IRREGULAR SEQUENCE
COUNTER
Name: Abdullah Al Mamun Shiam Sub: Digital Logic Design
ID: 18-37075-1 Sec: C
THE PROBLEM
 My id is – 18-37075-1.
 I have to generate a counter sequence with the 5 middle digits of my id.
 ABCDE corresponds to 37075
 But the digit 7 is twice here so I have added 1 this to :
 3->7->0->7+1->5
=>3->7->0->8->5
A B C D E
3 7 0 8 5
STEP 1: BINARY OF THE DECIMAL SEQUENCE
STEP 2: IDENTIFYING THE NUMBER OF FLIP-FLOP
Here the maximum decimal value is 8. When we convert 8 to binary we get 1000 which is a 4 bit output. So, we’ll
require 4 flip-flops here to design our system.
J1 Q1
K1 Q1ˊ
J1 Q1
K1 Q1ˊ
J2 Q2
K2 Q2ˊ
J3 Q3
K3 Q3ˊ
STEP 3: COUNTER TABLE (FILLING THE PRESENT STATE
AND NEXT STATE VALUES)
Decimal
values Present State
Next State
Present State Next State Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0
3 7 0 0 1 1 0 1 1 1
7 0 0 1 1 1 0 0 0 0
0 8 0 0 0 0 1 0 0 0
8 5 1 0 0 0 0 1 0 1
5 3 0 1 0 1 0 0 1 1
STEP 4: CREATING TRANSITION TABLE
Basic Transition Table Shorter form of the transition
Table
STEP 5: FILLING UP THE VALUES OF J0, K0, J1, K1, J2, K2,
J3, K3
Decimal Present State Next State Inputs
Present
State
Next
State
Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2 J3 K3
3 7 0 0 1 1 0 1 1 1 X 0 X 0 1 X 0 X
7 0 0 1 1 1 0 0 0 0 X 1 X 1 X 1 0 X
0 8 0 0 0 0 1 0 0 0 0 X 0 X 0 X 1 X
8 5 1 0 0 0 0 1 0 1 1 X 0 X 1 X X 1
5 3 0 1 0 1 0 0 1 1 X 0 1 X X 1 0 X
Q
P
Q
N
J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0
STEP 6: USE KARNAUGH-MAP TO DERIVE THE LOGIC
REQUIREMENTS
00 01 11 10
0 X X X
X X X X
X X X X
1 X X X
00
01
11
10
J0=Q3
Q1Q0
Q3Q2
K0= Q2.Q1
00 01 11 10
X X 0 X
X 0 1 X
X X X X
X X X X
00
01
11
10
Q3Q2
Q1Q0
STEP 6: CONTINUED….
00 01 11 10
0 X X X
X 1 X X
X X X X
0 X X X
00
01
11
10
J1= Q0
K1= Q2
Q1Q0
Q3Q2
00 01 11 10
X X 0 X
X X 1 X
X X X X
X X X X
00
01
11
10
Q3Q2
Q1Q0
STEP 6: CONTINUED…..
00 01 11 10
0 X 1 X
X X X X
X X X X
1 X X X
Q3Q2
00
01
11
10
J2=Q0+Q3 K2= 1
Q1Q0
00 01 11 10
X X X X
X 1 1 X
X X X X
X X X X
Q3Q2
00
01
11
10
Q1Q0
STEP 6: CONTINUED…..
K3=1
00 01 11 10
X X X X
X X X X
X X X X
1 X X X
Q3Q2
00
01
11
10
Q1Q0
00 01 11 10
1 X 0 X
X 0 0 X
X X X X
X X X X
Q3Q2
00
01
11
10
Q1Q0
J3= Q0ˊ
STEP 6: CONNECTIONS
The equations acquired from k-maps are as follows:
1. J0=Q3
2. K0= Q2.Q1
3. J1= Q0
4. K1= Q2
5. ​J2=Q0+Q3
6. K2= 1
7. J3= Q0ˊ
8. K3=1
STEP 7: CONNECTING THE OUTPUT IN DIAGRAM
J0 Q0
K0 Q0ˊ
J1 Q1
K1 Q1ˊ
J2 Q2
K2 Q2ˊ
J3 Q3
K3 Q3ˊ
HIGH HIGH
Fig: Circuit Diagram
FOR YOUR ATTENTION
THANK YOU

Irregular sequence counter

  • 1.
    IRREGULAR SEQUENCE COUNTER Name: AbdullahAl Mamun Shiam Sub: Digital Logic Design ID: 18-37075-1 Sec: C
  • 2.
    THE PROBLEM  Myid is – 18-37075-1.  I have to generate a counter sequence with the 5 middle digits of my id.  ABCDE corresponds to 37075  But the digit 7 is twice here so I have added 1 this to :  3->7->0->7+1->5 =>3->7->0->8->5 A B C D E 3 7 0 8 5
  • 3.
    STEP 1: BINARYOF THE DECIMAL SEQUENCE
  • 4.
    STEP 2: IDENTIFYINGTHE NUMBER OF FLIP-FLOP Here the maximum decimal value is 8. When we convert 8 to binary we get 1000 which is a 4 bit output. So, we’ll require 4 flip-flops here to design our system. J1 Q1 K1 Q1ˊ J1 Q1 K1 Q1ˊ J2 Q2 K2 Q2ˊ J3 Q3 K3 Q3ˊ
  • 5.
    STEP 3: COUNTERTABLE (FILLING THE PRESENT STATE AND NEXT STATE VALUES) Decimal values Present State Next State Present State Next State Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 3 7 0 0 1 1 0 1 1 1 7 0 0 1 1 1 0 0 0 0 0 8 0 0 0 0 1 0 0 0 8 5 1 0 0 0 0 1 0 1 5 3 0 1 0 1 0 0 1 1
  • 6.
    STEP 4: CREATINGTRANSITION TABLE Basic Transition Table Shorter form of the transition Table
  • 7.
    STEP 5: FILLINGUP THE VALUES OF J0, K0, J1, K1, J2, K2, J3, K3 Decimal Present State Next State Inputs Present State Next State Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 J0 K0 J1 K1 J2 K2 J3 K3 3 7 0 0 1 1 0 1 1 1 X 0 X 0 1 X 0 X 7 0 0 1 1 1 0 0 0 0 X 1 X 1 X 1 0 X 0 8 0 0 0 0 1 0 0 0 0 X 0 X 0 X 1 X 8 5 1 0 0 0 0 1 0 1 1 X 0 X 1 X X 1 5 3 0 1 0 1 0 0 1 1 X 0 1 X X 1 0 X Q P Q N J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0
  • 8.
    STEP 6: USEKARNAUGH-MAP TO DERIVE THE LOGIC REQUIREMENTS 00 01 11 10 0 X X X X X X X X X X X 1 X X X 00 01 11 10 J0=Q3 Q1Q0 Q3Q2 K0= Q2.Q1 00 01 11 10 X X 0 X X 0 1 X X X X X X X X X 00 01 11 10 Q3Q2 Q1Q0
  • 9.
    STEP 6: CONTINUED…. 0001 11 10 0 X X X X 1 X X X X X X 0 X X X 00 01 11 10 J1= Q0 K1= Q2 Q1Q0 Q3Q2 00 01 11 10 X X 0 X X X 1 X X X X X X X X X 00 01 11 10 Q3Q2 Q1Q0
  • 10.
    STEP 6: CONTINUED….. 0001 11 10 0 X 1 X X X X X X X X X 1 X X X Q3Q2 00 01 11 10 J2=Q0+Q3 K2= 1 Q1Q0 00 01 11 10 X X X X X 1 1 X X X X X X X X X Q3Q2 00 01 11 10 Q1Q0
  • 11.
    STEP 6: CONTINUED….. K3=1 0001 11 10 X X X X X X X X X X X X 1 X X X Q3Q2 00 01 11 10 Q1Q0 00 01 11 10 1 X 0 X X 0 0 X X X X X X X X X Q3Q2 00 01 11 10 Q1Q0 J3= Q0ˊ
  • 12.
    STEP 6: CONNECTIONS Theequations acquired from k-maps are as follows: 1. J0=Q3 2. K0= Q2.Q1 3. J1= Q0 4. K1= Q2 5. ​J2=Q0+Q3 6. K2= 1 7. J3= Q0ˊ 8. K3=1
  • 13.
    STEP 7: CONNECTINGTHE OUTPUT IN DIAGRAM J0 Q0 K0 Q0ˊ J1 Q1 K1 Q1ˊ J2 Q2 K2 Q2ˊ J3 Q3 K3 Q3ˊ HIGH HIGH Fig: Circuit Diagram
  • 14.