SlideShare a Scribd company logo
1 of 23
Download to read offline
  	
  	
   	
  
Iridium Satellite Communications System
As	
  Utilized	
  by	
  	
  
The	
  Deep-­‐Ocean	
  Assessment	
  &	
  Reporting	
  of	
  Tsunami	
  Project	
  Warning	
  System	
  
	
  
	
  
	
  
	
  
	
  
	
  
May	
  3,	
  2015	
  
David	
  Regan	
  
EN.635.411.81.SP15	
  Principles	
  of	
  Network	
  Engineering	
  
Professor	
  John	
  Romano	
  
Johns	
  Hopkins	
  University	
  
	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
1	
  
Introduction	
  &	
  Approach	
  ............................................................................................	
  2	
  
Scope	
  Limits	
  ................................................................................................................	
  2	
  
Terrestrial	
  Components	
  Overview	
  ...............................................................................	
  2	
  
Space-­‐Based	
  Components	
  Overview	
  ...........................................................................	
  4	
  
Network	
  Links	
  .............................................................................................................	
  6	
  
Tsunameter	
  <	
  -­‐-­‐	
  >	
  Buoy	
  ...........................................................................................................................................	
  6	
  
Narrative	
  &	
  Technical	
  Details	
  ...............................................................................................................................	
  6	
  
Buoy	
  <	
  -­‐-­‐	
  >	
  Iridium	
  Satellite	
  ...............................................................................................................................	
  11	
  
Narrative	
  &	
  Technical	
  Details	
  ............................................................................................................................	
  11	
  
Iridium	
  <	
  -­‐-­‐	
  >	
  Iridium	
  Inter-­‐Satellite	
  Links	
  (ISL)	
  ......................................................................................	
  12	
  
Narrative	
  .....................................................................................................................................................................	
  12	
  
Iridium	
  <	
  -­‐-­‐	
  >	
  Ground	
  Station	
  ............................................................................................................................	
  13	
  
Discussion	
  ....................................................................................................................................................................	
  13	
  
Routing	
  ......................................................................................................................	
  13	
  
Latency	
  Calculations	
  ...................................................................................................	
  15	
  
Total	
  Transfer	
  Time	
  ....................................................................................................	
  16	
  
Conclusions	
  and	
  Further	
  Research	
  ..............................................................................	
  16	
  
References	
  .................................................................................................................	
  18	
  
APPENDIX	
  A	
  –	
  X-­‐Modem	
  Protocol	
  Structure	
  ...............................................................	
  19	
  
APPENDIX	
  B	
  -­‐	
  Images	
  .................................................................................................	
  20	
  
	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
2	
  
Abstract	
  
This	
  paper	
  analyzes	
  how	
  the	
  Iridium	
  Satellite	
  Communications	
  System	
  is	
  used	
  by	
  The	
  National	
  Oceanic	
  
and	
  Atmospheric	
  Administration’s	
  (NOAA)	
  Tsunami	
  Warning	
  System.	
  Each	
  network	
  link	
  is	
  evaluated	
  
providing	
  a	
  basis	
  for	
  understanding	
  the	
  overall	
  system	
  that	
  yields	
  a	
  robust	
  and	
  trustworthy	
  tsunami	
  
warning	
  system.	
  
Introduction	
  &	
  Approach	
  
This	
  paper	
  is	
  organized	
  as	
  follows;	
  first,	
  a	
  general	
  overview	
  of	
  both	
  the	
  space	
  and	
  
terrestrial	
  based	
  components	
  of	
  The	
  Deep-­‐Ocean	
  Assessment	
  and	
  Reporting	
  of	
  
Tsunamis	
  (DART)	
  Version	
  II	
  project	
  will	
  been	
  made,	
  then	
  we	
  will	
  delve	
  into	
  
individual	
  network	
  links,	
  including	
  those	
  provided	
  by	
  Iridium.	
  A	
  focus	
  on	
  the	
  
acoustic	
  link	
  is	
  made,	
  since	
  it	
  is	
  relatively	
  unusual.	
  This	
  will	
  provide	
  a	
  clear	
  and	
  
logical	
  context	
  from	
  which	
  to	
  understand	
  the	
  entire	
  networked	
  warning	
  system.	
  As	
  
each	
  link	
  is	
  analyzed,	
  end-­‐to-­‐end	
  networking	
  achievements	
  are	
  revealed.	
  
Scope	
  Limits	
  
This	
  paper	
  is	
  focused	
  on	
  the	
  DART	
  and	
  Iridium	
  network	
  links	
  and	
  uses	
  publically	
  
available	
  information	
  in	
  the	
  process.	
  Some	
  detail	
  related	
  to	
  the	
  Iridium	
  system	
  are	
  
proprietary,	
  therefore	
  extrapolation	
  from	
  
known	
  systems	
  is	
  used	
  to	
  make	
  the	
  best	
  
approximation	
  of	
  missing	
  detail.	
  	
  
Terrestrial	
  Components	
  Overview	
  
For	
  more	
  than	
  30	
  years,	
  NOAA	
  researched	
  
the	
  causes	
  and	
  impacts	
  of	
  tsunamis	
  and	
  in	
  
response	
  to	
  a	
  massive	
  tsunami	
  on	
  March	
  28,	
  
1964	
  in	
  Alaska,	
  NOAA	
  began	
  development	
  of	
  
the	
  first	
  Tsunami	
  Warning	
  Center.	
  The	
  
foundation	
  of	
  the	
  warning	
  system	
  is	
  DART,	
  
whose	
  buoys	
  and	
  bottom-­‐sensor	
  
components	
  are	
  shown	
  in	
  (Figure	
  1).	
  	
  
Figure	
  1:	
  DART	
  System	
  Components	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
3	
  
By	
  2008,	
  there	
  were	
  36	
  buoys	
  installed	
  in	
  DART’s	
  Pacific	
  Ocean	
  zone	
  providing	
  
detailed	
  sea	
  level,	
  temperature,	
  barometric	
  pressure,	
  GPS	
  coordinates,	
  timing	
  and	
  
other	
  buoy-­‐specific	
  information	
  [1].	
  The	
  secret	
  of	
  DART’s	
  success	
  is	
  the	
  use	
  of	
  global	
  
communication	
  links	
  provided	
  by	
  the	
  Iridium	
  Satellite	
  Constellation	
  (Iridium).	
  	
  
Each	
  buoy	
  is	
  installed	
  with	
  a	
  companion	
  tsunameter,	
  as	
  depicted	
  in	
  (Figure	
  2)	
  (also	
  
known	
  as	
  a	
  bottom	
  pressure	
  recorder)[1],	
  a	
  that	
  collectively	
  constitutes	
  the	
  
transmission	
  system	
  for	
  the	
  water-­‐based	
  link	
  for	
  DART.	
  	
  Buoy’s	
  have	
  GPS	
  receivers	
  
to	
  maintain	
  geo-­‐location	
  for	
  servicing,	
  and	
  for	
  tsunami	
  calculations.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Messaging	
  Path	
  	
  
DART	
  uses	
  Iridium	
  as	
  the	
  backbone	
  for	
  transmitting	
  tsunami	
  data	
  from	
  buoys	
  that	
  
are	
  sited	
  in	
  the	
  open	
  ocean.	
  An	
  RS232C	
  interface	
  with	
  AT	
  commands	
  is	
  used	
  for	
  
accessing	
  satellites	
  and	
  PPP	
  is	
  the	
  LLC	
  layer	
  protocol	
  used.	
  Messages	
  destined	
  for	
  
the	
  tsunami-­‐warning	
  center	
  are	
  triggered	
  by	
  tsunami	
  waves	
  passing	
  over	
  a	
  buoy	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
a	
  The	
  tsunameter’s	
  data	
  storage:	
  “The	
  FLASH	
  memory	
  provides	
  four	
  years	
  continuous	
  backup	
  of	
  the	
  entire	
  raw	
  pressure	
  
record,	
  at	
  a	
  15-­‐second	
  sample	
  period.	
  Preserving	
  the	
  entire	
  time	
  series	
  in	
  memory	
  allows	
  post-­‐deployment	
  engineering	
  
review	
  of	
  the	
  instrument’s	
  performance,	
  as	
  well	
  as	
  scientific	
  analysis	
  of	
  the	
  entire	
  deployment	
  record”.	
  For	
  more	
  information,	
  
refer	
  to:	
  Sea-­‐Bird	
  Electronics.	
  http://www.seabird.com/sbe54-­‐tsunami-­‐pressure-­‐sensor	
  
	
  
Figure	
  2:	
  DART	
  System	
  Boundaries	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
4	
  
(or	
  from	
  seismograph-­‐driven	
  auto	
  generated	
  commands)	
  that	
  activates	
  a	
  real-­‐time	
  
data	
  feed	
  from	
  the	
  tsunameter	
  to	
  the	
  surface	
  buoy.	
  Data	
  received	
  at	
  the	
  surface	
  buoy	
  
from	
  the	
  tsunameter	
  and	
  is	
  then	
  forwarded	
  to	
  an	
  Iridium	
  Satellite,	
  which	
  transmits	
  
the	
  data	
  either	
  to	
  a	
  ground	
  station	
  (GS),	
  or	
  to	
  an	
  adjacent	
  satellite	
  via	
  inter-­‐satellite	
  
links	
  (ISLs),	
  which	
  is	
  then	
  forwarded	
  to	
  the	
  nearest	
  GS	
  for	
  appropriate	
  distribution.	
  	
  
A	
  typical	
  GS	
  is	
  shown	
  in	
  (Figure	
  3)	
  (gateway)	
  –	
  there	
  are	
  
two	
  b	
  of	
  them	
  -­‐	
  with	
  the	
  primary	
  being	
  in	
  Tempe,	
  AZ,	
  and	
  
each	
  has	
  uplinks/downlinks	
  using	
  the	
  Ka	
  band	
  over	
  ranges	
  
29.1-­‐29.3	
  GHz	
  and	
  19.1-­‐19.6	
  GHz	
  respectively.	
  	
  The	
  
gateway	
  interfaces	
  with	
  the	
  PSTN	
  	
  and	
  ISPs.	
  
Space-­‐Based	
  Components	
  Overview	
  
Iridium	
  consists	
  of	
  66	
  low	
  Earth	
  orbit	
  (LEO)	
  
satellites	
  c	
  distributed	
  over	
  6	
  polar	
  orbital	
  planes	
  
that	
  are	
  approximately	
  31.6	
  degrees	
  apart	
  
longitudinally	
  at	
  86.4	
  degrees	
  inclination[2]	
  that	
  
co-­‐rotate.	
  A	
  seam	
  develops	
  between	
  plane	
  1	
  &	
  6	
  
where	
  the	
  satellites	
  are	
  counter-­‐rotating.	
  As	
  shown	
  
in	
  (Figure	
  4),	
  each	
  Iridium	
  satellite	
  produces	
  a	
  
footprint	
  that	
  overlaps	
  adjacent	
  satellites’	
  
footprints	
  providing	
  seamless	
  ground	
  coverage.	
  
Also	
  note	
  that	
  as	
  satellites	
  approach	
  the	
  poles,	
  they	
  overlap	
  progressively	
  –	
  this	
  is	
  
important	
  due	
  to	
  an	
  obvious	
  contention	
  issue	
  that	
  will	
  be	
  discussed	
  later.	
  
	
  “In	
  space,	
  each	
  Iridium	
  satellite	
  is	
  linked	
  to	
  four	
  others	
  —	
  two	
  in	
  the	
  same	
  orbital	
  
plane	
  and	
  one	
  in	
  each	
  adjacent	
  plane	
  —	
  creating	
  a	
  dynamic	
  network	
  that	
  routes	
  
traffic	
  among	
  satellites	
  to	
  ensure	
  a	
  continuous	
  connection,	
  everywhere	
  [2]”.	
  	
  
Iridium’s	
  routing	
  algorithms	
  are	
  proprietary,	
  but	
  the	
  mostly	
  likely	
  approach	
  is	
  Ad-­‐
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
b	
  After	
  contacting	
  Iridium	
  Communications,	
  and	
  an	
  exhaustive	
  Internet	
  search,	
  it	
  appears	
  that	
  there	
  are	
  2	
  ground	
  stations	
  left	
  
out	
  of	
  the	
  original	
  13.	
  
c	
  Additional	
  in-­‐orbit	
  spares	
  are	
  held	
  at	
  a	
  lower	
  orbit	
  and	
  are	
  moved	
  up	
  to	
  operational	
  height	
  as	
  needed.	
  All	
  of	
  the	
  spares	
  have	
  
been	
  used	
  presently,	
  but	
  the	
  new	
  Iridium	
  NEXT	
  is	
  to	
  be	
  launched	
  this	
  year	
  (2015)	
  in	
  October	
  on	
  the	
  current	
  timeline.	
  This	
  will	
  
include	
  all	
  new	
  satellites	
  with	
  higher	
  capacity,	
  although	
  it	
  is	
  beyond	
  the	
  scope	
  of	
  this	
  paper	
  to	
  analyze	
  the	
  new	
  system.	
  
Figure	
  3:	
  Iridium	
  Ground	
  
Station	
  
Figure	
  4:	
  Iridium	
  Satellite	
  Footprints	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
5	
  
hoc	
  On-­‐Demand	
  Distance	
  Vector	
  (AODV)[3]	
  routing,	
  which	
  considers	
  the	
  
complexity,	
  transmission	
  overhead,	
  dynamic	
  update	
  convergence	
  and	
  infinite	
  loop	
  
issues	
  related	
  to	
  not	
  only	
  a	
  routed	
  environment,	
  but	
  also	
  one	
  that	
  is	
  continually	
  in	
  
flux.	
  Select	
  aspects	
  of	
  AODV	
  are	
  considered	
  and	
  described	
  later	
  in	
  the	
  routing	
  
section.	
  	
  
Each	
  satellite	
  has	
  three	
  antennas	
  with	
  16	
  spot	
  
beams	
  (48	
  spot	
  beams	
  per	
  satellite)	
  and	
  240	
  
channels	
  for	
  user	
  communications	
  utilizing	
  L-­‐
band	
  (1-­‐2	
  GHz)	
  over	
  the	
  range	
  1616-­‐1626.5	
  
MHz	
  for	
  a	
  bandwidth	
  of	
  10.5	
  MHz	
  [4]	
  .	
  Within	
  
each	
  satellite’s	
  footprint	
  (Figure	
  5),	
  48	
  
separate	
  spot-­‐beams	
  (cells)	
  are	
  identified	
  
alphabetically	
  A-­‐L	
  in	
  a	
  pattern	
  that	
  repeats	
  
four	
  times).	
  As	
  noted,	
  since	
  the	
  space	
  vehicles	
  
converge	
  near	
  the	
  poles,	
  footprint-­‐overlap	
  becomes	
  an	
  issue	
  –	
  to	
  maintain	
  a	
  uniform	
  
loading	
  on	
  the	
  SVs,	
  outer	
  cells	
  in	
  the	
  overall	
  footprint	
  (Figure	
  4)	
  are	
  selectively	
  
turned	
  off	
  at	
  SV	
  convergence	
  latitudes.	
  Similar	
  to	
  cellular	
  systems,	
  Iridium	
  reuses	
  
frequency	
  bands;	
  specifically	
  with	
  a	
  reuse	
  factor	
  of	
  12	
  as	
  reflected	
  in	
  (Figure	
  5).	
  	
  
Reuse	
  allows	
  limited	
  spectrum	
  to	
  be	
  repetitively	
  provisioned	
  provided	
  sufficient	
  
spatial	
  isolation	
  between	
  duplicated	
  frequency	
  ranges.	
  The	
  ability	
  to	
  employ	
  this	
  
reuse	
  capability	
  is	
  a	
  function	
  of	
  the	
  attenuation	
  characteristics	
  of	
  the	
  specific	
  
frequencies	
  [5]	
  i.e.	
  as	
  the	
  power	
  density	
  of	
  a	
  given	
  frequency	
  attenuates,	
  it	
  becomes	
  
so	
  weak	
  that	
  it	
  can	
  be	
  ignored,	
  and	
  the	
  frequency	
  can	
  be	
  “re-­‐amplified”	
  and	
  used	
  
once	
  more	
  for	
  a	
  different	
  unique	
  channel.	
  
The	
  240	
  available	
  channels	
  per	
  satellite	
  are	
  divided	
  among	
  the	
  spot	
  beams	
  yielding	
  
20	
  channels	
  per	
  spot	
  beam.	
  	
  Each	
  satellite’s	
  10.5	
  MHz	
  user-­‐bandwidth	
  is	
  evenly	
  
distributed	
  over	
  240	
  channels	
  using	
  FDMA,	
  where	
  each	
  channel	
  is	
  provided	
  with	
  
41.67	
  kHz	
  	
  (minus	
  guard-­‐bands)	
  of	
  bandwidth	
  as	
  visualized	
  in	
  (Figure	
  6).	
  The	
  
remaining	
  500	
  kHz	
  is	
  used	
  to	
  provide	
  approximately	
  2	
  kHz	
  of	
  guard	
  band	
  between	
  
channels.	
  This	
  arrangement	
  facilitates	
  managing	
  many	
  unique	
  user	
  channels.	
  
Figure	
  5:	
  Iridium	
  Spot	
  Beams	
  (Cells)	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
6	
  
TDMA	
  is	
  also	
  utilized,	
  but	
  specific	
  
details	
  are	
  not	
  published	
  by	
  Iridium	
  
except	
  that	
  the	
  frame	
  is	
  90	
  ms	
  long	
  
as	
  depicted	
  in	
  (Figure	
  7)	
  and	
  
contains	
  4	
  full-­‐duplex	
  user-­‐channels	
  
with	
  a	
  frame	
  burst	
  rate	
  of	
  50	
  kbps.	
  
Time	
  slots	
  effectively	
  multiply	
  the	
  20	
  frequency	
  channels	
  into	
  80	
  after	
  time	
  division	
  
slotting	
  into	
  the	
  90-­‐millisecond	
  TDMA	
  frame.	
  A	
  maximum	
  bit	
  rate	
  for	
  a	
  single	
  user	
  
channel	
  is	
  2.4	
  kbps,	
  although	
  if	
  multilink	
  point	
  to	
  point	
  protocol	
  is	
  used,	
  channels	
  
may	
  be	
  bonded	
  for	
  higher	
  effective	
  bandwidth	
  and	
  capacity	
  [6].	
  The	
  link	
  between	
  
the	
  tsunameter	
  and	
  buoy	
  is	
  not	
  
as	
  sophisticated	
  as	
  Iridium’s,	
  
yet	
  it	
  has	
  unique	
  
characteristics	
  –	
  particularly	
  its	
  
carrier	
  and	
  media.	
  	
  
	
  
Network	
  Links	
  
Tsunameter	
  <	
  -­‐-­‐	
  >	
  Buoy	
  	
  
Narrative	
  &	
  Technical	
  Details	
  
The	
  tsunameter	
  and	
  buoy	
  both	
  use	
  acoustic	
  transducers	
  to	
  transmit	
  digital	
  data	
  
over	
  analog	
  carrier	
  up	
  to	
  a	
  distance	
  of	
  6,000	
  meters	
  in	
  unguided	
  media	
  (seawater).	
  
Modulation	
  of	
  the	
  digital	
  data	
  is	
  accomplished	
  by	
  use	
  of	
  multilevel	
  frequency	
  shift	
  
keying	
  (MFSK),	
  which	
  is	
  highly	
  amplified	
  at	
  the	
  transducer	
  (dB	
  193)	
  as	
  it	
  produces	
  
the	
  acoustic	
  signal	
  in	
  waterd.	
  	
  
The	
  tsunami-­‐messaging	
  channel	
  opens	
  when	
  the	
  tsunameter	
  sends	
  a	
  transmission	
  to	
  
the	
  buoy	
  (or	
  buoy	
  to	
  tsunameter)	
  via	
  acoustic	
  modem	
  every	
  six	
  hours	
  in	
  standard	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
d	
  There	
  is	
  an	
  entire	
  field	
  of	
  study	
  dedicated	
  to	
  underwater	
  acoustic	
  networking.	
  See	
  
https://seagrant.mit.edu/publications/MITSG_08-­‐37J.pdf	
  “Underwater	
  Acoustic	
  Communications	
  and	
  
Networking:	
  Recent	
  Advances	
  and	
  Future	
  
Challenges”	
  
Figure	
  7:	
  User	
  Channels	
  
Figure	
  6:	
  TDMA	
  User	
  Slots	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
7	
  
mode.	
  The	
  tsunameter	
  always	
  records	
  readings	
  every	
  15	
  seconds	
  from	
  its	
  sensors	
  
and	
  saves	
  the	
  data	
  to	
  flash	
  memory.	
  	
  If	
  the	
  tsunameter	
  detects	
  a	
  pressure	
  variation	
  
determined	
  to	
  be	
  a	
  tsunami,	
  (determined	
  by	
  detection	
  algorithm)[7],	
  or	
  if	
  an	
  
automated	
  remote	
  command	
  is	
  received,	
  the	
  tsunameter	
  goes	
  into	
  an	
  event-­‐mode	
  
where	
  a	
  file	
  with	
  120,	
  one-­‐minute	
  average	
  readings	
  are	
  sent	
  to	
  the	
  buoy	
  
immediately	
  vs.	
  the	
  six	
  hour	
  interval	
  in	
  standard	
  mode.	
  	
  Whether	
  standard	
  or	
  event	
  
mode,	
  the	
  transmissions	
  are	
  forwarded	
  to	
  
the	
  tsunami	
  warning	
  center	
  using	
  Iridium.	
  	
  
(Figure	
  8)	
  shows	
  basic	
  blocks	
  of	
  the	
  
tsunameter’s	
  computer	
  system.	
  
	
  
	
  
	
  
	
  
The	
  message	
  payload	
  is	
  a	
  small	
  (2	
  KB	
  +/-­‐)	
  xml	
  file	
  containing	
  key	
  data	
  including	
  
water	
  pressure	
  
(leads	
  to	
  wave	
  
height),	
  date-­‐time,	
  
system-­‐status,	
  and	
  
temperature.	
  A	
  more	
  
detailed	
  diagram	
  of	
  
internal	
  flow	
  appears	
  
in	
  (Figure	
  9).	
  
	
  
	
  
Figure	
  8:	
  Tsunameter	
  Computer	
  Block	
  
Diagram	
  
Figure	
  9:	
  Tsunameter	
  Logic	
  Diagram	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
8	
  
The	
  tsunameter	
  <-­‐-­‐>	
  water	
  <-­‐-­‐>	
  buoy	
  communication	
  channel	
  is	
  a	
  clear	
  instance	
  of	
  
the	
  basic	
  communications	
  system	
  model,	
  which	
  is	
  repeated	
  throughout	
  the	
  DART	
  
system	
  with	
  varying	
  degrees	
  of	
  complexity.	
  	
  	
  	
  
	
  
The	
  communication	
  model	
  maps	
  to	
  the	
  tsunameter/transducer	
  (source	
  system),	
  
seawater	
  (transmission	
  system)	
  and	
  the	
  buoy/transceiver	
  (destination	
  system)	
  
assuming	
  we	
  are	
  sending	
  signal	
  from	
  the	
  bottom	
  up	
  as	
  depicted	
  in	
  (Figure	
  10).	
  	
  	
  
“The	
  acoustic	
  modems	
  on	
  the	
  DART	
  II	
  systems	
  are	
  configured	
  to	
  operate	
  in	
  the	
  9-­‐
14kHz	
  frequency	
  band	
  at	
  600	
  baud,	
  using	
  MFSK	
  modulation	
  and	
  error-­‐correcting	
  
coding	
  [8]”.	
  X-­‐modem	
  protocol	
  is	
  used	
  and	
  its	
  packet	
  structure	
  is	
  described	
  in	
  
Appendix	
  A.	
  Maximum	
  throughput	
  is	
  controlled	
  by	
  the	
  maximum	
  receive	
  rate	
  of	
  the	
  
acoustic	
  modems,	
  fade	
  and	
  noise,	
  which	
  is	
  theoretically	
  2400	
  bps	
  [9].	
  The	
  actual	
  
throughput	
  from	
  NOAA	
  is	
  shown	
  at	
  600	
  baud	
  and	
  it	
  is	
  assumed	
  that	
  r	
  =	
  (1	
  data	
  
element	
  /	
  1	
  signal	
  element)	
  for	
  600	
  bps.	
  A	
  complete	
  latency	
  chart	
  will	
  be	
  presented	
  
after	
  all	
  the	
  links	
  are	
  defined.	
  To	
  clarify,	
  we	
  have	
  digital	
  data	
  stored	
  for	
  analog	
  
transmission	
  on	
  the	
  tsunameter,	
  therefore,	
  we	
  need	
  to	
  modulate	
  the	
  data	
  for	
  analog	
  
transmission,	
  which	
  is	
  done	
  with	
  a	
  multilevel	
  frequency	
  shift-­‐keying	
  (MFSK)	
  
approach	
  at	
  the	
  physical	
  layer.	
  
From	
  the	
  surface	
  buoy,	
  data	
  is	
  transmitted	
  to	
  the	
  switched	
  Iridium	
  satellite	
  network,	
  
then	
  to	
  a	
  GS	
  that	
  forwards	
  to	
  the	
  Tsunami	
  Warning	
  Center	
  e.	
  	
  It	
  takes	
  30.16	
  seconds	
  
for	
  a	
  2KB	
  message	
  to	
  arrive	
  complete	
  at	
  the	
  buoy	
  as	
  will	
  be	
  shown.	
  	
  For	
  analysis,	
  a	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
e	
  Ground	
  stations	
  have	
  9-­‐foot	
  diameter	
  dishes	
  and	
  link	
  users	
  to	
  Internet/PSTN.	
  	
  
Figure	
  10:	
  Tsunameter-­‐Buoy	
  Communication	
  Model	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
9	
  
depth	
  of	
  3000	
  meters	
  is	
  chosen	
  (approximate	
  average)	
  and	
  speed	
  of	
  sound	
  in	
  water	
  
is	
  defined	
  to	
  be	
  1500	
  m/s.	
  Further,	
  a	
  single	
  data	
  file	
  size	
  of	
  2KB	
  is	
  used	
  for	
  
transmission	
  calculation.	
  	
  First,	
  sound	
  propagation	
  in	
  water	
  over	
  distance	
  3000	
  
meters.	
  
𝑇 𝑝 =
𝑑
𝑟
=
3000𝑚
1500𝑚/𝑠
= 2  𝑠𝑒𝑐𝑜𝑛𝑑𝑠	
  
Secondly,	
  our	
  2	
  KB	
  file	
  is	
  processed	
  by	
  x-­‐modem	
  protocol,	
  which	
  has	
  a	
  128-­‐byte	
  
payload	
  per	
  132-­‐byte	
  packet,	
  requires	
  this	
  many	
  packets:	
  
	
  
16000  𝑏𝑖𝑡  𝑓𝑖𝑙𝑒
128  𝑏𝑦𝑡𝑒𝑠/𝑝𝑎𝑐𝑘𝑒𝑡   𝑥  (
8𝑏𝑖𝑡𝑠
𝑏𝑦𝑡𝑒𝑠)
  = 15.625  𝑝𝑎𝑐𝑘𝑒𝑡𝑠  𝑟𝑜𝑢𝑛𝑑𝑒𝑑  𝑡𝑜  16	
  
	
  
Total	
  transmit	
  size	
  for	
  16	
  packets:	
  
16  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 132  𝑏𝑦𝑡𝑒𝑠
𝑝𝑎𝑐𝑘𝑒𝑡
=   2112  𝑏𝑦𝑡𝑒𝑠	
  
	
  
Transmission	
  Time	
  for	
  a	
  2KB	
  file	
  over	
  600	
  bps	
  channel:	
  
2112  𝑏𝑦𝑡𝑒𝑠 8
𝑏𝑖𝑡𝑠
𝑏𝑦𝑡𝑒
1
𝑠𝑒𝑐𝑜𝑛𝑑
600  𝑏𝑖𝑡𝑠
= 28.16  𝑠𝑒𝑐𝑜𝑛𝑑𝑠	
  
Considering	
  that	
  data	
  is	
  being	
  transmitted	
  through	
  3000	
  meters	
  of	
  seawater,	
  an	
  
efficiency	
  of	
  94.7%	
  is	
  impressive	
  (2KB/2.112KB).	
  
In	
  summary,	
  it	
  takes	
  two	
  seconds	
  for	
  the	
  setup	
  notice	
  to	
  arrive	
  at	
  the	
  buoy.	
  Ignoring	
  
actual	
  setup	
  processing	
  delay	
  and	
  queuing	
  at	
  buoy,	
  it	
  takes	
  28.16	
  seconds	
  to	
  
complete	
  the	
  data	
  transfer	
  for	
  a	
  total	
  of	
  30.16	
  seconds.	
  Time	
  for	
  resend	
  of	
  bad	
  
packets	
  not	
  factored.	
  Table	
  1	
  contains	
  summary	
  details	
  and	
  short	
  narratives	
  to	
  
complete	
  the	
  review	
  of	
  the	
  tsunameter	
  to	
  buoy	
  link.	
  
Table	
  1:	
  Communication	
  Links	
  Overview	
  –	
  Tsunameter	
  -­‐-­‐	
  >	
  Buoy	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
10	
  
Link	
  Features	
  @	
  
given	
  OSI	
  Layer	
  	
  
Tsunameter	
  -­‐-­‐>	
  Buoy	
  
Application	
   Data	
  collected	
  from	
  pressure,	
  temperature	
  and	
  other	
  sensors	
  
and	
  written	
  to	
  a	
  space-­‐delimited	
  text	
  file	
  by	
  C	
  application	
  
Presentation	
   XML	
  data	
  file	
  –	
  space	
  delimited	
  text	
  
Session	
   Half	
  Duplex	
  operation	
  due	
  to	
  open	
  water	
  medium,	
  manages	
  
link	
  
Transport	
   Checksums	
  and	
  X-­‐modem	
  protocol	
  	
  –	
  no	
  port	
  addressing	
  
entire	
  packets	
  of	
  data	
  with	
  many	
  blocks	
  are	
  sent	
  without	
  
requesting	
  an	
  acknowledgement	
  from	
  the	
  receiver	
  after	
  each	
  
block.	
  When	
  blocks	
  are	
  missing	
  or	
  erroneous,	
  receiver	
  
requests	
  resend	
  of	
  individual	
  blocks.	
  	
  	
  
Network:	
  	
   X-­‐modem	
  protocol	
  packetizes	
  data	
  file	
  bit-­‐stream	
  	
  
DLL:LLC/MAC	
   	
  
Physical	
   Sea	
  Water	
  Media:	
  
Characteristics:	
  	
  pressure,	
  temperature,	
  salinity,	
  density	
  
Speed	
  of	
  Sound	
  in	
  water	
  taken	
  as	
  1500	
  m/s	
  
	
  
Bi-­‐directional	
  Acoustic	
  Telemetry	
  in	
  Water	
  (Media);	
  Benthos	
  
ATM-­‐880	
  Telesonar	
  modem/AT	
  	
  
Multiplexing	
  
Multilevel	
  Frequency	
  Shift	
  Keying	
  approach	
  is	
  used	
  to	
  
modulate	
  the	
  binary	
  stream	
  into	
  an	
  analog	
  for	
  transport	
  via	
  
media.	
  	
  
	
  
The	
  source	
  level	
  is	
  at	
  193	
  dB	
  re	
  1ųPa	
  @	
  1	
  m	
  with	
  a	
  40	
  VDC	
  
supply.	
  
Bandwidth	
   9-­‐14kHz	
  	
  =	
  5kHz	
  
Throughput	
  
Ranges	
  
Trans	
  Rate	
  	
  Tx	
  	
  =	
  150	
  -­‐	
  15360	
  bps	
  
Receive	
  Rate	
  Rx	
  =	
  150	
  –	
  2400	
  bps	
  	
  (see	
  signaling	
  rate	
  for	
  
actual)	
  
Signaling	
  Rate	
   Actual	
  -­‐	
  600	
  baud	
  (signal	
  elements/second)	
  assumed	
  1/1=r	
  
Propagation	
  T	
   Sound	
  in	
  water	
  –	
  taken	
  as	
  1500	
  m/s;	
  	
  T	
  (propagation)	
  t=d/r	
  
Latency	
   Sum	
  of	
  Propagation	
  times:	
  signal	
  propagation	
  and	
  message	
  
transfer	
  time	
  included;	
  queuing	
  and	
  processing	
  times	
  at	
  each	
  
node	
  ignored	
  for	
  this	
  analysis	
  
Attenuation	
   Not	
  addressed	
  
Distortion	
  
(fading	
  from	
  
multipath)	
  
UW	
  sound	
  propagation	
  is	
  characterized	
  as	
  either	
  vertical	
  or	
  
horizontal.	
  Horizontal	
  calculations	
  have	
  to	
  consider	
  seafloor	
  
reflections,	
  while	
  not	
  in	
  vertical;	
  issues	
  with	
  multi-­‐path	
  
reflections	
  confusing	
  the	
  receiver	
  –	
  handled	
  algorithmically	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
11	
  
Noise	
  	
  
(Whale	
  Song)	
  
Straight	
  SNR=	
  Signal/Noise;	
  	
  SNRdB	
  =10log10SNR	
  
Not	
  evaluated	
  in	
  this	
  analysis	
  
Data	
  Rate	
  
Limits	
  –	
  
Noiseless	
  
Channel	
  
Nyquist	
  Bit	
  Rate:	
  Not	
  evaluated	
  on	
  this	
  link	
  in	
  this	
  analysis.	
  
2	
  x	
  bandwidth	
  x	
  log2	
  L,	
  where	
  L	
  is	
  number	
  of	
  signal	
  level	
  
Data	
  Rate	
  
Limits	
  -­‐	
  Noisy	
  
Shannon	
  Capacity:	
  Not	
  evaluated	
  on	
  this	
  link	
  
Bandwidth	
  x	
  log2	
  (1+SNR)	
  
Bandwidth	
  
Delay	
  Product	
  
(600-­‐bit/s)(2	
  s)	
  =	
  1200	
  bits	
  
	
  
Buoy	
  <	
  -­‐-­‐	
  >	
  Iridium	
  Satellite	
  
Narrative	
  &	
  Technical	
  Details	
  
As	
  shown	
  previously,	
  data	
  arrives	
  at	
  the	
  buoy	
  and	
  is	
  queued	
  and	
  or	
  stored.	
  Then,	
  the	
  
Iridium	
  transceiver	
  is	
  activated	
  and	
  the	
  file	
  is	
  transmitted	
  via	
  the	
  uplink	
  to	
  Iridium	
  
for	
  switching	
  to	
  the	
  Tsunami	
  Warning	
  Center.	
  As	
  will	
  be	
  shown	
  in	
  the	
  next	
  section,	
  
propagation	
  time	
  is	
  2.60	
  ms	
  and	
  file	
  transmission	
  time	
  is	
  6.67	
  seconds	
  for	
  the	
  2	
  KB	
  
data	
  file.	
  Iridium	
  uses	
  FDMA	
  and	
  TDMA,	
  both	
  at	
  the	
  media	
  access	
  sub-­‐layer	
  of	
  the	
  
DLL	
  for	
  channelization,	
  and	
  time	
  division	
  duplexing	
  (TDD)	
  at	
  the	
  physical	
  layer.	
  	
  
Channels	
  are	
  comprised	
  of	
  a	
  frequency	
  band	
  and	
  time	
  slot.	
  Multilink	
  Point	
  to	
  Point	
  
Protocol	
  (MPPP),	
  at	
  the	
  DLC	
  layer	
  [5]	
  controls	
  establishing,	
  maintaining,	
  configuring	
  
and	
  terminating	
  endpoint	
  connections	
  as	
  well	
  as	
  data	
  transfer[5].	
  
Table	
  2:	
  Communication	
  Link	
  Overview	
  –	
  Buoy	
  -­‐-­‐	
  >	
  Iridium	
  
Link	
  Features	
  @	
  
given	
  OSI	
  Layer	
  
Buoy	
  -­‐-­‐>	
  Iridium	
  	
  
Application	
   	
  Proprietary	
  
Presentation	
   Not	
  defined	
  -­‐	
  proprietary	
  
Session	
   Not	
  defined	
  -­‐	
  proprietary	
  
Transport	
   Checksums	
  and	
  X-­‐modem	
  protocol	
  –	
  no	
  port	
  addressing	
  
Network:	
  	
   Defined	
  in	
  section	
  entitled	
  “routing”	
  
DLL:DLC/MAC	
   Muiltilink	
  PPP	
  at	
  LLC	
  and	
  FDMA/TDMA	
  at	
  MAC	
  
Physical	
  
The	
  radio	
  frequency	
  transmission	
  in	
  the	
  1565	
  MHz	
  to	
  1626.5	
  
MHz	
  range	
  and	
  the	
  data	
  transmission	
  rates	
  are	
  at	
  2.4	
  kilobits	
  
per	
  second.	
  	
  
Bandwidth	
   5kHz	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
12	
  
Throughput	
   2.4	
  kbps	
  constrained	
  at	
  ground-­‐user	
  modem,	
  although	
  can	
  be	
  
upgraded	
  to	
  higher	
  rate	
  based	
  on	
  channel	
  bonding	
  via	
  inverse	
  
multiplexing	
  or	
  MLPPP	
  
Signaling	
  Rate	
   See	
  section	
  titled	
  “Space-­‐based	
  components	
  overview”	
  
Propagation	
  T	
   See	
  latency	
  calculations	
  above	
  
Latency	
   See	
  latency	
  calculations	
  above	
  
Attenuation(db)	
  
Db=10log10(P2/
P1)	
  
Not	
  addressed	
  –	
  data	
  not	
  published	
  
Distortion	
  
(fading	
  from	
  
multipath)	
  
Not	
  addressed	
  -­‐	
  data	
  not	
  published	
  
Noise	
   Not	
  addressed	
  -­‐	
  data	
  not	
  published	
  
Data	
  Rate	
  
Limits	
  –	
  
Noiseless	
  
Channel	
  
Nyquist	
  Bit	
  Rate:	
  Not	
  addressed	
  
	
  
2	
  x	
  bandwidth	
  x	
  log2	
  L,	
  where	
  L	
  is	
  number	
  of	
  signal	
  level	
  
Data	
  Rate	
  
Limits	
  -­‐	
  Noisy	
  
Shannon	
  Capacity:	
  	
  Not	
  addressed	
  –	
  data	
  not	
  published	
  
Bandwidth	
  x	
  log2	
  (1+SNR)	
  
Delay	
  Product	
   Time	
  to	
  fill	
  channel	
  with	
  data/bits:	
  2400bps	
  x	
  1s/1000ms	
  x	
  
2.05	
  ms	
  =	
  4.92	
  ms	
  
	
  
Iridium	
  <	
  -­‐-­‐	
  >	
  Iridium	
  Inter-­‐Satellite	
  Links	
  (ISL)	
  
Narrative	
  
Data	
  delivered	
  to	
  Iridium	
  cross	
  its	
  nodes	
  over	
  inter-­‐satellite	
  links	
  (ISL)	
  that	
  operate	
  
at	
  22.55	
  –	
  23.55	
  GHz	
  at	
  25	
  Mbps	
  using	
  the	
  slotted	
  TDMA,	
  which	
  is	
  transmitted	
  with	
  
QPSK.	
  Maximum	
  user	
  throughput	
  is	
  not	
  known	
  due	
  to	
  absence	
  of	
  data	
  on	
  ISL	
  
overhead,	
  data	
  compression	
  and	
  factors.	
  Frequency	
  conversion	
  of	
  received	
  signal	
  
allows	
  the	
  Iridium	
  to	
  receive	
  and	
  transmit	
  without	
  interference,	
  since	
  frequencies	
  
utilized	
  for	
  inter-­‐satellite,	
  uplink,	
  downlink	
  and	
  user	
  links	
  are	
  different.	
  Crosslink	
  
delay	
  is	
  shown	
  to	
  be	
  13.33	
  ms	
  over	
  an	
  average	
  distance	
  between	
  satellites	
  of	
  4000	
  
meters.	
  	
  
An	
  interesting	
  issue	
  arises	
  as	
  the	
  satellites	
  converge	
  at	
  the	
  poles	
  remembering	
  that	
  
each	
  orbit	
  is	
  in	
  a	
  polar	
  plane.	
  The	
  48	
  spot	
  beams	
  begin	
  to	
  increasingly	
  overlap	
  
creating	
  a	
  situation	
  where	
  the	
  spot	
  beams	
  need	
  to	
  be	
  managed	
  to	
  avoid	
  interference.	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
13	
  
It	
  is	
  assumed	
  that	
  this	
  is	
  done	
  dynamically	
  by	
  algorithm	
  where	
  selected	
  spot	
  beams	
  
are	
  progressively	
  shutdown	
  at	
  the	
  periphery	
  of	
  the	
  main	
  footprint	
  [3].	
  As	
  defined	
  in	
  
the	
  space-­‐based	
  components	
  section,	
  there	
  are	
  six	
  orbital	
  planes	
  with	
  11	
  satellites	
  
each.	
  They	
  all	
  rotate	
  in	
  the	
  same	
  direction,	
  which	
  gives	
  rise	
  to	
  a	
  “seam”	
  orbit	
  -­‐-­‐orbits	
  
that	
  are	
  in	
  counter	
  rotation	
  relative	
  to	
  each	
  other.	
  This	
  is	
  managed	
  by	
  blocking	
  
communication	
  between	
  the	
  “seams”	
  [10],	
  since	
  Doppler	
  effects	
  would	
  create	
  
unacceptable	
  delay	
  and	
  overhead	
  based	
  on	
  frequency-­‐shifting	
  transcriptions.	
  
Iridium	
  <	
  -­‐-­‐	
  >	
  Ground	
  Station	
  
Discussion	
  
From	
  a	
  networking	
  perspective,	
  the	
  Iridium	
  nodes	
  are	
  in	
  two	
  planes:	
  the	
  orbital	
  and	
  
terrestrial	
  [11].	
  The	
  Iridium	
  network	
  is	
  similar	
  to	
  a	
  cellular	
  network	
  in	
  that	
  static	
  
base-­‐stations	
  communicate	
  with	
  moving	
  devices	
  and	
  orders	
  handoffs	
  as	
  signal	
  
strength	
  drops;	
  in	
  our	
  case,	
  the	
  cells	
  are	
  moving.	
  Another	
  difference	
  is	
  that	
  cellular	
  
base	
  stations	
  switch	
  directly	
  into	
  a	
  terrestrially	
  based	
  network,	
  not	
  to	
  other	
  cellular	
  
base	
  stations	
  using	
  wireless	
  transmissions.	
  This	
  is	
  an	
  important	
  distinction	
  since	
  the	
  
ground-­‐based	
  network	
  has	
  more	
  capacity,	
  while	
  the	
  space-­‐based	
  Iridium	
  is	
  
constrained	
  by	
  available	
  RF	
  throughput	
  and	
  signaling	
  overhead.	
  	
  
There	
  appears	
  to	
  be	
  two	
  ground	
  station	
  gateways	
  (Hawaii	
  and	
  Arizona)	
  and	
  21	
  
antennas	
  distributed	
  geographically,	
  yet	
  this	
  is	
  difficult	
  to	
  verify	
  as	
  Iridium	
  
Communications	
  Inc.	
  	
  does	
  not	
  respond	
  to	
  questions	
  related	
  to	
  details	
  of	
  its	
  system	
  
(warnings	
  manifest	
  if	
  enough	
  research	
  is	
  done).	
  Gateways	
  ensure	
  space	
  to	
  ground	
  
link	
  availability,	
  no	
  matter	
  whether	
  a	
  satellite	
  is	
  passing	
  immediately	
  overhead,	
  or	
  
not	
  given	
  that	
  traffic	
  is	
  routed	
  to	
  the	
  closest	
  GS	
  by	
  the	
  constellation.	
  Routing	
  is	
  
examined	
  in	
  the	
  next	
  section.	
  	
  
Routing	
  
Iridium	
  does	
  not	
  advertise	
  its	
  routing	
  algorithm,	
  and	
  speculation	
  abounds	
  about	
  it	
  
in	
  the	
  aerospace	
  industry,	
  yet	
  researchers’	
  models	
  reveal	
  that	
  a	
  modified	
  Bellman-­‐
Ford	
  (mBF)	
  algorithm	
  is	
  likely	
  [3],	
  which	
  is	
  no	
  mean	
  feat	
  given	
  such	
  a	
  highly	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
14	
  
dynamic	
  system,	
  especially	
  if	
  we	
  are	
  relying	
  on	
  distance	
  vector	
  updates	
  
propagating	
  through	
  the	
  system.	
  Given	
  that	
  system	
  details	
  are	
  scarce,	
  the	
  next	
  
section	
  covers	
  a	
  macro-­‐view	
  of	
  a	
  potential	
  configuration.	
  	
  	
  
If	
  we	
  consider	
  the	
  Iridium	
  system	
  as	
  two	
  elements	
  acting	
  on	
  two	
  separate	
  planes,	
  	
  
that	
  of	
  the	
  Iridium	
  constellation,	
  and	
  that	
  of	
  ground	
  nodes,	
  updating	
  routing	
  tables	
  
based	
  on	
  node-­‐to-­‐node-­‐propagated	
  updates	
  seems	
  unnecessary	
  (if	
  we	
  could	
  rapidly	
  
and	
  autonomously	
  calculate	
  each	
  node’s	
  position).	
  From	
  that	
  perspective,	
  consider	
  the	
  
following;	
  inter-­‐satellite	
  distances	
  can	
  be	
  determined	
  instantaneously	
  based	
  on	
  GPS	
  
calculations	
  on	
  each	
  node,	
  and	
  while	
  the	
  speed	
  of	
  the	
  satellites	
  quickly	
  negates	
  
coordinate	
  calculation,	
  the	
  routing	
  tables	
  should	
  be	
  able	
  to	
  update	
  themselves	
  faster	
  
using	
  an	
  application	
  specific	
  integrated	
  circuit	
  (ASIC)	
  existing	
  as	
  a	
  separate	
  
subsystem.	
  	
  	
  
Node	
  awareness	
  of	
  instantaneous	
  relative	
  position	
  would	
  allow	
  the	
  mBF	
  algorithm	
  
to	
  determine	
  least-­‐cost	
  distances	
  by	
  the	
  node	
  for	
  itself,	
  rather	
  than	
  having	
  rapid	
  and	
  
ongoing	
  route	
  updates	
  broadcast	
  everywhere.	
  Said	
  another	
  way,	
  this	
  would	
  allow	
  
distance	
  vectors,	
  for	
  the	
  constellation,	
  to	
  be	
  maintained	
  by	
  calculation	
  internally	
  on	
  
each	
  satellite	
  using	
  an	
  ASIC.	
  	
  This	
  would	
  eliminate	
  convergence	
  time	
  and	
  route	
  
update	
  traffic.	
  	
  
Uplinking	
  user-­‐access	
  devices	
  always	
  connects	
  with	
  the	
  nearest	
  satellite	
  based	
  on	
  
signal	
  strength	
  (and	
  in	
  consideration	
  of	
  the	
  seam),	
  and	
  if	
  the	
  constellation	
  already	
  
knows	
  the	
  least-­‐cost	
  path	
  through	
  the	
  constellation,	
  then	
  knowing	
  the	
  correct	
  exit	
  
node	
  will	
  complete	
  the	
  path.	
  
Handoffs	
  could	
  be	
  made	
  on	
  the	
  same	
  basis	
  by	
  having	
  ground	
  stations	
  feeding	
  the	
  
nearest	
  satellite	
  a	
  flag	
  saying	
  “you	
  are	
  closest	
  to	
  me”;	
  this	
  distance-­‐vector	
  (for	
  the	
  
two	
  ground	
  stations)	
  would	
  propagate	
  through	
  the	
  constellation	
  every	
  few	
  seconds,	
  
creating	
  system-­‐wide	
  awareness	
  of	
  exit	
  points	
  relative	
  to	
  the	
  constellation’s	
  nodes.	
  
System-­‐wide	
  latency	
  is	
  considered	
  next	
  using	
  our	
  original	
  2KB	
  source	
  file	
  from	
  the	
  
tsunameter.	
   	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
15	
  
Latency	
  Calculations	
  
	
  
Tfile(2	
  kilobyte)	
  =	
  T(tsunameter-­‐>buoy)	
  +	
  T	
  (transmission)	
  +T	
  (uplink)	
  +	
  (N-­‐1)T	
  (cross)	
  +	
  T(downlink)	
  	
  	
  
Where,	
  
T(tsunameter-­‐>buoy)	
  	
  =	
  propagation	
  delay	
  and	
  transmission	
  time	
  for	
  file	
  on	
  the	
  
tsunameter-­‐>buoy	
  link	
  
T	
  (transmission)	
  	
   =	
  transmission	
  time	
  for	
  the	
  file	
  (2	
  kilo-­‐byte)	
  
T	
  (uplink)	
  	
   =	
  propagation	
  delay	
  from	
  buoy	
  to	
  the	
  satellite	
  
	
  T	
  (cross)	
  	
  	
  	
   =	
  propagation	
  delay	
  on	
  satellites	
  cross	
  links	
  	
  
T(downlink)	
  	
  	
   =	
  propagation	
  delay	
  satellite	
  to	
  the	
  ground;	
  (processing/queuing	
  
delays	
  per	
  satellite	
  ignored	
  for	
  this	
  analysis)	
  	
  
N	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  number	
  of	
  satellites	
  in	
  overall	
  link	
  
T	
  (uplink)	
  =	
  T(downlink)	
  	
  	
  =	
  
!"#$%%&#$  !"#$#%&'
!"##$  !"  !"#!!
=
!"#!"
!.!!"!!!"!!"
!"#
= 2.60  𝑚𝑠	
  	
  [10]	
  
Distance	
  between	
  satellites	
  averages	
  4000	
  km[12].	
  So,	
  
T	
  (cross)	
  	
  	
  	
   =	
  
!"#$$%&'(  !"#$%&'(
!"##$  !"  !"#!!
=   4000
!"
!.!!"!!!"!!"
!"#
= 13.34  𝑚𝑠	
  [10]	
  
T	
  (transmission)	
  	
  	
   	
  =	
  
!"#$  !"#$
!"#$%&'()'"  !!!"#$!!"#
=   2
!"#$%&
!.!  !"#$
= 6667  𝑚𝑠	
  [10]	
  
Therefore,	
  the	
  Total	
  time	
  to	
  move	
  a	
  2KB	
  file	
  over	
  the	
  system	
  is:	
  
T	
  (Total)	
  	
  	
  =	
  ([30.15𝑠  𝑥
!"""!"
!
] + 6667  𝑚𝑠 + 2 2.60  𝑚𝑠 +   13.34  𝑚𝑠) = 36.85  𝑠  	
  
To	
  simplify	
  this	
  analysis,	
  overhead/padding	
  to	
  frames	
  not	
  included	
  in	
  calculations	
  
except	
  in	
  the	
  case	
  of	
  the	
  tsunameter	
  to	
  buoy.	
  
	
   	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
16	
  
Total	
  Transfer	
  Time	
  
	
  
	
  
Figure	
  11:	
  	
  End-­‐to-­‐End	
  Latency	
  
Conclusions	
  and	
  Further	
  Research	
  
The	
  Tsunami	
  Warning	
  System	
  is	
  a	
  masterwork	
  of	
  technology	
  and	
  it	
  has	
  been	
  proven	
  
to	
  give	
  warning	
  to	
  those	
  in	
  the	
  path	
  of	
  incoming	
  tsunamis	
  saving	
  lives.	
  This	
  was	
  
demonstrated	
  in	
  Japan	
  in	
  2011,	
  and	
  while	
  the	
  scale	
  of	
  a	
  tsunami’s	
  potential	
  
devastation	
  is	
  terrifying,	
  systems	
  can	
  be	
  improved	
  to	
  provide	
  better	
  resolution	
  of	
  
expected	
  wave-­‐height	
  saving	
  as	
  many	
  as	
  possible	
  [13].	
  	
  The	
  Iridium	
  Constellation	
  is	
  
integral	
  to	
  the	
  success	
  of	
  the	
  warning	
  system,	
  and	
  its	
  networking	
  is	
  a	
  major	
  factor	
  in	
  
this	
  success.	
  
Given	
  the	
  complexity	
  of	
  routing	
  in	
  a	
  dynamic	
  system	
  of	
  nodes,	
  such	
  as	
  Iridium’s,	
  
more	
  research	
  should	
  be	
  undertaken	
  to	
  improve	
  dynamic	
  routing	
  in	
  rapidly	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
17	
  
changing	
  RF	
  networks.	
  This	
  has	
  implications	
  well	
  beyond	
  satellite	
  constellations	
  in	
  
our	
  ever-­‐expanding	
  mobility-­‐oriented	
  world.	
  
	
   	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
18	
  
References	
  
	
  
[1]	
   C.	
  Meinig,	
  S.	
  E.	
  Stalin,	
  A.	
  I.	
  Nakamura,	
  and	
  H.	
  B.	
  Milburn.	
  (2005,	
  March	
  29).	
  
Real-­‐Time	
  Deep-­‐Ocean	
  Tsunami	
  Measuring,	
  Monitoring,	
  and	
  Reporting	
  System:	
  
The	
  NOAA	
  DART	
  II	
  Description	
  and	
  Disclosure	
  [Article].	
  Available:	
  
http://www.ndbc.noaa.gov/dart/dart_ii_description_6_4_05.pdf	
  
[2]	
   Iridium.	
  (2015,	
  March	
  30).	
  Ground	
  Infrastructure.	
  Available:	
  
https://www.iridium.com//About/IridiumGlobalNetwork/GroundInfrastructure.as
px	
  
[3]	
   L.	
  Xiangdong,	
  G.	
  Dilip,	
  M.	
  Tim,	
  and	
  S.	
  Peter,	
  "Analysis	
  of	
  IP	
  Routing	
  
Approaches	
  for	
  LEO/MEO	
  Satellite	
  Networks,"	
  in	
  28th	
  AIAA	
  International	
  
Communications	
  Satellite	
  Systems	
  Conference	
  (ICSSC-­‐2010),	
  ed:	
  American	
  
Institute	
  of	
  Aeronautics	
  and	
  Astronautics,	
  2010.	
  
[4]	
   S.	
  R.	
  Pratt,	
  R.	
  A.	
  Raines,	
  C.	
  E.	
  Fossa,	
  and	
  M.	
  A.	
  Temple,	
  "An	
  operational	
  and	
  
performance	
  overview	
  of	
  the	
  IRIDIUM	
  low	
  earth	
  orbit	
  satellite	
  system,"	
  
Communications	
  Surveys,	
  IEEE,	
  vol.	
  2,	
  pp.	
  2-­‐10,	
  1999.	
  
[5]	
   B.	
  A.	
  Forouzan,	
  Data	
  Communications	
  AND	
  Networking,	
  5th	
  ed.	
  New	
  York,	
  NY:	
  
McGraw	
  Hill,	
  2013.	
  
[6]	
   A.	
  M.	
  Jabbar,	
  "Multi-­‐Link	
  Satellite	
  Data	
  Communication	
  System,"	
  Master	
  of	
  
Science,	
  Engineering,	
  Electrical,	
  Osamia	
  University	
  University	
  of	
  Kanas,	
  2001.	
  
[7]	
   NOAA.	
  (n.d.,	
  April	
  20).	
  Tsunami	
  Detection	
  Algorithm.	
  Available:	
  
http://nctr.pmel.noaa.gov/tda_documentation.html	
  
[8]	
   NOAA,	
  "DART	
  II	
  System,"	
  ed,	
  2015.	
  
[9]	
   Benthos.	
  (2014,	
  April	
  30).	
  Benthos	
  Modems	
  	
  [PDF	
  Files].	
  	
  
[10]	
   S.	
  R.	
  Pratt,	
  R.	
  A.	
  Raines,	
  C.	
  E.	
  Fossa,	
  and	
  M.	
  A.	
  Temple,	
  "An	
  Operational	
  and	
  
Performance	
  Overview	
  of	
  the	
  Iridium	
  Low	
  Earth	
  Orbit	
  Satellite	
  System,"	
  ed,	
  
1999.	
  
[11]	
   Staff.	
  (2015,	
  March	
  30).	
  Available:	
  
https://www.iridium.com/About/IridiumGlobalNetwork/SatelliteConstellation.asp
x	
  
[12]	
   I.	
  C.	
  Inc.,	
  "Ground	
  Station,"	
  ed:	
  Iridium	
  Communications	
  Inc.,	
  2015.	
  
[13]	
   D.	
  Demetriou.	
  (2013).	
  Tsunami	
  two	
  years	
  on:	
  Japan	
  finally	
  gets	
  warning	
  
system	
  that	
  would	
  have	
  saved	
  hundreds	
  of	
  lives.	
  Available:	
  
http://www.telegraph.co.uk/news/worldnews/asia/japan/9920042/Tsunami-­‐
two-­‐years-­‐on-­‐Japan-­‐finally-­‐gets-­‐warning-­‐system-­‐that-­‐would-­‐have-­‐saved-­‐hundreds-­‐
of-­‐lives.html	
  
[14]	
   Wikipedia.	
  (2015).	
  XMODEM.	
  Available:	
  http://en.wikipedia.org/wiki/XMODEM	
  
	
  
	
   	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
19	
  
APPENDIX	
  A	
  –	
  X-­‐Modem	
  Protocol	
  Structure	
  
X-­‐Modem	
  uses	
  a	
  132-­‐byte	
  packet	
  structure	
  with	
  128	
  bytes	
  reserved	
  for	
  data.	
  	
  A	
  3-­‐
byte	
  header	
  that	
  included	
  a	
  <SOH>	
  control	
  character,	
  a	
  block	
  number	
  from	
  0-­‐255,	
  
and	
  the	
  inverse	
  of	
  the	
  block	
  number	
  (-­‐255)	
  minus	
  the	
  block	
  number	
  with	
  block	
  
numbers	
  starting	
  at	
  1	
  and	
  incrementing	
  by	
  1	
  for	
  subsequent	
  blocks.	
  	
  
The	
  packet	
  trailer	
  is	
  a	
  checksum	
  of	
  1-­‐byte.	
  	
  The	
  checksum	
  is	
  the	
  sum	
  of	
  all	
  bytes	
  in	
  
the	
  packet	
  module	
  256.	
  Only	
  the	
  eight	
  least	
  significant	
  are	
  retained,	
  ignoring	
  
overflow	
  keeping	
  the	
  continuity	
  of	
  the	
  1-­‐byte	
  check.	
  Once	
  a	
  file	
  transmission	
  was	
  
complete,	
  a	
  special	
  <EOT>	
  character	
  was	
  sent,	
  which	
  was	
  not	
  part	
  of	
  the	
  block	
  [14].	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
20	
  
APPENDIX	
  B	
  -­‐	
  Images	
  
	
  
Figure	
  12:	
  DART	
  II	
  Image	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
21	
  
	
  
	
  
Figure	
  13:	
  DART	
  Buoy	
  -­‐	
  Open	
  Ocean	
  
	
  
Figure	
  14:	
  Tsunameter	
  Awaits	
  Deployment	
  
Iridium-­‐DART	
  Network	
  	
  	
  	
  	
  	
  
	
  |	
  P a g e 	
  
	
  
22	
  
	
  
Figure	
  15:	
  Iridium	
  Satellite	
  
	
  

More Related Content

What's hot

Satelite communication
Satelite communicationSatelite communication
Satelite communicationSyam Kumar
 
Introduction to satellite communication
Introduction to satellite communicationIntroduction to satellite communication
Introduction to satellite communicationRAVIKIRAN ANANDE
 
satellite communication system
satellite communication systemsatellite communication system
satellite communication systemAmjad Khan
 
satellite-communication-ppt
satellite-communication-pptsatellite-communication-ppt
satellite-communication-pptjhcid
 
satellite Communication
 satellite Communication satellite Communication
satellite CommunicationDiwaker Pant
 
Satellites in Communication
Satellites in CommunicationSatellites in Communication
Satellites in CommunicationTejaswa Jain
 
Satellite Network communication System Overview
Satellite   Network  communication  System OverviewSatellite   Network  communication  System Overview
Satellite Network communication System OverviewMohamed El sadany
 
satellite communication system
satellite communication system satellite communication system
satellite communication system MD YASIR BASHIR
 
Communications Payload Design and Satellite System Architecture: Bent Pipe a...
Communications Payload Design and  Satellite System Architecture: Bent Pipe a...Communications Payload Design and  Satellite System Architecture: Bent Pipe a...
Communications Payload Design and Satellite System Architecture: Bent Pipe a...Jim Jenkins
 
Satellite Network
Satellite Network Satellite Network
Satellite Network YOGEESH M
 
VSAT- Very Small Aperture Terminal
VSAT- Very Small Aperture TerminalVSAT- Very Small Aperture Terminal
VSAT- Very Small Aperture TerminalAnanda Mohan
 
Satellite Communication
Satellite CommunicationSatellite Communication
Satellite CommunicationAhmed Ayman
 
Satellite communication
Satellite   communicationSatellite   communication
Satellite communicationSatyajit Das
 

What's hot (20)

Satelite communication
Satelite communicationSatelite communication
Satelite communication
 
Introduction to satellite communication
Introduction to satellite communicationIntroduction to satellite communication
Introduction to satellite communication
 
satellite communication system
satellite communication systemsatellite communication system
satellite communication system
 
Iridium satellite system
Iridium satellite systemIridium satellite system
Iridium satellite system
 
satellite-communication-ppt
satellite-communication-pptsatellite-communication-ppt
satellite-communication-ppt
 
satellite Communication
 satellite Communication satellite Communication
satellite Communication
 
Satellites in Communication
Satellites in CommunicationSatellites in Communication
Satellites in Communication
 
Satellite
SatelliteSatellite
Satellite
 
Satellite Network communication System Overview
Satellite   Network  communication  System OverviewSatellite   Network  communication  System Overview
Satellite Network communication System Overview
 
Chap9
Chap9Chap9
Chap9
 
Sattelite communication
Sattelite communicationSattelite communication
Sattelite communication
 
Satellite phone it
Satellite phone itSatellite phone it
Satellite phone it
 
satellite communication system
satellite communication system satellite communication system
satellite communication system
 
Communications Payload Design and Satellite System Architecture: Bent Pipe a...
Communications Payload Design and  Satellite System Architecture: Bent Pipe a...Communications Payload Design and  Satellite System Architecture: Bent Pipe a...
Communications Payload Design and Satellite System Architecture: Bent Pipe a...
 
Satellite Network
Satellite Network Satellite Network
Satellite Network
 
VSAT- Very Small Aperture Terminal
VSAT- Very Small Aperture TerminalVSAT- Very Small Aperture Terminal
VSAT- Very Small Aperture Terminal
 
Satellite Communication
Satellite CommunicationSatellite Communication
Satellite Communication
 
Satellite communication
Satellite   communicationSatellite   communication
Satellite communication
 
Satellite networks
Satellite networksSatellite networks
Satellite networks
 
satellite communication and deep space networks
satellite communication and deep space networkssatellite communication and deep space networks
satellite communication and deep space networks
 

Similar to Iridium Satellite Communications System, Tsunami Warning System

Monitoring Oceans - Chris Atherton - SRD23
Monitoring Oceans - Chris Atherton - SRD23Monitoring Oceans - Chris Atherton - SRD23
Monitoring Oceans - Chris Atherton - SRD23SURFevents
 
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...IRJET Journal
 
Oceansat2-AnnouncementofOpportunity.pdf
Oceansat2-AnnouncementofOpportunity.pdfOceansat2-AnnouncementofOpportunity.pdf
Oceansat2-AnnouncementofOpportunity.pdfPiyushPriyadarshi27
 
Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)NopphawanTamkuan
 
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSI
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSIIRJET- Border Alert System and Emergency Contact for Fisherman using RSSI
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSIIRJET Journal
 
A REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARA REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARAM Publications
 
Underwater acoustic sensor network
Underwater acoustic sensor networkUnderwater acoustic sensor network
Underwater acoustic sensor networkSrija Kumar
 
Ground Penetrating Radar
Ground Penetrating RadarGround Penetrating Radar
Ground Penetrating RadarJoshua Smith
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Sensornets and Global Change
Sensornets and Global ChangeSensornets and Global Change
Sensornets and Global ChangeLarry Smarr
 
Satellite aided search and rescue,
Satellite aided search and rescue,Satellite aided search and rescue,
Satellite aided search and rescue,Madhukar Kumar
 
IRJET- Radiosonde Payload for Weather Balloons
IRJET-  	  Radiosonde Payload for Weather BalloonsIRJET-  	  Radiosonde Payload for Weather Balloons
IRJET- Radiosonde Payload for Weather BalloonsIRJET Journal
 
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...IJERA Editor
 
TU2.T10.1.pptx
TU2.T10.1.pptxTU2.T10.1.pptx
TU2.T10.1.pptxgrssieee
 
Rs satellites catelogue 2012
Rs satellites catelogue 2012Rs satellites catelogue 2012
Rs satellites catelogue 2012Atiqa khan
 
Two-year assessment of Nowcasting performance in the CASA system
Two-year assessment of Nowcasting performance in the CASA systemTwo-year assessment of Nowcasting performance in the CASA system
Two-year assessment of Nowcasting performance in the CASA systemgrssieee
 
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...Different GNSS (Global Navigation Satellite System) Receiver’s combination an...
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...IJMTST Journal
 
Gps and its use in vehicle movement study in earthquake disaster management r...
Gps and its use in vehicle movement study in earthquake disaster management r...Gps and its use in vehicle movement study in earthquake disaster management r...
Gps and its use in vehicle movement study in earthquake disaster management r...Mayur Rahangdale
 
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital path
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital pathPolar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital path
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital pathnandhakathirvel2002
 

Similar to Iridium Satellite Communications System, Tsunami Warning System (20)

Monitoring Oceans - Chris Atherton - SRD23
Monitoring Oceans - Chris Atherton - SRD23Monitoring Oceans - Chris Atherton - SRD23
Monitoring Oceans - Chris Atherton - SRD23
 
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...
IRJET- Advanced Border Security Alert for Fishermen and Smart Data Transfer u...
 
Oceansat2-AnnouncementofOpportunity.pdf
Oceansat2-AnnouncementofOpportunity.pdfOceansat2-AnnouncementofOpportunity.pdf
Oceansat2-AnnouncementofOpportunity.pdf
 
Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)Introduction to Synthetic Aperture Radar (SAR)
Introduction to Synthetic Aperture Radar (SAR)
 
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSI
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSIIRJET- Border Alert System and Emergency Contact for Fisherman using RSSI
IRJET- Border Alert System and Emergency Contact for Fisherman using RSSI
 
A REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARA REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADAR
 
Underwater acoustic sensor network
Underwater acoustic sensor networkUnderwater acoustic sensor network
Underwater acoustic sensor network
 
Ground Penetrating Radar
Ground Penetrating RadarGround Penetrating Radar
Ground Penetrating Radar
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Sensornets and Global Change
Sensornets and Global ChangeSensornets and Global Change
Sensornets and Global Change
 
Satellite aided search and rescue,
Satellite aided search and rescue,Satellite aided search and rescue,
Satellite aided search and rescue,
 
D42061620
D42061620D42061620
D42061620
 
IRJET- Radiosonde Payload for Weather Balloons
IRJET-  	  Radiosonde Payload for Weather BalloonsIRJET-  	  Radiosonde Payload for Weather Balloons
IRJET- Radiosonde Payload for Weather Balloons
 
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
Ship Detection from SAR Imagery Using CUDA and Performance Analysis of the Sy...
 
TU2.T10.1.pptx
TU2.T10.1.pptxTU2.T10.1.pptx
TU2.T10.1.pptx
 
Rs satellites catelogue 2012
Rs satellites catelogue 2012Rs satellites catelogue 2012
Rs satellites catelogue 2012
 
Two-year assessment of Nowcasting performance in the CASA system
Two-year assessment of Nowcasting performance in the CASA systemTwo-year assessment of Nowcasting performance in the CASA system
Two-year assessment of Nowcasting performance in the CASA system
 
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...Different GNSS (Global Navigation Satellite System) Receiver’s combination an...
Different GNSS (Global Navigation Satellite System) Receiver’s combination an...
 
Gps and its use in vehicle movement study in earthquake disaster management r...
Gps and its use in vehicle movement study in earthquake disaster management r...Gps and its use in vehicle movement study in earthquake disaster management r...
Gps and its use in vehicle movement study in earthquake disaster management r...
 
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital path
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital pathPolar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital path
Polar orbiting satellites (cf Geostationary) Sun-synchronous daily orbital path
 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 

Iridium Satellite Communications System, Tsunami Warning System

  • 1.         Iridium Satellite Communications System As  Utilized  by     The  Deep-­‐Ocean  Assessment  &  Reporting  of  Tsunami  Project  Warning  System               May  3,  2015   David  Regan   EN.635.411.81.SP15  Principles  of  Network  Engineering   Professor  John  Romano   Johns  Hopkins  University    
  • 2. Iridium-­‐DART  Network              |  P a g e     1   Introduction  &  Approach  ............................................................................................  2   Scope  Limits  ................................................................................................................  2   Terrestrial  Components  Overview  ...............................................................................  2   Space-­‐Based  Components  Overview  ...........................................................................  4   Network  Links  .............................................................................................................  6   Tsunameter  <  -­‐-­‐  >  Buoy  ...........................................................................................................................................  6   Narrative  &  Technical  Details  ...............................................................................................................................  6   Buoy  <  -­‐-­‐  >  Iridium  Satellite  ...............................................................................................................................  11   Narrative  &  Technical  Details  ............................................................................................................................  11   Iridium  <  -­‐-­‐  >  Iridium  Inter-­‐Satellite  Links  (ISL)  ......................................................................................  12   Narrative  .....................................................................................................................................................................  12   Iridium  <  -­‐-­‐  >  Ground  Station  ............................................................................................................................  13   Discussion  ....................................................................................................................................................................  13   Routing  ......................................................................................................................  13   Latency  Calculations  ...................................................................................................  15   Total  Transfer  Time  ....................................................................................................  16   Conclusions  and  Further  Research  ..............................................................................  16   References  .................................................................................................................  18   APPENDIX  A  –  X-­‐Modem  Protocol  Structure  ...............................................................  19   APPENDIX  B  -­‐  Images  .................................................................................................  20    
  • 3. Iridium-­‐DART  Network              |  P a g e     2   Abstract   This  paper  analyzes  how  the  Iridium  Satellite  Communications  System  is  used  by  The  National  Oceanic   and  Atmospheric  Administration’s  (NOAA)  Tsunami  Warning  System.  Each  network  link  is  evaluated   providing  a  basis  for  understanding  the  overall  system  that  yields  a  robust  and  trustworthy  tsunami   warning  system.   Introduction  &  Approach   This  paper  is  organized  as  follows;  first,  a  general  overview  of  both  the  space  and   terrestrial  based  components  of  The  Deep-­‐Ocean  Assessment  and  Reporting  of   Tsunamis  (DART)  Version  II  project  will  been  made,  then  we  will  delve  into   individual  network  links,  including  those  provided  by  Iridium.  A  focus  on  the   acoustic  link  is  made,  since  it  is  relatively  unusual.  This  will  provide  a  clear  and   logical  context  from  which  to  understand  the  entire  networked  warning  system.  As   each  link  is  analyzed,  end-­‐to-­‐end  networking  achievements  are  revealed.   Scope  Limits   This  paper  is  focused  on  the  DART  and  Iridium  network  links  and  uses  publically   available  information  in  the  process.  Some  detail  related  to  the  Iridium  system  are   proprietary,  therefore  extrapolation  from   known  systems  is  used  to  make  the  best   approximation  of  missing  detail.     Terrestrial  Components  Overview   For  more  than  30  years,  NOAA  researched   the  causes  and  impacts  of  tsunamis  and  in   response  to  a  massive  tsunami  on  March  28,   1964  in  Alaska,  NOAA  began  development  of   the  first  Tsunami  Warning  Center.  The   foundation  of  the  warning  system  is  DART,   whose  buoys  and  bottom-­‐sensor   components  are  shown  in  (Figure  1).     Figure  1:  DART  System  Components  
  • 4. Iridium-­‐DART  Network              |  P a g e     3   By  2008,  there  were  36  buoys  installed  in  DART’s  Pacific  Ocean  zone  providing   detailed  sea  level,  temperature,  barometric  pressure,  GPS  coordinates,  timing  and   other  buoy-­‐specific  information  [1].  The  secret  of  DART’s  success  is  the  use  of  global   communication  links  provided  by  the  Iridium  Satellite  Constellation  (Iridium).     Each  buoy  is  installed  with  a  companion  tsunameter,  as  depicted  in  (Figure  2)  (also   known  as  a  bottom  pressure  recorder)[1],  a  that  collectively  constitutes  the   transmission  system  for  the  water-­‐based  link  for  DART.    Buoy’s  have  GPS  receivers   to  maintain  geo-­‐location  for  servicing,  and  for  tsunami  calculations.                                 Messaging  Path     DART  uses  Iridium  as  the  backbone  for  transmitting  tsunami  data  from  buoys  that   are  sited  in  the  open  ocean.  An  RS232C  interface  with  AT  commands  is  used  for   accessing  satellites  and  PPP  is  the  LLC  layer  protocol  used.  Messages  destined  for   the  tsunami-­‐warning  center  are  triggered  by  tsunami  waves  passing  over  a  buoy                                                                                                                               a  The  tsunameter’s  data  storage:  “The  FLASH  memory  provides  four  years  continuous  backup  of  the  entire  raw  pressure   record,  at  a  15-­‐second  sample  period.  Preserving  the  entire  time  series  in  memory  allows  post-­‐deployment  engineering   review  of  the  instrument’s  performance,  as  well  as  scientific  analysis  of  the  entire  deployment  record”.  For  more  information,   refer  to:  Sea-­‐Bird  Electronics.  http://www.seabird.com/sbe54-­‐tsunami-­‐pressure-­‐sensor     Figure  2:  DART  System  Boundaries  
  • 5. Iridium-­‐DART  Network              |  P a g e     4   (or  from  seismograph-­‐driven  auto  generated  commands)  that  activates  a  real-­‐time   data  feed  from  the  tsunameter  to  the  surface  buoy.  Data  received  at  the  surface  buoy   from  the  tsunameter  and  is  then  forwarded  to  an  Iridium  Satellite,  which  transmits   the  data  either  to  a  ground  station  (GS),  or  to  an  adjacent  satellite  via  inter-­‐satellite   links  (ISLs),  which  is  then  forwarded  to  the  nearest  GS  for  appropriate  distribution.     A  typical  GS  is  shown  in  (Figure  3)  (gateway)  –  there  are   two  b  of  them  -­‐  with  the  primary  being  in  Tempe,  AZ,  and   each  has  uplinks/downlinks  using  the  Ka  band  over  ranges   29.1-­‐29.3  GHz  and  19.1-­‐19.6  GHz  respectively.    The   gateway  interfaces  with  the  PSTN    and  ISPs.   Space-­‐Based  Components  Overview   Iridium  consists  of  66  low  Earth  orbit  (LEO)   satellites  c  distributed  over  6  polar  orbital  planes   that  are  approximately  31.6  degrees  apart   longitudinally  at  86.4  degrees  inclination[2]  that   co-­‐rotate.  A  seam  develops  between  plane  1  &  6   where  the  satellites  are  counter-­‐rotating.  As  shown   in  (Figure  4),  each  Iridium  satellite  produces  a   footprint  that  overlaps  adjacent  satellites’   footprints  providing  seamless  ground  coverage.   Also  note  that  as  satellites  approach  the  poles,  they  overlap  progressively  –  this  is   important  due  to  an  obvious  contention  issue  that  will  be  discussed  later.    “In  space,  each  Iridium  satellite  is  linked  to  four  others  —  two  in  the  same  orbital   plane  and  one  in  each  adjacent  plane  —  creating  a  dynamic  network  that  routes   traffic  among  satellites  to  ensure  a  continuous  connection,  everywhere  [2]”.     Iridium’s  routing  algorithms  are  proprietary,  but  the  mostly  likely  approach  is  Ad-­‐                                                                                                                           b  After  contacting  Iridium  Communications,  and  an  exhaustive  Internet  search,  it  appears  that  there  are  2  ground  stations  left   out  of  the  original  13.   c  Additional  in-­‐orbit  spares  are  held  at  a  lower  orbit  and  are  moved  up  to  operational  height  as  needed.  All  of  the  spares  have   been  used  presently,  but  the  new  Iridium  NEXT  is  to  be  launched  this  year  (2015)  in  October  on  the  current  timeline.  This  will   include  all  new  satellites  with  higher  capacity,  although  it  is  beyond  the  scope  of  this  paper  to  analyze  the  new  system.   Figure  3:  Iridium  Ground   Station   Figure  4:  Iridium  Satellite  Footprints  
  • 6. Iridium-­‐DART  Network              |  P a g e     5   hoc  On-­‐Demand  Distance  Vector  (AODV)[3]  routing,  which  considers  the   complexity,  transmission  overhead,  dynamic  update  convergence  and  infinite  loop   issues  related  to  not  only  a  routed  environment,  but  also  one  that  is  continually  in   flux.  Select  aspects  of  AODV  are  considered  and  described  later  in  the  routing   section.     Each  satellite  has  three  antennas  with  16  spot   beams  (48  spot  beams  per  satellite)  and  240   channels  for  user  communications  utilizing  L-­‐ band  (1-­‐2  GHz)  over  the  range  1616-­‐1626.5   MHz  for  a  bandwidth  of  10.5  MHz  [4]  .  Within   each  satellite’s  footprint  (Figure  5),  48   separate  spot-­‐beams  (cells)  are  identified   alphabetically  A-­‐L  in  a  pattern  that  repeats   four  times).  As  noted,  since  the  space  vehicles   converge  near  the  poles,  footprint-­‐overlap  becomes  an  issue  –  to  maintain  a  uniform   loading  on  the  SVs,  outer  cells  in  the  overall  footprint  (Figure  4)  are  selectively   turned  off  at  SV  convergence  latitudes.  Similar  to  cellular  systems,  Iridium  reuses   frequency  bands;  specifically  with  a  reuse  factor  of  12  as  reflected  in  (Figure  5).     Reuse  allows  limited  spectrum  to  be  repetitively  provisioned  provided  sufficient   spatial  isolation  between  duplicated  frequency  ranges.  The  ability  to  employ  this   reuse  capability  is  a  function  of  the  attenuation  characteristics  of  the  specific   frequencies  [5]  i.e.  as  the  power  density  of  a  given  frequency  attenuates,  it  becomes   so  weak  that  it  can  be  ignored,  and  the  frequency  can  be  “re-­‐amplified”  and  used   once  more  for  a  different  unique  channel.   The  240  available  channels  per  satellite  are  divided  among  the  spot  beams  yielding   20  channels  per  spot  beam.    Each  satellite’s  10.5  MHz  user-­‐bandwidth  is  evenly   distributed  over  240  channels  using  FDMA,  where  each  channel  is  provided  with   41.67  kHz    (minus  guard-­‐bands)  of  bandwidth  as  visualized  in  (Figure  6).  The   remaining  500  kHz  is  used  to  provide  approximately  2  kHz  of  guard  band  between   channels.  This  arrangement  facilitates  managing  many  unique  user  channels.   Figure  5:  Iridium  Spot  Beams  (Cells)  
  • 7. Iridium-­‐DART  Network              |  P a g e     6   TDMA  is  also  utilized,  but  specific   details  are  not  published  by  Iridium   except  that  the  frame  is  90  ms  long   as  depicted  in  (Figure  7)  and   contains  4  full-­‐duplex  user-­‐channels   with  a  frame  burst  rate  of  50  kbps.   Time  slots  effectively  multiply  the  20  frequency  channels  into  80  after  time  division   slotting  into  the  90-­‐millisecond  TDMA  frame.  A  maximum  bit  rate  for  a  single  user   channel  is  2.4  kbps,  although  if  multilink  point  to  point  protocol  is  used,  channels   may  be  bonded  for  higher  effective  bandwidth  and  capacity  [6].  The  link  between   the  tsunameter  and  buoy  is  not   as  sophisticated  as  Iridium’s,   yet  it  has  unique   characteristics  –  particularly  its   carrier  and  media.       Network  Links   Tsunameter  <  -­‐-­‐  >  Buoy     Narrative  &  Technical  Details   The  tsunameter  and  buoy  both  use  acoustic  transducers  to  transmit  digital  data   over  analog  carrier  up  to  a  distance  of  6,000  meters  in  unguided  media  (seawater).   Modulation  of  the  digital  data  is  accomplished  by  use  of  multilevel  frequency  shift   keying  (MFSK),  which  is  highly  amplified  at  the  transducer  (dB  193)  as  it  produces   the  acoustic  signal  in  waterd.     The  tsunami-­‐messaging  channel  opens  when  the  tsunameter  sends  a  transmission  to   the  buoy  (or  buoy  to  tsunameter)  via  acoustic  modem  every  six  hours  in  standard                                                                                                                             d  There  is  an  entire  field  of  study  dedicated  to  underwater  acoustic  networking.  See   https://seagrant.mit.edu/publications/MITSG_08-­‐37J.pdf  “Underwater  Acoustic  Communications  and   Networking:  Recent  Advances  and  Future   Challenges”   Figure  7:  User  Channels   Figure  6:  TDMA  User  Slots  
  • 8. Iridium-­‐DART  Network              |  P a g e     7   mode.  The  tsunameter  always  records  readings  every  15  seconds  from  its  sensors   and  saves  the  data  to  flash  memory.    If  the  tsunameter  detects  a  pressure  variation   determined  to  be  a  tsunami,  (determined  by  detection  algorithm)[7],  or  if  an   automated  remote  command  is  received,  the  tsunameter  goes  into  an  event-­‐mode   where  a  file  with  120,  one-­‐minute  average  readings  are  sent  to  the  buoy   immediately  vs.  the  six  hour  interval  in  standard  mode.    Whether  standard  or  event   mode,  the  transmissions  are  forwarded  to   the  tsunami  warning  center  using  Iridium.     (Figure  8)  shows  basic  blocks  of  the   tsunameter’s  computer  system.           The  message  payload  is  a  small  (2  KB  +/-­‐)  xml  file  containing  key  data  including   water  pressure   (leads  to  wave   height),  date-­‐time,   system-­‐status,  and   temperature.  A  more   detailed  diagram  of   internal  flow  appears   in  (Figure  9).       Figure  8:  Tsunameter  Computer  Block   Diagram   Figure  9:  Tsunameter  Logic  Diagram  
  • 9. Iridium-­‐DART  Network              |  P a g e     8   The  tsunameter  <-­‐-­‐>  water  <-­‐-­‐>  buoy  communication  channel  is  a  clear  instance  of   the  basic  communications  system  model,  which  is  repeated  throughout  the  DART   system  with  varying  degrees  of  complexity.           The  communication  model  maps  to  the  tsunameter/transducer  (source  system),   seawater  (transmission  system)  and  the  buoy/transceiver  (destination  system)   assuming  we  are  sending  signal  from  the  bottom  up  as  depicted  in  (Figure  10).       “The  acoustic  modems  on  the  DART  II  systems  are  configured  to  operate  in  the  9-­‐ 14kHz  frequency  band  at  600  baud,  using  MFSK  modulation  and  error-­‐correcting   coding  [8]”.  X-­‐modem  protocol  is  used  and  its  packet  structure  is  described  in   Appendix  A.  Maximum  throughput  is  controlled  by  the  maximum  receive  rate  of  the   acoustic  modems,  fade  and  noise,  which  is  theoretically  2400  bps  [9].  The  actual   throughput  from  NOAA  is  shown  at  600  baud  and  it  is  assumed  that  r  =  (1  data   element  /  1  signal  element)  for  600  bps.  A  complete  latency  chart  will  be  presented   after  all  the  links  are  defined.  To  clarify,  we  have  digital  data  stored  for  analog   transmission  on  the  tsunameter,  therefore,  we  need  to  modulate  the  data  for  analog   transmission,  which  is  done  with  a  multilevel  frequency  shift-­‐keying  (MFSK)   approach  at  the  physical  layer.   From  the  surface  buoy,  data  is  transmitted  to  the  switched  Iridium  satellite  network,   then  to  a  GS  that  forwards  to  the  Tsunami  Warning  Center  e.    It  takes  30.16  seconds   for  a  2KB  message  to  arrive  complete  at  the  buoy  as  will  be  shown.    For  analysis,  a                                                                                                                             e  Ground  stations  have  9-­‐foot  diameter  dishes  and  link  users  to  Internet/PSTN.     Figure  10:  Tsunameter-­‐Buoy  Communication  Model  
  • 10. Iridium-­‐DART  Network              |  P a g e     9   depth  of  3000  meters  is  chosen  (approximate  average)  and  speed  of  sound  in  water   is  defined  to  be  1500  m/s.  Further,  a  single  data  file  size  of  2KB  is  used  for   transmission  calculation.    First,  sound  propagation  in  water  over  distance  3000   meters.   𝑇 𝑝 = 𝑑 𝑟 = 3000𝑚 1500𝑚/𝑠 = 2  𝑠𝑒𝑐𝑜𝑛𝑑𝑠   Secondly,  our  2  KB  file  is  processed  by  x-­‐modem  protocol,  which  has  a  128-­‐byte   payload  per  132-­‐byte  packet,  requires  this  many  packets:     16000  𝑏𝑖𝑡  𝑓𝑖𝑙𝑒 128  𝑏𝑦𝑡𝑒𝑠/𝑝𝑎𝑐𝑘𝑒𝑡  𝑥  ( 8𝑏𝑖𝑡𝑠 𝑏𝑦𝑡𝑒𝑠)  = 15.625  𝑝𝑎𝑐𝑘𝑒𝑡𝑠  𝑟𝑜𝑢𝑛𝑑𝑒𝑑  𝑡𝑜  16     Total  transmit  size  for  16  packets:   16  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 132  𝑏𝑦𝑡𝑒𝑠 𝑝𝑎𝑐𝑘𝑒𝑡 =  2112  𝑏𝑦𝑡𝑒𝑠     Transmission  Time  for  a  2KB  file  over  600  bps  channel:   2112  𝑏𝑦𝑡𝑒𝑠 8 𝑏𝑖𝑡𝑠 𝑏𝑦𝑡𝑒 1 𝑠𝑒𝑐𝑜𝑛𝑑 600  𝑏𝑖𝑡𝑠 = 28.16  𝑠𝑒𝑐𝑜𝑛𝑑𝑠   Considering  that  data  is  being  transmitted  through  3000  meters  of  seawater,  an   efficiency  of  94.7%  is  impressive  (2KB/2.112KB).   In  summary,  it  takes  two  seconds  for  the  setup  notice  to  arrive  at  the  buoy.  Ignoring   actual  setup  processing  delay  and  queuing  at  buoy,  it  takes  28.16  seconds  to   complete  the  data  transfer  for  a  total  of  30.16  seconds.  Time  for  resend  of  bad   packets  not  factored.  Table  1  contains  summary  details  and  short  narratives  to   complete  the  review  of  the  tsunameter  to  buoy  link.   Table  1:  Communication  Links  Overview  –  Tsunameter  -­‐-­‐  >  Buoy  
  • 11. Iridium-­‐DART  Network              |  P a g e     10   Link  Features  @   given  OSI  Layer     Tsunameter  -­‐-­‐>  Buoy   Application   Data  collected  from  pressure,  temperature  and  other  sensors   and  written  to  a  space-­‐delimited  text  file  by  C  application   Presentation   XML  data  file  –  space  delimited  text   Session   Half  Duplex  operation  due  to  open  water  medium,  manages   link   Transport   Checksums  and  X-­‐modem  protocol    –  no  port  addressing   entire  packets  of  data  with  many  blocks  are  sent  without   requesting  an  acknowledgement  from  the  receiver  after  each   block.  When  blocks  are  missing  or  erroneous,  receiver   requests  resend  of  individual  blocks.       Network:     X-­‐modem  protocol  packetizes  data  file  bit-­‐stream     DLL:LLC/MAC     Physical   Sea  Water  Media:   Characteristics:    pressure,  temperature,  salinity,  density   Speed  of  Sound  in  water  taken  as  1500  m/s     Bi-­‐directional  Acoustic  Telemetry  in  Water  (Media);  Benthos   ATM-­‐880  Telesonar  modem/AT     Multiplexing   Multilevel  Frequency  Shift  Keying  approach  is  used  to   modulate  the  binary  stream  into  an  analog  for  transport  via   media.       The  source  level  is  at  193  dB  re  1ųPa  @  1  m  with  a  40  VDC   supply.   Bandwidth   9-­‐14kHz    =  5kHz   Throughput   Ranges   Trans  Rate    Tx    =  150  -­‐  15360  bps   Receive  Rate  Rx  =  150  –  2400  bps    (see  signaling  rate  for   actual)   Signaling  Rate   Actual  -­‐  600  baud  (signal  elements/second)  assumed  1/1=r   Propagation  T   Sound  in  water  –  taken  as  1500  m/s;    T  (propagation)  t=d/r   Latency   Sum  of  Propagation  times:  signal  propagation  and  message   transfer  time  included;  queuing  and  processing  times  at  each   node  ignored  for  this  analysis   Attenuation   Not  addressed   Distortion   (fading  from   multipath)   UW  sound  propagation  is  characterized  as  either  vertical  or   horizontal.  Horizontal  calculations  have  to  consider  seafloor   reflections,  while  not  in  vertical;  issues  with  multi-­‐path   reflections  confusing  the  receiver  –  handled  algorithmically  
  • 12. Iridium-­‐DART  Network              |  P a g e     11   Noise     (Whale  Song)   Straight  SNR=  Signal/Noise;    SNRdB  =10log10SNR   Not  evaluated  in  this  analysis   Data  Rate   Limits  –   Noiseless   Channel   Nyquist  Bit  Rate:  Not  evaluated  on  this  link  in  this  analysis.   2  x  bandwidth  x  log2  L,  where  L  is  number  of  signal  level   Data  Rate   Limits  -­‐  Noisy   Shannon  Capacity:  Not  evaluated  on  this  link   Bandwidth  x  log2  (1+SNR)   Bandwidth   Delay  Product   (600-­‐bit/s)(2  s)  =  1200  bits     Buoy  <  -­‐-­‐  >  Iridium  Satellite   Narrative  &  Technical  Details   As  shown  previously,  data  arrives  at  the  buoy  and  is  queued  and  or  stored.  Then,  the   Iridium  transceiver  is  activated  and  the  file  is  transmitted  via  the  uplink  to  Iridium   for  switching  to  the  Tsunami  Warning  Center.  As  will  be  shown  in  the  next  section,   propagation  time  is  2.60  ms  and  file  transmission  time  is  6.67  seconds  for  the  2  KB   data  file.  Iridium  uses  FDMA  and  TDMA,  both  at  the  media  access  sub-­‐layer  of  the   DLL  for  channelization,  and  time  division  duplexing  (TDD)  at  the  physical  layer.     Channels  are  comprised  of  a  frequency  band  and  time  slot.  Multilink  Point  to  Point   Protocol  (MPPP),  at  the  DLC  layer  [5]  controls  establishing,  maintaining,  configuring   and  terminating  endpoint  connections  as  well  as  data  transfer[5].   Table  2:  Communication  Link  Overview  –  Buoy  -­‐-­‐  >  Iridium   Link  Features  @   given  OSI  Layer   Buoy  -­‐-­‐>  Iridium     Application    Proprietary   Presentation   Not  defined  -­‐  proprietary   Session   Not  defined  -­‐  proprietary   Transport   Checksums  and  X-­‐modem  protocol  –  no  port  addressing   Network:     Defined  in  section  entitled  “routing”   DLL:DLC/MAC   Muiltilink  PPP  at  LLC  and  FDMA/TDMA  at  MAC   Physical   The  radio  frequency  transmission  in  the  1565  MHz  to  1626.5   MHz  range  and  the  data  transmission  rates  are  at  2.4  kilobits   per  second.     Bandwidth   5kHz  
  • 13. Iridium-­‐DART  Network              |  P a g e     12   Throughput   2.4  kbps  constrained  at  ground-­‐user  modem,  although  can  be   upgraded  to  higher  rate  based  on  channel  bonding  via  inverse   multiplexing  or  MLPPP   Signaling  Rate   See  section  titled  “Space-­‐based  components  overview”   Propagation  T   See  latency  calculations  above   Latency   See  latency  calculations  above   Attenuation(db)   Db=10log10(P2/ P1)   Not  addressed  –  data  not  published   Distortion   (fading  from   multipath)   Not  addressed  -­‐  data  not  published   Noise   Not  addressed  -­‐  data  not  published   Data  Rate   Limits  –   Noiseless   Channel   Nyquist  Bit  Rate:  Not  addressed     2  x  bandwidth  x  log2  L,  where  L  is  number  of  signal  level   Data  Rate   Limits  -­‐  Noisy   Shannon  Capacity:    Not  addressed  –  data  not  published   Bandwidth  x  log2  (1+SNR)   Delay  Product   Time  to  fill  channel  with  data/bits:  2400bps  x  1s/1000ms  x   2.05  ms  =  4.92  ms     Iridium  <  -­‐-­‐  >  Iridium  Inter-­‐Satellite  Links  (ISL)   Narrative   Data  delivered  to  Iridium  cross  its  nodes  over  inter-­‐satellite  links  (ISL)  that  operate   at  22.55  –  23.55  GHz  at  25  Mbps  using  the  slotted  TDMA,  which  is  transmitted  with   QPSK.  Maximum  user  throughput  is  not  known  due  to  absence  of  data  on  ISL   overhead,  data  compression  and  factors.  Frequency  conversion  of  received  signal   allows  the  Iridium  to  receive  and  transmit  without  interference,  since  frequencies   utilized  for  inter-­‐satellite,  uplink,  downlink  and  user  links  are  different.  Crosslink   delay  is  shown  to  be  13.33  ms  over  an  average  distance  between  satellites  of  4000   meters.     An  interesting  issue  arises  as  the  satellites  converge  at  the  poles  remembering  that   each  orbit  is  in  a  polar  plane.  The  48  spot  beams  begin  to  increasingly  overlap   creating  a  situation  where  the  spot  beams  need  to  be  managed  to  avoid  interference.  
  • 14. Iridium-­‐DART  Network              |  P a g e     13   It  is  assumed  that  this  is  done  dynamically  by  algorithm  where  selected  spot  beams   are  progressively  shutdown  at  the  periphery  of  the  main  footprint  [3].  As  defined  in   the  space-­‐based  components  section,  there  are  six  orbital  planes  with  11  satellites   each.  They  all  rotate  in  the  same  direction,  which  gives  rise  to  a  “seam”  orbit  -­‐-­‐orbits   that  are  in  counter  rotation  relative  to  each  other.  This  is  managed  by  blocking   communication  between  the  “seams”  [10],  since  Doppler  effects  would  create   unacceptable  delay  and  overhead  based  on  frequency-­‐shifting  transcriptions.   Iridium  <  -­‐-­‐  >  Ground  Station   Discussion   From  a  networking  perspective,  the  Iridium  nodes  are  in  two  planes:  the  orbital  and   terrestrial  [11].  The  Iridium  network  is  similar  to  a  cellular  network  in  that  static   base-­‐stations  communicate  with  moving  devices  and  orders  handoffs  as  signal   strength  drops;  in  our  case,  the  cells  are  moving.  Another  difference  is  that  cellular   base  stations  switch  directly  into  a  terrestrially  based  network,  not  to  other  cellular   base  stations  using  wireless  transmissions.  This  is  an  important  distinction  since  the   ground-­‐based  network  has  more  capacity,  while  the  space-­‐based  Iridium  is   constrained  by  available  RF  throughput  and  signaling  overhead.     There  appears  to  be  two  ground  station  gateways  (Hawaii  and  Arizona)  and  21   antennas  distributed  geographically,  yet  this  is  difficult  to  verify  as  Iridium   Communications  Inc.    does  not  respond  to  questions  related  to  details  of  its  system   (warnings  manifest  if  enough  research  is  done).  Gateways  ensure  space  to  ground   link  availability,  no  matter  whether  a  satellite  is  passing  immediately  overhead,  or   not  given  that  traffic  is  routed  to  the  closest  GS  by  the  constellation.  Routing  is   examined  in  the  next  section.     Routing   Iridium  does  not  advertise  its  routing  algorithm,  and  speculation  abounds  about  it   in  the  aerospace  industry,  yet  researchers’  models  reveal  that  a  modified  Bellman-­‐ Ford  (mBF)  algorithm  is  likely  [3],  which  is  no  mean  feat  given  such  a  highly  
  • 15. Iridium-­‐DART  Network              |  P a g e     14   dynamic  system,  especially  if  we  are  relying  on  distance  vector  updates   propagating  through  the  system.  Given  that  system  details  are  scarce,  the  next   section  covers  a  macro-­‐view  of  a  potential  configuration.       If  we  consider  the  Iridium  system  as  two  elements  acting  on  two  separate  planes,     that  of  the  Iridium  constellation,  and  that  of  ground  nodes,  updating  routing  tables   based  on  node-­‐to-­‐node-­‐propagated  updates  seems  unnecessary  (if  we  could  rapidly   and  autonomously  calculate  each  node’s  position).  From  that  perspective,  consider  the   following;  inter-­‐satellite  distances  can  be  determined  instantaneously  based  on  GPS   calculations  on  each  node,  and  while  the  speed  of  the  satellites  quickly  negates   coordinate  calculation,  the  routing  tables  should  be  able  to  update  themselves  faster   using  an  application  specific  integrated  circuit  (ASIC)  existing  as  a  separate   subsystem.       Node  awareness  of  instantaneous  relative  position  would  allow  the  mBF  algorithm   to  determine  least-­‐cost  distances  by  the  node  for  itself,  rather  than  having  rapid  and   ongoing  route  updates  broadcast  everywhere.  Said  another  way,  this  would  allow   distance  vectors,  for  the  constellation,  to  be  maintained  by  calculation  internally  on   each  satellite  using  an  ASIC.    This  would  eliminate  convergence  time  and  route   update  traffic.     Uplinking  user-­‐access  devices  always  connects  with  the  nearest  satellite  based  on   signal  strength  (and  in  consideration  of  the  seam),  and  if  the  constellation  already   knows  the  least-­‐cost  path  through  the  constellation,  then  knowing  the  correct  exit   node  will  complete  the  path.   Handoffs  could  be  made  on  the  same  basis  by  having  ground  stations  feeding  the   nearest  satellite  a  flag  saying  “you  are  closest  to  me”;  this  distance-­‐vector  (for  the   two  ground  stations)  would  propagate  through  the  constellation  every  few  seconds,   creating  system-­‐wide  awareness  of  exit  points  relative  to  the  constellation’s  nodes.   System-­‐wide  latency  is  considered  next  using  our  original  2KB  source  file  from  the   tsunameter.    
  • 16. Iridium-­‐DART  Network              |  P a g e     15   Latency  Calculations     Tfile(2  kilobyte)  =  T(tsunameter-­‐>buoy)  +  T  (transmission)  +T  (uplink)  +  (N-­‐1)T  (cross)  +  T(downlink)       Where,   T(tsunameter-­‐>buoy)    =  propagation  delay  and  transmission  time  for  file  on  the   tsunameter-­‐>buoy  link   T  (transmission)     =  transmission  time  for  the  file  (2  kilo-­‐byte)   T  (uplink)     =  propagation  delay  from  buoy  to  the  satellite    T  (cross)         =  propagation  delay  on  satellites  cross  links     T(downlink)       =  propagation  delay  satellite  to  the  ground;  (processing/queuing   delays  per  satellite  ignored  for  this  analysis)     N                        =  number  of  satellites  in  overall  link   T  (uplink)  =  T(downlink)      =   !"#$%%&#$  !"#$#%&' !"##$  !"  !"#!! = !"#!" !.!!"!!!"!!" !"# = 2.60  𝑚𝑠    [10]   Distance  between  satellites  averages  4000  km[12].  So,   T  (cross)         =   !"#$$%&'(  !"#$%&'( !"##$  !"  !"#!! =  4000 !" !.!!"!!!"!!" !"# = 13.34  𝑚𝑠  [10]   T  (transmission)        =   !"#$  !"#$ !"#$%&'()'"  !!!"#$!!"# =  2 !"#$%& !.!  !"#$ = 6667  𝑚𝑠  [10]   Therefore,  the  Total  time  to  move  a  2KB  file  over  the  system  is:   T  (Total)      =  ([30.15𝑠  𝑥 !"""!" ! ] + 6667  𝑚𝑠 + 2 2.60  𝑚𝑠 +  13.34  𝑚𝑠) = 36.85  𝑠     To  simplify  this  analysis,  overhead/padding  to  frames  not  included  in  calculations   except  in  the  case  of  the  tsunameter  to  buoy.      
  • 17. Iridium-­‐DART  Network              |  P a g e     16   Total  Transfer  Time       Figure  11:    End-­‐to-­‐End  Latency   Conclusions  and  Further  Research   The  Tsunami  Warning  System  is  a  masterwork  of  technology  and  it  has  been  proven   to  give  warning  to  those  in  the  path  of  incoming  tsunamis  saving  lives.  This  was   demonstrated  in  Japan  in  2011,  and  while  the  scale  of  a  tsunami’s  potential   devastation  is  terrifying,  systems  can  be  improved  to  provide  better  resolution  of   expected  wave-­‐height  saving  as  many  as  possible  [13].    The  Iridium  Constellation  is   integral  to  the  success  of  the  warning  system,  and  its  networking  is  a  major  factor  in   this  success.   Given  the  complexity  of  routing  in  a  dynamic  system  of  nodes,  such  as  Iridium’s,   more  research  should  be  undertaken  to  improve  dynamic  routing  in  rapidly  
  • 18. Iridium-­‐DART  Network              |  P a g e     17   changing  RF  networks.  This  has  implications  well  beyond  satellite  constellations  in   our  ever-­‐expanding  mobility-­‐oriented  world.      
  • 19. Iridium-­‐DART  Network              |  P a g e     18   References     [1]   C.  Meinig,  S.  E.  Stalin,  A.  I.  Nakamura,  and  H.  B.  Milburn.  (2005,  March  29).   Real-­‐Time  Deep-­‐Ocean  Tsunami  Measuring,  Monitoring,  and  Reporting  System:   The  NOAA  DART  II  Description  and  Disclosure  [Article].  Available:   http://www.ndbc.noaa.gov/dart/dart_ii_description_6_4_05.pdf   [2]   Iridium.  (2015,  March  30).  Ground  Infrastructure.  Available:   https://www.iridium.com//About/IridiumGlobalNetwork/GroundInfrastructure.as px   [3]   L.  Xiangdong,  G.  Dilip,  M.  Tim,  and  S.  Peter,  "Analysis  of  IP  Routing   Approaches  for  LEO/MEO  Satellite  Networks,"  in  28th  AIAA  International   Communications  Satellite  Systems  Conference  (ICSSC-­‐2010),  ed:  American   Institute  of  Aeronautics  and  Astronautics,  2010.   [4]   S.  R.  Pratt,  R.  A.  Raines,  C.  E.  Fossa,  and  M.  A.  Temple,  "An  operational  and   performance  overview  of  the  IRIDIUM  low  earth  orbit  satellite  system,"   Communications  Surveys,  IEEE,  vol.  2,  pp.  2-­‐10,  1999.   [5]   B.  A.  Forouzan,  Data  Communications  AND  Networking,  5th  ed.  New  York,  NY:   McGraw  Hill,  2013.   [6]   A.  M.  Jabbar,  "Multi-­‐Link  Satellite  Data  Communication  System,"  Master  of   Science,  Engineering,  Electrical,  Osamia  University  University  of  Kanas,  2001.   [7]   NOAA.  (n.d.,  April  20).  Tsunami  Detection  Algorithm.  Available:   http://nctr.pmel.noaa.gov/tda_documentation.html   [8]   NOAA,  "DART  II  System,"  ed,  2015.   [9]   Benthos.  (2014,  April  30).  Benthos  Modems    [PDF  Files].     [10]   S.  R.  Pratt,  R.  A.  Raines,  C.  E.  Fossa,  and  M.  A.  Temple,  "An  Operational  and   Performance  Overview  of  the  Iridium  Low  Earth  Orbit  Satellite  System,"  ed,   1999.   [11]   Staff.  (2015,  March  30).  Available:   https://www.iridium.com/About/IridiumGlobalNetwork/SatelliteConstellation.asp x   [12]   I.  C.  Inc.,  "Ground  Station,"  ed:  Iridium  Communications  Inc.,  2015.   [13]   D.  Demetriou.  (2013).  Tsunami  two  years  on:  Japan  finally  gets  warning   system  that  would  have  saved  hundreds  of  lives.  Available:   http://www.telegraph.co.uk/news/worldnews/asia/japan/9920042/Tsunami-­‐ two-­‐years-­‐on-­‐Japan-­‐finally-­‐gets-­‐warning-­‐system-­‐that-­‐would-­‐have-­‐saved-­‐hundreds-­‐ of-­‐lives.html   [14]   Wikipedia.  (2015).  XMODEM.  Available:  http://en.wikipedia.org/wiki/XMODEM        
  • 20. Iridium-­‐DART  Network              |  P a g e     19   APPENDIX  A  –  X-­‐Modem  Protocol  Structure   X-­‐Modem  uses  a  132-­‐byte  packet  structure  with  128  bytes  reserved  for  data.    A  3-­‐ byte  header  that  included  a  <SOH>  control  character,  a  block  number  from  0-­‐255,   and  the  inverse  of  the  block  number  (-­‐255)  minus  the  block  number  with  block   numbers  starting  at  1  and  incrementing  by  1  for  subsequent  blocks.     The  packet  trailer  is  a  checksum  of  1-­‐byte.    The  checksum  is  the  sum  of  all  bytes  in   the  packet  module  256.  Only  the  eight  least  significant  are  retained,  ignoring   overflow  keeping  the  continuity  of  the  1-­‐byte  check.  Once  a  file  transmission  was   complete,  a  special  <EOT>  character  was  sent,  which  was  not  part  of  the  block  [14].  
  • 21. Iridium-­‐DART  Network              |  P a g e     20   APPENDIX  B  -­‐  Images     Figure  12:  DART  II  Image  
  • 22. Iridium-­‐DART  Network              |  P a g e     21       Figure  13:  DART  Buoy  -­‐  Open  Ocean     Figure  14:  Tsunameter  Awaits  Deployment  
  • 23. Iridium-­‐DART  Network              |  P a g e     22     Figure  15:  Iridium  Satellite