January 9, 2015
Today:
Vocabulary
x
y
1-1
(0,4)
(4,0)
-2 Time
Height/ft.
The Cost of a Phone Call
y = .16x
What is a Relation?
{ (1,16) ; (2,32) ; (3,48) ; (4,64) }
Example 1:
Functions: A Short Video
Example of a Mapping
Steps
1. Draw ovals
2. List domain
3. List range
4. Draw lines
to connect
-3
0
3
6
1
2
3
4
Create a mapping of the following relation and state
whether or not it is a function.
{(-4,-1) ; (-4, 0) ; (5, 1) ; (3, 9)}
-4
5
3
-1
0
1
9
Using the Vertical Line Test
Use the vertical line test to check
if the relation is a function only if
the relation is already graphed.
1. Hold a straightedge (pen, ruler,
etc) vertical to your graph.
2. Drag the straightedge from left
to right on the graph.
3. If the straightedge intersects
the graph once in each spot ,
then it is a function.
4. If the straightedge intersects the
graph more than once in any
spot, it is not a function.
A function!
……….
function
function
Not a function
Not a function
……….
Function Rules f(x)..g(x)..h(x)
……….
y = -3x + 2
y = -3(-1) + 2
y = 3 + 2
y = 5
1a. Domain: {-4, -2, 3, 4} Range: {-2, 2, 1}
1b. Domain: {0, 1, 7} Range: {-6, 2, -4, 4}
2a. 2b.
3a. 3b.
Function Not a Function
-4
-2
3
4
-1
2
1
0
1
7
-6
2
-4
4
Not a
Function
……….
Practice
Steps
1. Sub in each domain value in one @ a time.
2. Solve for y in each
3. List y values in braces.
y = 3x + 1
y = 3(-4) + 1
y = -12 + 1
y = -11
y = 3x + 1
y = 3(0) + 1
y = 0 + 1
y = 1
Ans. { -11, 1, 7}
y = 3x + 1
y = 3(2) + 1
y = 6 + 1
y = 7
y = -2x + 3
y = -2(-5) + 3
y = 10 + 3
y = 13
y = -2x + 3
y = -2(-2) + 3
y = 4 +3
y = 7
y = -2x + 3
y = -2(6) + 3
y = -12 +3
y = -9
1.
2.
January 9, 2015 intro to functions
January 9, 2015 intro to functions
January 9, 2015 intro to functions

January 9, 2015 intro to functions

  • 1.
  • 3.
  • 5.
  • 6.
    The Cost ofa Phone Call y = .16x
  • 7.
    What is aRelation? { (1,16) ; (2,32) ; (3,48) ; (4,64) }
  • 9.
  • 11.
  • 13.
    Example of aMapping Steps 1. Draw ovals 2. List domain 3. List range 4. Draw lines to connect -3 0 3 6 1 2 3 4
  • 14.
    Create a mappingof the following relation and state whether or not it is a function. {(-4,-1) ; (-4, 0) ; (5, 1) ; (3, 9)} -4 5 3 -1 0 1 9
  • 15.
    Using the VerticalLine Test Use the vertical line test to check if the relation is a function only if the relation is already graphed. 1. Hold a straightedge (pen, ruler, etc) vertical to your graph. 2. Drag the straightedge from left to right on the graph. 3. If the straightedge intersects the graph once in each spot , then it is a function. 4. If the straightedge intersects the graph more than once in any spot, it is not a function. A function! ……….
  • 16.
  • 17.
  • 18.
  • 20.
    y = -3x+ 2 y = -3(-1) + 2 y = 3 + 2 y = 5
  • 22.
    1a. Domain: {-4,-2, 3, 4} Range: {-2, 2, 1} 1b. Domain: {0, 1, 7} Range: {-6, 2, -4, 4} 2a. 2b. 3a. 3b. Function Not a Function -4 -2 3 4 -1 2 1 0 1 7 -6 2 -4 4 Not a Function
  • 23.
  • 24.
    Practice Steps 1. Sub ineach domain value in one @ a time. 2. Solve for y in each 3. List y values in braces.
  • 25.
    y = 3x+ 1 y = 3(-4) + 1 y = -12 + 1 y = -11 y = 3x + 1 y = 3(0) + 1 y = 0 + 1 y = 1 Ans. { -11, 1, 7} y = 3x + 1 y = 3(2) + 1 y = 6 + 1 y = 7 y = -2x + 3 y = -2(-5) + 3 y = 10 + 3 y = 13 y = -2x + 3 y = -2(-2) + 3 y = 4 +3 y = 7 y = -2x + 3 y = -2(6) + 3 y = -12 +3 y = -9 1. 2.