Artificial neural networks (ANNs) are computational models inspired by the human brain that are used for predictive analytics and nonlinear statistical modeling. ANNs can learn complex patterns and relationships from large datasets through a process of training, and then make predictions on new data. The three most common types of ANN architectures are multilayer perceptrons, radial basis function networks, and self-organizing maps. ANNs have been successfully applied across many domains, including finance, medicine, engineering, and biology, to solve problems involving classification, prediction, and nonlinear pattern recognition.