This document provides an overview of convolutional neural networks (CNNs) and describes a research study that used a two-dimensional heterogeneous CNN (2D-hetero CNN) for mobile health analytics. The study developed a 2D-hetero CNN model to assess fall risk using motion sensor data from 5 sensor locations on participants. The model extracts low-level local features using convolutional layers and integrates them into high-level global features to classify fall risk. The 2D-hetero CNN was evaluated against feature-based approaches and other CNN architectures and performed ablation analysis.