SlideShare a Scribd company logo
Basic Principles and Controversies in PET Amyloid Imaging Robert A. Koeppe, Ph.D. University of Michigan January 13, 2012
TOPICS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Reference Tissue Considerations ,[object Object],[object Object],[object Object]
Reference Tissue Considerations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Target Region Considerations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Target Region Considerations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Thresholds for Amyloid Positivity ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Analysis of ADNI AV45 scans ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
AV45 scans:  MCI subjects  (n = 305) Cerebellar Gray ;  Pons ;  White Matter ;  Cortex (5 region avg.)
AV45 scans:  MCI subjects  (n = 305)   (sorted) Cerebellar Gray ;  Pons ;  White Matter ;  Cortex (5 region avg.)
AV45 scans:  NC subjects  (n = 138)   (sorted) Cerebellar Gray ;  Pons ;  White Matter ;  Cortex (5 region avg.)
AV45 scans:  MCI subjects  (n = 305) Cerebellar Gray ;  Pons ;  White Matter ;  Cortex (5 region avg.)
Amyloid positivity threshold  –  Cerebellar Gray   ref. region
Amyloid positivity threshold  –  Pons  reference region
Amyloid positivity threshold  –  White Matter  ref. region
Amyloid positivity threshold  –  Combined   reference region
Mean   (COV)  and  Positivity Threshold* * Positivity threshold  calculated from the  100  controls (of 138) with lowest mean cortical amyloid values.  Threshold  =  region mean  +  3 SD
Tissue Concentration Ratio Differences between   Amyloid  Negative NC  and  MCI  Subjects
Amyloid Positivity by  Target  Region  Group # of Positive  for 4 ref reg approaches Lateral Frontal Medial Frontal Posterior Cingulate Superior Parietal Lateral Temporal Occipital NC 138 0 (none) 69.6% 68.8% 65.9% 66.7% 68.1% 73.9% 1 2.9% 2.2% 5.1% 3.6% 2.9% 6.5% 2 2.2% 2.2% 5.1% 3.6% 4.3% 3.6% 3 11.6% 9.4% 7.2% 7.2% 6.5% 4.3% 4 (all) 13.8% 17.4% 16.7% 18.8% 18.1% 11.6% MCI 305 0 (none) 48.9% 48.9% 48.5% 49.5% 51.1% 56.1% 1 4.9% 5.9% 7.5% 4.3% 3.9% 10.2% 2 2.3% 2.0% 2.0% 1.0% 2.3% 3.9% 3 13.4% 6.6% 8.9% 8.5% 9.8% 9.2% 4 (all) 29.5% 36.6% 33.1% 36.7% 32.8% 20.7%
Amyloid Positivity by  Reference  Region Group NC  (n=138) MCI  (n=305) # Target Regions Positive Cereb Gray Pons White Matter Combination Cereb Gray Pons White Matter Combination 0 (none) 68.1% 68.8% 67.4% 65.9% 57.0% 54.4% 42.3% 51.8% 1 2.2% 3.6% 2.2% 1.4% 2.3% 1.6% 5.6% 1.3% 2 3.6% 4.3% 3.6% 4.3% 3.0% 2.6% 2.0% 1.6% 3 2.9% 2.2% 0.7% 2.2% 1.6% 1.0% 1.3% 1.6% 4 7.2% 2.9% 2.9% 4.3% 5.6% 3.6% 3.3% 2.3% 5 3.6% 3.6% 5.8% 5.8% 11.5% 10.2% 6.6% 10.5% 6 (all) 12.3% 14.5% 17.4% 15.9% 19.0% 26.6% 39.0% 30.8%
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Scanner/Software Effects:  ‘Negative’ NC and MCI Subjects
Scanner/Software Effects:  ‘Negative’ NC and MCI Subjects
[ 18 F]AV45  vs. [ 11 C]PiB ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[ 18 F]AV45  vs. [ 11 C]PiB
AV – negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
PiB – negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
AV – positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
PiB – positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
Amyloid Surface Map Creation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MR segmentation (FreeSurfer ) Co-registered  AV45 PET
MR segmentation (FreeSurfer ) MR segmentation smoothed to PET resolution
Smoothed/segmented MR oriented to standardized PET ,[object Object],[object Object],[object Object],Pre-defined surface regions:  Peak surface pixels located on smoothed MR then applied to amyloid images Pre-defined regions in surface map orientation
Amyloid Negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization AV PiB AV PiB AV PiB AV PiB
Amyloid Positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization AV PiB AV PiB AV PiB AV PiB
AV45 Amyloid Neg/Pos ? PiB
Amyloid  Neg/Pos? AV45 PiB
Amyloid Neg/Pos ? AV45
Group average images  AV – negative (n=12)  row 1   AV – positive (n=17)  row 2 PiB – negative  (n=12)  row 3 PiB – positive  (n=17)  row 4
Group average surface maps  AV – negative  row 1   AV – positive  row 2 PiB – negative  row 3   PiB – positive  row 4
The relative values of cerebellar gray, pons and white matter are similar for PiB and AV45 (slopes ~1.0 across these structures). Slopes for cortical regions are  ~0.60-0.65  (for all reference tissue normalizations)
Cortical VOI magnitudes for  AV45  and  PiB  (+group:  mean ± SD )
Fractional  Signal  Above Cerebellar Gray Reference Region Tracer Posterior Cingulate Superior Parietal Lateral Frontal Medial Frontal Lateral Temporal Occipital Cerebellar Gray AV45 PiB 0.45±0.33 0.72±0.65 0.38±0.43 0.74±0.65 0.36±0.37 0.61±0.53 0.34±0.33 0.58±0.48 0.31±0.33 0.53±0.49 0.30±0.29 0.44±0.35 Ratio 62.0% 51.9% 59.1% 58.2% 58.1% 67.9% Pons AV45 PiB 0.44±0.37 0.74±0.54 0.38±0.46 0.77±0.78 0.36±0.41 0.64±0.66 0.33±0.37 0.61±0.60 0.30±0.38 0.55±0.61 0.29±0.33 0.45±0.43 Ratio  59.5% 48.9% 55.8% 54.9% 54.9% 65.5% White Matter AV45 PiB 0.42±0.26 0.71±0.44 0.36±0.38 0.74±0.70 0.34±0.33 0.61±0.58 0.32±0.29 0.59±0.53 0.29±0.29 0.53±0.54 0.29±0.30 0.44±0.39 Ratio 59.8% 48.8% 55.2% 54.2% 54.7% 65.4% Combined AV45 PiB 0.43±0.28 0.72±0.44 0.37±0.39 0.75±0.68 0.35±0.34 0.62±0.56 0.33±0.29 0.59±0.51 0.30±0.31 0.53±0.52 0.29±0.27 0.44±0.36 Ratio  60.0% 49.7% 56.7% 55.7% 55.9% 66.3%
Mean Z-scores for  ‘High’ Individuals relative to ‘Low’ Group Z individual   =  [ SUVr ind  –  mean(SUVr lo ) ]  /  SD(SUVr lo )  Reference Region Target VOI Method Lateral Temporal  AV / PiB Superior Parietal  AV / PiB Medial Frontal  AV / PiB Lateral Frontal  AV / PiB Posterior Cingulate  AV / PiB Occipital  AV / PiB Cereb Gray Atlas VOIs 3.8 / 8.5 3.7 / 7.2 3.6 / 8.8 3.2 / 7.5 2.1 / 4.8 2.7 / 3.9 FDG mask 8.1 / 12.2 7.5 / 9.6 5.6 / 9.3 5.4 / 8.6 3.6 / 8.1 4.9 / 7.1 MR mask 7.6 / 12.3 9.8 / 6.7 6.4 / 7.6 7.1 / 9.3 6.6 / 5.6 4.4 / 4.4 Pons Atlas VOIs 3.1 / 5.8 3.3 / 5.6 3.4 / 5.4 2.7 / 4.9 1.9 / 5.1 2.9 / 3.7 FDG mask 4.9 / 8.5 4.9 / 6.9 5.0 / 7.2 4.1 / 6.5 2.9 / 5.1 2.8 / 4.7 MR mask 6.1 / 12.4 5.1 / 8.4 5.5 / 8.2 4.9 / 8.6 4.0 / 7.2 3.5 / 5.3 White Matter Atlas VOIs 8.9 / 10.0 9.7 / 14.9 7.4 / 8.7 5.1 / 6.9 2.9 / 9.2 4.7 / 8.1 FDG mask 9.2 / 11.9 8.8 / 11.7 8.5 / 8.3 7.1 / 7.4 3.8 / 5.6 4.8 / 7.9 MR mask 7.3 / 9.9 7.7 / 14.0 8.6 / 9.5 6.8 / 9.0 6.0 / 11.1 4.1 / 7.4 Combined Atlas VOIs 6.7 / 10.9 6.3 / 9.8 6.0 / 9.2 4.9 / 7.8 3.1 / 8.6 4.1 / 6.6 FDG mask 10.6/13.4 9.6 / 10.5 7.9 / 9.1 7.1 / 8.4 4.1 / 7.4 5.2 / 8.7 MR mask 11.0/15.6 11.0/11.9 11.9/11.7 8.2 / 11.4 7.3 / 10.6 4.6 / 7.4
Summary Z-scores Measures Target Region avg z-score # best  (of 12) Reference Reg avg z-score # best (of 18) VOI Method avg z-score # best (of 24) Radiotracer avg z-score # best  (of 72) Lateral Temporal  AV / PiB Superior Parietal  AV / PiB Medial Frontal  AV / PiB Lateral Frontal  AV / PiB Posterior Cingulate  AV / PiB Occipital  AV / PiB 7.28 / 10.95 7.28 / 9.77 6.65 / 8.58 5.55 / 8.03 4.03 / 7.37 4.06 / 6.27 6  /  9 2  /  2 3  /  1 1  /  0 0  /  0 0  /  0 Combined  AV / PiB White Matter  AV / PiB Cerebellar Gray  AV / PiB Pons  AV / PiB 7.20 / 9.94 6.74 / 9.53 5.34 / 7.86 3.94 / 6.64 12  /  9 6  /  6 0  /  3 1  /  0 MR mask AV / PiB FDG mask AV / PiB Atlas VOIs AV / PiB 6.90 / 9.40 6.10 / 8.50 4.43 / 7.58 17  /  15 6  /  7 1  /  2 All Measures AV / PiB 5.81 / 8.49 5  /  67
Partial Volume Correction ,[object Object],[object Object],[object Object]
Partial Volume Correction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MR segmentation (FreeSurfer ) Co-registered  AV45 PET
Grey matter mask from segmentation White matter mask from segmentation
White matter mask smoothed to PET resolution Grey matter mask smoothed to PET resolution
Determination of White Matter Value ,[object Object]
MR-based Tissue Fractions for Cortical VOIs ** Gray matter VOI tissue fractions average  8%  lower in the  “high”  amyloid group than the “low” amyloid group  Partial Volume Fraction Lateral Frontal Medial Frontal Posterior Cingulate Superior Parietal Lateral Temporal Occipital Gray (mean ± sd) Low (n=12) 0.56±0.04 0.55±0.04 0.57±0.04 0.55±0.04 0.60±0.03 0.51±0.04 **   High (n=17) 0.52±0.03 0.51±0.04 0.50±0.05 0.50±0.04 0.56±0.04 0.48±0.04 White (mean ± sd) Low (n=12) 0.23±0.05 0.24±0.05 0.21±0.04 0.25±0.05 0.21±0.04 0.29±0.04 High (n=17) 0.25±0.03 0.27±0.05 0.26±0.06 0.29±0.05 0.25±0.04 0.31±0.06 CSF (mean ± sd) Low (n=12) 0.21±0.02 0.21±0.02 0.22±0.02 0.20±0.03 0.19±0.02 0.20±0.02 High (n=17) 0.23±0.04 0.22±0.06 0.24±0.03 0.21±0.05 0.19±0.04 0.21±0.03
Partial Volume Correction Amyloid Measures   ( Temporal Cortex )
PVC effect on individual Z-score measures   ( Cortex:  ‘Avg. 5’ )
Take-home Points and Parting Thoughts ,[object Object],[object Object],[object Object],[object Object]
Take-home Points and Parting Thoughts ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
theijes
 
Lipedemia and periodontitis article journal of arab board
Lipedemia and periodontitis article journal of arab boardLipedemia and periodontitis article journal of arab board
Lipedemia and periodontitis article journal of arab board
Walid Altayeb
 
Detection of exudates draft
Detection of exudates draftDetection of exudates draft
Detection of exudates draft
nitheshksuvarna
 
Brain Tumor Area Calculation in CT-scan image using Morphological Operations
Brain Tumor Area Calculation in CT-scan image using Morphological OperationsBrain Tumor Area Calculation in CT-scan image using Morphological Operations
Brain Tumor Area Calculation in CT-scan image using Morphological Operations
iosrjce
 
Detection of exudates draft
Detection of exudates draftDetection of exudates draft
Detection of exudates draft
nitheshksuvarna
 
Glaucoma Disease Diagnosis Using Feed Forward Neural Network
Glaucoma Disease Diagnosis Using Feed Forward Neural Network Glaucoma Disease Diagnosis Using Feed Forward Neural Network
Glaucoma Disease Diagnosis Using Feed Forward Neural Network
ijcisjournal
 
[IJET-V1I3P6]
[IJET-V1I3P6] [IJET-V1I3P6]
Advances in glaucoma-posterior segment evaluation.
Advances in glaucoma-posterior segment evaluation.Advances in glaucoma-posterior segment evaluation.
Advances in glaucoma-posterior segment evaluation.
Dr. Stuti Somani Agarwal
 
Defending
DefendingDefending
Defending
Sarah AL-Hzamat
 
Retinal image analysis using morphological process and clustering technique
Retinal image analysis using morphological process and clustering techniqueRetinal image analysis using morphological process and clustering technique
Retinal image analysis using morphological process and clustering technique
sipij
 
Automated histopathological image analysis: a review on ROI extraction
Automated histopathological image analysis: a review on ROI extractionAutomated histopathological image analysis: a review on ROI extraction
Automated histopathological image analysis: a review on ROI extraction
iosrjce
 
Glaucoma Detection and Image Processing Approaches: A Review
Glaucoma Detection and Image Processing Approaches: A ReviewGlaucoma Detection and Image Processing Approaches: A Review
Glaucoma Detection and Image Processing Approaches: A Review
DR.P.S.JAGADEESH KUMAR
 
Hrt anish
Hrt anishHrt anish
Hrt anish
Anish Kharal
 
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-imagesA novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
SrinivasaRaoNaga
 
Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...
eSAT Publishing House
 
Evaluation of preperimetric glaucoma
Evaluation of preperimetric glaucomaEvaluation of preperimetric glaucoma
Evaluation of preperimetric glaucoma
MalvikaSuresh
 
Survey of Feature Selection / Extraction Methods used in Biomedical Imaging
Survey of Feature Selection / Extraction Methods used in Biomedical ImagingSurvey of Feature Selection / Extraction Methods used in Biomedical Imaging
Survey of Feature Selection / Extraction Methods used in Biomedical Imaging
IJCSIS Research Publications
 

What's hot (19)

Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
Detection of Glaucoma using Optic Disk and Incremental Cup Segmentation from ...
 
Lipedemia and periodontitis article journal of arab board
Lipedemia and periodontitis article journal of arab boardLipedemia and periodontitis article journal of arab board
Lipedemia and periodontitis article journal of arab board
 
Detection of exudates draft
Detection of exudates draftDetection of exudates draft
Detection of exudates draft
 
Brain Tumor Area Calculation in CT-scan image using Morphological Operations
Brain Tumor Area Calculation in CT-scan image using Morphological OperationsBrain Tumor Area Calculation in CT-scan image using Morphological Operations
Brain Tumor Area Calculation in CT-scan image using Morphological Operations
 
Detection of exudates draft
Detection of exudates draftDetection of exudates draft
Detection of exudates draft
 
Hrt II
Hrt IIHrt II
Hrt II
 
Glaucoma Disease Diagnosis Using Feed Forward Neural Network
Glaucoma Disease Diagnosis Using Feed Forward Neural Network Glaucoma Disease Diagnosis Using Feed Forward Neural Network
Glaucoma Disease Diagnosis Using Feed Forward Neural Network
 
[IJET-V1I3P6]
[IJET-V1I3P6] [IJET-V1I3P6]
[IJET-V1I3P6]
 
Advances in glaucoma-posterior segment evaluation.
Advances in glaucoma-posterior segment evaluation.Advances in glaucoma-posterior segment evaluation.
Advances in glaucoma-posterior segment evaluation.
 
Defending
DefendingDefending
Defending
 
Retinal image analysis using morphological process and clustering technique
Retinal image analysis using morphological process and clustering techniqueRetinal image analysis using morphological process and clustering technique
Retinal image analysis using morphological process and clustering technique
 
Automated histopathological image analysis: a review on ROI extraction
Automated histopathological image analysis: a review on ROI extractionAutomated histopathological image analysis: a review on ROI extraction
Automated histopathological image analysis: a review on ROI extraction
 
Glaucoma Detection and Image Processing Approaches: A Review
Glaucoma Detection and Image Processing Approaches: A ReviewGlaucoma Detection and Image Processing Approaches: A Review
Glaucoma Detection and Image Processing Approaches: A Review
 
Hrt anish
Hrt anishHrt anish
Hrt anish
 
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-imagesA novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
A novel-approach-for-retinal-lesion-detection-indiabetic-retinopathy-images
 
Ijebea14 222
Ijebea14 222Ijebea14 222
Ijebea14 222
 
Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...Automatic detection of optic disc and blood vessels from retinal images using...
Automatic detection of optic disc and blood vessels from retinal images using...
 
Evaluation of preperimetric glaucoma
Evaluation of preperimetric glaucomaEvaluation of preperimetric glaucoma
Evaluation of preperimetric glaucoma
 
Survey of Feature Selection / Extraction Methods used in Biomedical Imaging
Survey of Feature Selection / Extraction Methods used in Biomedical ImagingSurvey of Feature Selection / Extraction Methods used in Biomedical Imaging
Survey of Feature Selection / Extraction Methods used in Biomedical Imaging
 

Similar to Koeppe ppt

Lec6: Pre-Processing for Nuclear Medicine Images
Lec6: Pre-Processing for Nuclear Medicine ImagesLec6: Pre-Processing for Nuclear Medicine Images
Lec6: Pre-Processing for Nuclear Medicine Images
Ulaş Bağcı
 
USP.ppt
USP.pptUSP.ppt
USP.ppt
Bkannan2
 
morphometry.pptx
morphometry.pptxmorphometry.pptx
morphometry.pptx
SarithaRani4
 
2013 machine learning_choih
2013 machine learning_choih2013 machine learning_choih
2013 machine learning_choih
Hongyoon Choi
 
ADMdx_AAIC_2016_EFA_Neurodegeneration_Poster
ADMdx_AAIC_2016_EFA_Neurodegeneration_PosterADMdx_AAIC_2016_EFA_Neurodegeneration_Poster
ADMdx_AAIC_2016_EFA_Neurodegeneration_PosterCraig Pennington
 
Addressing the growing demand for CNV and UPD detection
Addressing the growing demand for CNV and UPD detection Addressing the growing demand for CNV and UPD detection
Addressing the growing demand for CNV and UPD detection Oxford Gene Technology
 
Avery Yip poster
Avery Yip posterAvery Yip poster
Avery Yip posterAvery Yip
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
Oleg Kshivets
 
Automatic System for Detection and Classification of Brain Tumors
Automatic System for Detection and Classification of Brain TumorsAutomatic System for Detection and Classification of Brain Tumors
Automatic System for Detection and Classification of Brain Tumors
Fatma Sayed Ibrahim
 
14 00-20171207 rance-piv_c
14 00-20171207 rance-piv_c14 00-20171207 rance-piv_c
14 00-20171207 rance-piv_c
Bertrand Tavitian
 
Current Projects - Wookjin Choi
Current Projects - Wookjin ChoiCurrent Projects - Wookjin Choi
Current Projects - Wookjin Choi
Wookjin Choi
 
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
Michael DeBrota
 
D04472327
D04472327D04472327
D04472327
IOSR-JEN
 
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
jcohenadad
 
Histogram-weighted cortical thickness networks for the detection of Alzheimer...
Histogram-weighted cortical thickness networks for the detection of Alzheimer...Histogram-weighted cortical thickness networks for the detection of Alzheimer...
Histogram-weighted cortical thickness networks for the detection of Alzheimer...
Pradeep Redddy Raamana
 
Computer-aided Detection of Pulmonary Nodules using Genetic Programming
Computer-aided Detection of Pulmonary Nodules using Genetic ProgrammingComputer-aided Detection of Pulmonary Nodules using Genetic Programming
Computer-aided Detection of Pulmonary Nodules using Genetic Programming
Wookjin Choi
 
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
sipij
 
Articles -Signal & Image Processing: An International Journal (SIPIJ)
Articles -Signal & Image Processing: An International Journal (SIPIJ)Articles -Signal & Image Processing: An International Journal (SIPIJ)
Articles -Signal & Image Processing: An International Journal (SIPIJ)
sipij
 

Similar to Koeppe ppt (20)

Lec6: Pre-Processing for Nuclear Medicine Images
Lec6: Pre-Processing for Nuclear Medicine ImagesLec6: Pre-Processing for Nuclear Medicine Images
Lec6: Pre-Processing for Nuclear Medicine Images
 
USP.ppt
USP.pptUSP.ppt
USP.ppt
 
morphometry.pptx
morphometry.pptxmorphometry.pptx
morphometry.pptx
 
2013 machine learning_choih
2013 machine learning_choih2013 machine learning_choih
2013 machine learning_choih
 
ISMRM2015_FINAL
ISMRM2015_FINALISMRM2015_FINAL
ISMRM2015_FINAL
 
ADMdx_AAIC_2016_EFA_Neurodegeneration_Poster
ADMdx_AAIC_2016_EFA_Neurodegeneration_PosterADMdx_AAIC_2016_EFA_Neurodegeneration_Poster
ADMdx_AAIC_2016_EFA_Neurodegeneration_Poster
 
Addressing the growing demand for CNV and UPD detection
Addressing the growing demand for CNV and UPD detection Addressing the growing demand for CNV and UPD detection
Addressing the growing demand for CNV and UPD detection
 
Avery Yip poster
Avery Yip posterAvery Yip poster
Avery Yip poster
 
Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020Kshivets Hong Kong Sydney2020
Kshivets Hong Kong Sydney2020
 
Automatic System for Detection and Classification of Brain Tumors
Automatic System for Detection and Classification of Brain TumorsAutomatic System for Detection and Classification of Brain Tumors
Automatic System for Detection and Classification of Brain Tumors
 
MH_Report
MH_ReportMH_Report
MH_Report
 
14 00-20171207 rance-piv_c
14 00-20171207 rance-piv_c14 00-20171207 rance-piv_c
14 00-20171207 rance-piv_c
 
Current Projects - Wookjin Choi
Current Projects - Wookjin ChoiCurrent Projects - Wookjin Choi
Current Projects - Wookjin Choi
 
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
Michael DeBrota et al. - Assessment of Computational Histopathology in Thorac...
 
D04472327
D04472327D04472327
D04472327
 
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
MRI biomarkers for the spinal cord, webinar with Dr. Julien Cohen-Adad.
 
Histogram-weighted cortical thickness networks for the detection of Alzheimer...
Histogram-weighted cortical thickness networks for the detection of Alzheimer...Histogram-weighted cortical thickness networks for the detection of Alzheimer...
Histogram-weighted cortical thickness networks for the detection of Alzheimer...
 
Computer-aided Detection of Pulmonary Nodules using Genetic Programming
Computer-aided Detection of Pulmonary Nodules using Genetic ProgrammingComputer-aided Detection of Pulmonary Nodules using Genetic Programming
Computer-aided Detection of Pulmonary Nodules using Genetic Programming
 
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
Melanoma Cell Detection in Lymph Nodes Histopathological Images using Deep Le...
 
Articles -Signal & Image Processing: An International Journal (SIPIJ)
Articles -Signal & Image Processing: An International Journal (SIPIJ)Articles -Signal & Image Processing: An International Journal (SIPIJ)
Articles -Signal & Image Processing: An International Journal (SIPIJ)
 

Recently uploaded

Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Tobias Schneck
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 

Recently uploaded (20)

Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 

Koeppe ppt

  • 1. Basic Principles and Controversies in PET Amyloid Imaging Robert A. Koeppe, Ph.D. University of Michigan January 13, 2012
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. AV45 scans: MCI subjects (n = 305) Cerebellar Gray ; Pons ; White Matter ; Cortex (5 region avg.)
  • 10. AV45 scans: MCI subjects (n = 305) (sorted) Cerebellar Gray ; Pons ; White Matter ; Cortex (5 region avg.)
  • 11. AV45 scans: NC subjects (n = 138) (sorted) Cerebellar Gray ; Pons ; White Matter ; Cortex (5 region avg.)
  • 12. AV45 scans: MCI subjects (n = 305) Cerebellar Gray ; Pons ; White Matter ; Cortex (5 region avg.)
  • 13. Amyloid positivity threshold – Cerebellar Gray ref. region
  • 14. Amyloid positivity threshold – Pons reference region
  • 15. Amyloid positivity threshold – White Matter ref. region
  • 16. Amyloid positivity threshold – Combined reference region
  • 17. Mean (COV) and Positivity Threshold* * Positivity threshold calculated from the 100 controls (of 138) with lowest mean cortical amyloid values. Threshold = region mean + 3 SD
  • 18. Tissue Concentration Ratio Differences between Amyloid Negative NC and MCI Subjects
  • 19. Amyloid Positivity by Target Region Group # of Positive for 4 ref reg approaches Lateral Frontal Medial Frontal Posterior Cingulate Superior Parietal Lateral Temporal Occipital NC 138 0 (none) 69.6% 68.8% 65.9% 66.7% 68.1% 73.9% 1 2.9% 2.2% 5.1% 3.6% 2.9% 6.5% 2 2.2% 2.2% 5.1% 3.6% 4.3% 3.6% 3 11.6% 9.4% 7.2% 7.2% 6.5% 4.3% 4 (all) 13.8% 17.4% 16.7% 18.8% 18.1% 11.6% MCI 305 0 (none) 48.9% 48.9% 48.5% 49.5% 51.1% 56.1% 1 4.9% 5.9% 7.5% 4.3% 3.9% 10.2% 2 2.3% 2.0% 2.0% 1.0% 2.3% 3.9% 3 13.4% 6.6% 8.9% 8.5% 9.8% 9.2% 4 (all) 29.5% 36.6% 33.1% 36.7% 32.8% 20.7%
  • 20. Amyloid Positivity by Reference Region Group NC (n=138) MCI (n=305) # Target Regions Positive Cereb Gray Pons White Matter Combination Cereb Gray Pons White Matter Combination 0 (none) 68.1% 68.8% 67.4% 65.9% 57.0% 54.4% 42.3% 51.8% 1 2.2% 3.6% 2.2% 1.4% 2.3% 1.6% 5.6% 1.3% 2 3.6% 4.3% 3.6% 4.3% 3.0% 2.6% 2.0% 1.6% 3 2.9% 2.2% 0.7% 2.2% 1.6% 1.0% 1.3% 1.6% 4 7.2% 2.9% 2.9% 4.3% 5.6% 3.6% 3.3% 2.3% 5 3.6% 3.6% 5.8% 5.8% 11.5% 10.2% 6.6% 10.5% 6 (all) 12.3% 14.5% 17.4% 15.9% 19.0% 26.6% 39.0% 30.8%
  • 21.
  • 22. Scanner/Software Effects: ‘Negative’ NC and MCI Subjects
  • 23.
  • 24.
  • 25. AV – negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
  • 26. PiB – negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
  • 27. AV – positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
  • 28. PiB – positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization
  • 29.
  • 30. MR segmentation (FreeSurfer ) Co-registered AV45 PET
  • 31. MR segmentation (FreeSurfer ) MR segmentation smoothed to PET resolution
  • 32.
  • 33. Amyloid Negative Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization AV PiB AV PiB AV PiB AV PiB
  • 34. Amyloid Positive Cerebellar Gray Normalization White Matter Normalization Pons Normalization Combined Normalization AV PiB AV PiB AV PiB AV PiB
  • 36. Amyloid Neg/Pos? AV45 PiB
  • 38. Group average images AV – negative (n=12) row 1 AV – positive (n=17) row 2 PiB – negative (n=12) row 3 PiB – positive (n=17) row 4
  • 39. Group average surface maps AV – negative row 1 AV – positive row 2 PiB – negative row 3 PiB – positive row 4
  • 40. The relative values of cerebellar gray, pons and white matter are similar for PiB and AV45 (slopes ~1.0 across these structures). Slopes for cortical regions are ~0.60-0.65 (for all reference tissue normalizations)
  • 41. Cortical VOI magnitudes for AV45 and PiB (+group: mean ± SD )
  • 42. Fractional Signal Above Cerebellar Gray Reference Region Tracer Posterior Cingulate Superior Parietal Lateral Frontal Medial Frontal Lateral Temporal Occipital Cerebellar Gray AV45 PiB 0.45±0.33 0.72±0.65 0.38±0.43 0.74±0.65 0.36±0.37 0.61±0.53 0.34±0.33 0.58±0.48 0.31±0.33 0.53±0.49 0.30±0.29 0.44±0.35 Ratio 62.0% 51.9% 59.1% 58.2% 58.1% 67.9% Pons AV45 PiB 0.44±0.37 0.74±0.54 0.38±0.46 0.77±0.78 0.36±0.41 0.64±0.66 0.33±0.37 0.61±0.60 0.30±0.38 0.55±0.61 0.29±0.33 0.45±0.43 Ratio 59.5% 48.9% 55.8% 54.9% 54.9% 65.5% White Matter AV45 PiB 0.42±0.26 0.71±0.44 0.36±0.38 0.74±0.70 0.34±0.33 0.61±0.58 0.32±0.29 0.59±0.53 0.29±0.29 0.53±0.54 0.29±0.30 0.44±0.39 Ratio 59.8% 48.8% 55.2% 54.2% 54.7% 65.4% Combined AV45 PiB 0.43±0.28 0.72±0.44 0.37±0.39 0.75±0.68 0.35±0.34 0.62±0.56 0.33±0.29 0.59±0.51 0.30±0.31 0.53±0.52 0.29±0.27 0.44±0.36 Ratio 60.0% 49.7% 56.7% 55.7% 55.9% 66.3%
  • 43. Mean Z-scores for ‘High’ Individuals relative to ‘Low’ Group Z individual = [ SUVr ind – mean(SUVr lo ) ] / SD(SUVr lo ) Reference Region Target VOI Method Lateral Temporal AV / PiB Superior Parietal AV / PiB Medial Frontal AV / PiB Lateral Frontal AV / PiB Posterior Cingulate AV / PiB Occipital AV / PiB Cereb Gray Atlas VOIs 3.8 / 8.5 3.7 / 7.2 3.6 / 8.8 3.2 / 7.5 2.1 / 4.8 2.7 / 3.9 FDG mask 8.1 / 12.2 7.5 / 9.6 5.6 / 9.3 5.4 / 8.6 3.6 / 8.1 4.9 / 7.1 MR mask 7.6 / 12.3 9.8 / 6.7 6.4 / 7.6 7.1 / 9.3 6.6 / 5.6 4.4 / 4.4 Pons Atlas VOIs 3.1 / 5.8 3.3 / 5.6 3.4 / 5.4 2.7 / 4.9 1.9 / 5.1 2.9 / 3.7 FDG mask 4.9 / 8.5 4.9 / 6.9 5.0 / 7.2 4.1 / 6.5 2.9 / 5.1 2.8 / 4.7 MR mask 6.1 / 12.4 5.1 / 8.4 5.5 / 8.2 4.9 / 8.6 4.0 / 7.2 3.5 / 5.3 White Matter Atlas VOIs 8.9 / 10.0 9.7 / 14.9 7.4 / 8.7 5.1 / 6.9 2.9 / 9.2 4.7 / 8.1 FDG mask 9.2 / 11.9 8.8 / 11.7 8.5 / 8.3 7.1 / 7.4 3.8 / 5.6 4.8 / 7.9 MR mask 7.3 / 9.9 7.7 / 14.0 8.6 / 9.5 6.8 / 9.0 6.0 / 11.1 4.1 / 7.4 Combined Atlas VOIs 6.7 / 10.9 6.3 / 9.8 6.0 / 9.2 4.9 / 7.8 3.1 / 8.6 4.1 / 6.6 FDG mask 10.6/13.4 9.6 / 10.5 7.9 / 9.1 7.1 / 8.4 4.1 / 7.4 5.2 / 8.7 MR mask 11.0/15.6 11.0/11.9 11.9/11.7 8.2 / 11.4 7.3 / 10.6 4.6 / 7.4
  • 44. Summary Z-scores Measures Target Region avg z-score # best (of 12) Reference Reg avg z-score # best (of 18) VOI Method avg z-score # best (of 24) Radiotracer avg z-score # best (of 72) Lateral Temporal AV / PiB Superior Parietal AV / PiB Medial Frontal AV / PiB Lateral Frontal AV / PiB Posterior Cingulate AV / PiB Occipital AV / PiB 7.28 / 10.95 7.28 / 9.77 6.65 / 8.58 5.55 / 8.03 4.03 / 7.37 4.06 / 6.27 6 / 9 2 / 2 3 / 1 1 / 0 0 / 0 0 / 0 Combined AV / PiB White Matter AV / PiB Cerebellar Gray AV / PiB Pons AV / PiB 7.20 / 9.94 6.74 / 9.53 5.34 / 7.86 3.94 / 6.64 12 / 9 6 / 6 0 / 3 1 / 0 MR mask AV / PiB FDG mask AV / PiB Atlas VOIs AV / PiB 6.90 / 9.40 6.10 / 8.50 4.43 / 7.58 17 / 15 6 / 7 1 / 2 All Measures AV / PiB 5.81 / 8.49 5 / 67
  • 45.
  • 46.
  • 47. MR segmentation (FreeSurfer ) Co-registered AV45 PET
  • 48. Grey matter mask from segmentation White matter mask from segmentation
  • 49. White matter mask smoothed to PET resolution Grey matter mask smoothed to PET resolution
  • 50.
  • 51. MR-based Tissue Fractions for Cortical VOIs ** Gray matter VOI tissue fractions average 8% lower in the “high” amyloid group than the “low” amyloid group Partial Volume Fraction Lateral Frontal Medial Frontal Posterior Cingulate Superior Parietal Lateral Temporal Occipital Gray (mean ± sd) Low (n=12) 0.56±0.04 0.55±0.04 0.57±0.04 0.55±0.04 0.60±0.03 0.51±0.04 ** High (n=17) 0.52±0.03 0.51±0.04 0.50±0.05 0.50±0.04 0.56±0.04 0.48±0.04 White (mean ± sd) Low (n=12) 0.23±0.05 0.24±0.05 0.21±0.04 0.25±0.05 0.21±0.04 0.29±0.04 High (n=17) 0.25±0.03 0.27±0.05 0.26±0.06 0.29±0.05 0.25±0.04 0.31±0.06 CSF (mean ± sd) Low (n=12) 0.21±0.02 0.21±0.02 0.22±0.02 0.20±0.03 0.19±0.02 0.20±0.02 High (n=17) 0.23±0.04 0.22±0.06 0.24±0.03 0.21±0.05 0.19±0.04 0.21±0.03
  • 52. Partial Volume Correction Amyloid Measures ( Temporal Cortex )
  • 53. PVC effect on individual Z-score measures ( Cortex: ‘Avg. 5’ )
  • 54.
  • 55.

Editor's Notes

  1. Both cerebral and cerebellar white matter
  2. Won’t spend much time on the first question
  3. Subjects plots in order of Subject ID xxx_S_yyyy. Original ADNI Reference of Atlas cereb gray voi
  4. Note the two sections of correlated cortex values with Pons and White Matter. Caused by variability in cerebellar gray values. Likely negative if cortex is markedly lower than pons or white matter. Likely positive if cortex similar to pons, and nearing white matter.
  5. Same for controls, except fewer positive scans. Also white matter values a little higher, hence cortex normalized to white matter will be lower.
  6. Note tighter distribution of alternative ref regions using combined region, Also best distinction of cortex
  7. Threshold defined as mean + 3 std devs of the lowest 100 controls
  8. Point out: 1) tresholds highly dependent on reference , slight dependence on target. 2) Combined more suitable because the amyloid “negative” cortical values have lower variance !
  9. Note effect of lower white matter relative to cerebellum/pons in MCI, causes cortical values in amyloid negative to be slightly higher.
  10. Regions show similar sensitivity except for occipital (least positive)
  11. Note white matter has most subjects positive. Remember that white matter is lower in MCI relative to cerebellum and pons.
  12. Mostly scatter correction effects: which effects image contrast: HRRT old highest, then BioGraph, then GE, then Phlips, then HR+ then HRRT new Effects reduced by white matter or combined normalization
  13. Standardized image scale. If all references regions worked perfectly, then images using different reference regions would be scaled and hence look exactly the same.
  14. Just the n=17
  15. Note negative subjects haven’t changed much, as PVC effects CBL and CTX about the same. In amyloid positive subjects, get considerable enhancement