This document provides an introduction to computer vision with convoluted neural networks. It discusses what computer vision aims to address, provides a brief overview of neural networks and their basic building blocks. It then covers the history and evolution of convolutional neural networks, how and why they work on digital images, their limitations, and applications like object detection. Examples are provided of early CNNs from the 1980s and 1990s and recent advancements through the 2010s that improved accuracy, including deeper networks, inception modules, residual connections, and efforts to increase performance like MobileNets. Training deep CNNs requires large datasets and may take weeks, but pre-trained networks can be fine-tuned for new tasks.