate Lymph Node Dissection for Completeness; 4) Precise Prediction; 5) Adjuvant Chemoimmunoradiotherapy for ECP with Unfavorable Prognosis. Conclusion:
  • 25. Address: Oleg Kshivets, M.D.,Ph.D. Consultant Thoracic, Abdominal, General Surgeon & Surgical Oncologist • e-mail: okshivets@yahoo.com • skype: okshivets • http: //www.ctsnet.org/home/okshivets