SlideShare a Scribd company logo
A presentation of eSyst.org
Electronic Materials
• The goal of electronic materials is to
generate and control the flow of an
electrical current.
• Electronic materials include:
1. Conductors: have low resistance which
allows electrical current flow
2. Insulators: have high resistance which
suppresses electrical current flow
3. Semiconductors: can allow or suppress
electrical current flow
A presentation of eSyst.org
Conductors
• Good conductors have low resistance so
electrons flow through them with ease.
• Best element conductors include:
– Copper, silver, gold, aluminum, & nickel
• Alloys are also good conductors:
– Brass & steel
• Good conductors can also be liquid:
– Salt water
A presentation of eSyst.org
Conductor Atomic Structure
• The atomic structure of
good conductors usually
includes only one
electron in their outer
shell.
– It is called a valence
electron.
– It is easily striped from the
atom, producing current
flow.
Copper Atom
A presentation of eSyst.org
Insulators
• Insulators have a high resistance so current
does not flow in them.
• Good insulators include:
– Glass, ceramic, plastics, & wood
• Most insulators are compounds of several
elements.
• The atoms are tightly bound to one another
so electrons are difficult to strip away for
current flow.
A presentation of eSyst.org
Semiconductors
• Semiconductors are materials that essentially
can be conditioned to act as good conductors,
or good insulators, or any thing in between.
• Common elements such as carbon, silicon,
and germanium are semiconductors.
• Silicon is the best and most widely used
semiconductor.
A presentation of eSyst.org
Semiconductor Valence Orbit
• The main
characteristic of a
semiconductor
element is that it has
four electrons in its
outer or valence
orbit.
A presentation of eSyst.org
Crystal Lattice Structure
• The unique capability
of semiconductor
atoms is their ability to
link together to form a
physical structure
called a crystal lattice.
• The atoms link
together with one
another sharing their
outer electrons.
• These links are called
covalent bonds.
2D Crystal Lattice Structure
A presentation of eSyst.org
3D Crystal Lattice Structure
A presentation of eSyst.org
Semiconductors can be Insulators
• If the material is pure semiconductor material like
silicon, the crystal lattice structure forms an excellent
insulator since all the atoms are bound to one another
and are not free for current flow.
• Good insulating semiconductor material is referred to
as intrinsic.
• Since the outer valence electrons of each atom are
tightly bound together with one another, the electrons
are difficult to dislodge for current flow.
• Silicon in this form is a great insulator.
• Semiconductor material is often used as an insulator.
A presentation of eSyst.org
Doping
• To make the semiconductor conduct electricity,
other atoms called impurities must be added.
• “Impurities” are different elements.
• This process is called doping.
A presentation of eSyst.org
Semiconductors can be Conductors
• An impurity, or element
like arsenic, has 5
valence electrons.
• Adding arsenic (doping)
will allow four of the
arsenic valence
electrons to bond with
the neighboring silicon
atoms.
• The one electron left
over for each arsenic
atom becomes available
to conduct current flow.
A presentation of eSyst.org
Resistance Effects of Doping
• If you use lots of arsenic atoms for doping,
there will be lots of extra electrons so the
resistance of the material will be low and
current will flow freely.
• If you use only a few boron atoms, there will
be fewer free electrons so the resistance will
be high and less current will flow.
• By controlling the doping amount, virtually
any resistance can be achieved.
A presentation of eSyst.org
Another Way to Dope
• You can also dope a
semiconductor material with an
atom such as boron that has
only 3 valence electrons.
• The 3 electrons in the outer orbit
do form covalent bonds with its
neighboring semiconductor
atoms as before. But one atom
is missing from the bond.
• This place where a fourth
electron should be is referred to
as a hole.
• The hole assumes a positive
charge so it can attract electrons
from some other source.
• Holes become a type of current
carrier like the electron to
support current flow.
A presentation of eSyst.org
Types of Semiconductor Materials
• The silicon doped with extra electrons is
called an “N type” semiconductor.
– “N” is for negative, which is the charge of an
electron.
• Silicon doped with material missing
electrons that produce locations called holes
is called “P type” semiconductor.
– “P” is for positive, which is the charge of a hole.
A presentation of eSyst.org
Current Flow in N-type Semiconductors
• The DC voltage source has
a positive terminal that
attracts the free electrons in
the semiconductor and pulls
them away from their atoms
leaving the atoms charged
positively.
• Electrons from the negative
terminal of the supply enter
the semiconductor material
and are attracted by the
positive charge of the atoms
missing one of their
electrons.
• Current (electrons) flows
from the positive terminal to
the negative terminal.
A presentation of eSyst.org
Current Flow in P-type Semiconductors
• Electrons from the
negative supply terminal
are attracted to the
positive holes and fill them.
• The positive terminal of the
supply pulls the electrons
from the holes leaving the
holes to attract more
electrons.
• Current (electrons) flows
from the negative terminal
to the positive terminal.
• Inside the semiconductor
current flow is actually by
the movement of the holes
from positive to negative.
A presentation of eSyst.org
In Summary
• In its pure state, semiconductor material is an excellent
insulator.
• The commonly used semiconductor material is silicon.
• Semiconductor materials can be doped with other atoms to
add or subtract electrons.
• An N-type semiconductor material has extra electrons.
• A P-type semiconductor material has a shortage of
electrons with vacancies called holes.
• The heavier the doping, the greater the conductivity or the
lower the resistance.
• By controlling the doping of silicon the semiconductor
material can be made as conductive as desired.

More Related Content

Similar to Introduction_Semi_Materials-6-09-10.ppt

EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01
rizwanspirit
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materials
krishslide
 
Lec 5-semicondutors
Lec 5-semicondutorsLec 5-semicondutors
Lec 5-semicondutors
hamzaatiq34
 
Introduction semi materials
Introduction semi materialsIntroduction semi materials
Introduction semi materials
atikul islam ashik
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
SAURABH SINGH
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodes
Syiera Rahman
 
CHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptxCHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptx
Tesfahun Molla
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
PRAVIN SINGARE
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics
ruwaghmare
 
Lecture-01.pdf
Lecture-01.pdfLecture-01.pdf
Lecture-01.pdf
MonirMorshed3
 
1st leacture
1st leacture1st leacture
1st leacture
Åìzàz Åhmàd
 
Electronics
ElectronicsElectronics
Electronics
godfrey35
 
1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt
SpringWisteri
 
Electronic Principles
Electronic PrinciplesElectronic Principles
Electronic Principles
Syafiq Nordin Own Artist
 
Semiconductor devices specialization
Semiconductor devices  specializationSemiconductor devices  specialization
Semiconductor devices specialization
Abhishek Sur
 
Be lec 1
Be lec 1Be lec 1
Be lec 1
Asadullah385
 
Unit 2 semiconductors
Unit 2  semiconductors Unit 2  semiconductors
Unit 2 semiconductors
Abhinay Potlabathini
 
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptxAENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
TemesgenDebeloDesiss
 
Semiconductor Physics
Semiconductor PhysicsSemiconductor Physics
Semiconductor Physics
Shahzaib Mahesar
 
Edc
EdcEdc

Similar to Introduction_Semi_Materials-6-09-10.ppt (20)

EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01EEE231- Electronics-1 Lecture 01
EEE231- Electronics-1 Lecture 01
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materials
 
Lec 5-semicondutors
Lec 5-semicondutorsLec 5-semicondutors
Lec 5-semicondutors
 
Introduction semi materials
Introduction semi materialsIntroduction semi materials
Introduction semi materials
 
Semiconductors
SemiconductorsSemiconductors
Semiconductors
 
4.2 semiconductor diodes
4.2 semiconductor diodes4.2 semiconductor diodes
4.2 semiconductor diodes
 
CHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptxCHAPTER 4_SEMICONDUCTORS.pptx
CHAPTER 4_SEMICONDUCTORS.pptx
 
Renewable energy sources
Renewable energy sourcesRenewable energy sources
Renewable energy sources
 
semiconductor physics
semiconductor physics semiconductor physics
semiconductor physics
 
Lecture-01.pdf
Lecture-01.pdfLecture-01.pdf
Lecture-01.pdf
 
1st leacture
1st leacture1st leacture
1st leacture
 
Electronics
ElectronicsElectronics
Electronics
 
1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt1000000000Introduction_Semiconductors.ppt
1000000000Introduction_Semiconductors.ppt
 
Electronic Principles
Electronic PrinciplesElectronic Principles
Electronic Principles
 
Semiconductor devices specialization
Semiconductor devices  specializationSemiconductor devices  specialization
Semiconductor devices specialization
 
Be lec 1
Be lec 1Be lec 1
Be lec 1
 
Unit 2 semiconductors
Unit 2  semiconductors Unit 2  semiconductors
Unit 2 semiconductors
 
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptxAENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
AENG 6316 - Chap 4 - Electrical and Magnetic materials.pptx
 
Semiconductor Physics
Semiconductor PhysicsSemiconductor Physics
Semiconductor Physics
 
Edc
EdcEdc
Edc
 

Recently uploaded

Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
ramrag33
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
TaghreedAltamimi
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 

Recently uploaded (20)

Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 

Introduction_Semi_Materials-6-09-10.ppt

  • 1. A presentation of eSyst.org Electronic Materials • The goal of electronic materials is to generate and control the flow of an electrical current. • Electronic materials include: 1. Conductors: have low resistance which allows electrical current flow 2. Insulators: have high resistance which suppresses electrical current flow 3. Semiconductors: can allow or suppress electrical current flow
  • 2. A presentation of eSyst.org Conductors • Good conductors have low resistance so electrons flow through them with ease. • Best element conductors include: – Copper, silver, gold, aluminum, & nickel • Alloys are also good conductors: – Brass & steel • Good conductors can also be liquid: – Salt water
  • 3. A presentation of eSyst.org Conductor Atomic Structure • The atomic structure of good conductors usually includes only one electron in their outer shell. – It is called a valence electron. – It is easily striped from the atom, producing current flow. Copper Atom
  • 4. A presentation of eSyst.org Insulators • Insulators have a high resistance so current does not flow in them. • Good insulators include: – Glass, ceramic, plastics, & wood • Most insulators are compounds of several elements. • The atoms are tightly bound to one another so electrons are difficult to strip away for current flow.
  • 5. A presentation of eSyst.org Semiconductors • Semiconductors are materials that essentially can be conditioned to act as good conductors, or good insulators, or any thing in between. • Common elements such as carbon, silicon, and germanium are semiconductors. • Silicon is the best and most widely used semiconductor.
  • 6. A presentation of eSyst.org Semiconductor Valence Orbit • The main characteristic of a semiconductor element is that it has four electrons in its outer or valence orbit.
  • 7. A presentation of eSyst.org Crystal Lattice Structure • The unique capability of semiconductor atoms is their ability to link together to form a physical structure called a crystal lattice. • The atoms link together with one another sharing their outer electrons. • These links are called covalent bonds. 2D Crystal Lattice Structure
  • 8. A presentation of eSyst.org 3D Crystal Lattice Structure
  • 9. A presentation of eSyst.org Semiconductors can be Insulators • If the material is pure semiconductor material like silicon, the crystal lattice structure forms an excellent insulator since all the atoms are bound to one another and are not free for current flow. • Good insulating semiconductor material is referred to as intrinsic. • Since the outer valence electrons of each atom are tightly bound together with one another, the electrons are difficult to dislodge for current flow. • Silicon in this form is a great insulator. • Semiconductor material is often used as an insulator.
  • 10. A presentation of eSyst.org Doping • To make the semiconductor conduct electricity, other atoms called impurities must be added. • “Impurities” are different elements. • This process is called doping.
  • 11. A presentation of eSyst.org Semiconductors can be Conductors • An impurity, or element like arsenic, has 5 valence electrons. • Adding arsenic (doping) will allow four of the arsenic valence electrons to bond with the neighboring silicon atoms. • The one electron left over for each arsenic atom becomes available to conduct current flow.
  • 12. A presentation of eSyst.org Resistance Effects of Doping • If you use lots of arsenic atoms for doping, there will be lots of extra electrons so the resistance of the material will be low and current will flow freely. • If you use only a few boron atoms, there will be fewer free electrons so the resistance will be high and less current will flow. • By controlling the doping amount, virtually any resistance can be achieved.
  • 13. A presentation of eSyst.org Another Way to Dope • You can also dope a semiconductor material with an atom such as boron that has only 3 valence electrons. • The 3 electrons in the outer orbit do form covalent bonds with its neighboring semiconductor atoms as before. But one atom is missing from the bond. • This place where a fourth electron should be is referred to as a hole. • The hole assumes a positive charge so it can attract electrons from some other source. • Holes become a type of current carrier like the electron to support current flow.
  • 14. A presentation of eSyst.org Types of Semiconductor Materials • The silicon doped with extra electrons is called an “N type” semiconductor. – “N” is for negative, which is the charge of an electron. • Silicon doped with material missing electrons that produce locations called holes is called “P type” semiconductor. – “P” is for positive, which is the charge of a hole.
  • 15. A presentation of eSyst.org Current Flow in N-type Semiconductors • The DC voltage source has a positive terminal that attracts the free electrons in the semiconductor and pulls them away from their atoms leaving the atoms charged positively. • Electrons from the negative terminal of the supply enter the semiconductor material and are attracted by the positive charge of the atoms missing one of their electrons. • Current (electrons) flows from the positive terminal to the negative terminal.
  • 16. A presentation of eSyst.org Current Flow in P-type Semiconductors • Electrons from the negative supply terminal are attracted to the positive holes and fill them. • The positive terminal of the supply pulls the electrons from the holes leaving the holes to attract more electrons. • Current (electrons) flows from the negative terminal to the positive terminal. • Inside the semiconductor current flow is actually by the movement of the holes from positive to negative.
  • 17. A presentation of eSyst.org In Summary • In its pure state, semiconductor material is an excellent insulator. • The commonly used semiconductor material is silicon. • Semiconductor materials can be doped with other atoms to add or subtract electrons. • An N-type semiconductor material has extra electrons. • A P-type semiconductor material has a shortage of electrons with vacancies called holes. • The heavier the doping, the greater the conductivity or the lower the resistance. • By controlling the doping of silicon the semiconductor material can be made as conductive as desired.