SlideShare a Scribd company logo
1 of 32
Sample Introduction Considerations
2
Sample Introduction
Purpose:
To introduce the sample on to the column in the vapor state.
 Syringe Injection:
– Manual injection
– Autosampler injection
 Valve Injection
– Gas sampling valves
– Liquid sampling valves
 Auxiliary Sampling Devices
– Purge and Trap
– Headspace
3
Types of Inlet Systems
Purpose:
To allow the insertion of a sample into the gas chromatograph in a repeatable,
reproducible manner. The sample should be representative of the bulk, and
unless specifically desired, should be inserted without chemical change.
– Packed column inlet
– Septum-purged packed column inlet
– Split/splitless capillary inlet
– Split-only capillary inlet
– Electronic pressure controlled (EPC) cool on-column
– EPC Purged packed inlet
– EPC Capillary split/splitless inlet
Inlet design must consider the characteristics of capillary columns:
– High efficiency
– Low sample capacity
4
Back to Bourbon Street
Four buses of tourists unload at the same time.
Split Vent
Column
Bourbon
Street
Canal Street
Too many people would overload
Bourbon Street. Therefore, a large
proportion of the tourists go down
Canal Street.
5
Split/Splitless Capillary Inlet
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
SEPTUM
COLUMN
HEAD
PRESSURE
TOTAL FLOW
SPLIT VENT
SEPTUM
PURGE VENT
BACK
REGULATOR
VALVE
FLOW CONTROLLER
PRESSURE
PURGE
Column flow is set by altering COLUMN HEAD PRESSURE.
SEPTUM PURGE should be set to 2-3 mL/min.
SPLIT VENT flow is TOTAL FLOW minus COLUMN FLOW and
SEPTUM PURGE flow.
PURGE VENT
PURGE VALVE
Changing TOTAL FLOW should NOT change COLUMN HEAD PRESSURE
or SEPTUM PURGE flow.
6
Capillary Flow Diagram:
Pre-Injection
SEAL (Small
grooves in the
seal allow the
split to occur.)
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
SEPTUM
= CARRIER GAS
LINER
50 mL/min
2 mL/min
0.6 mL/min
48 mL/min
47.4 mL/min
PURGE VENT
PURGE VALVE
7
Capillary Flow Diagram:
Sample Injection
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
= CARRIER GAS
= LIQUID SAMPLE
PURGE VALVE
PURGE VENT
8
Capillary Flow Diagram:
Sample Vaporization
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
= CARRIER GAS
= SAMPLE MOLECULES
= SOLVENT MOLECULES
PURGE VENT
PURGE VALVE
Vaporization takes place when sufficient
thermal energy is transferred to the sample.
This can occur in the carrier gas, but is
more likely upon contact with a solid
surface, such as the liner or mixing medium.
9
Capillary Flow Diagram:
Sample/Carrier Mixing
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
= CARRIER GAS
= SAMPLE MOLECULES
= SOLVENT MOLECULES
PURGE VALVE
PURGE VENT
For the concept of SPLIT RATIO to be
valid, the sample (solvent + analyte)
must be mixed with the carrier gas to
give a homogeneous mixture.
At the bottom of the injection port
a small part of this mixture will
transfer to the column, while the
bulk of the mixture will leave the
inlet via the SPLIT VENT.
SPLIT RATIO = COLUMN FLOW + SPLIT VENT FLOW
COLUMN FLOW
10
Capillary Flow Diagram:
Liner Overload
(INLET)
(SEPTUM)
SPLIT VENT
TOTAL FLOW
COLUMN
= CARRIER GAS
= SAMPLE MOLECULES
= SOLVENT MOLECULES
PURGE VENT
PURGE VALVE
A large injection of a solvent with a
large expansion volume can cause an
overload of the injection port liner.
This can result in loss of sample out
the PURGE VENT as well as
contamination of the in-coming carrier
gas line.
11
Split Ration Calculation
Split Ratio = Split Vent Flow + Column Flow
Column Flow
Column
I.D. (um)
Total Column Septum Split Split
Ratio
Flow Flow Purge Flow
200
320
530
100 0.5 2.0 97.5 196:1
100
100
1.0
3.0
2.0
2.0
97
95
98:1
33:1
A B C D
Split Vent Flow = (Split Ratio)(Column Flow) - Column Flow
COLUMN
HEAD
PRESSURE
TOTAL FLOW
SPLIT VENT
SEPTUM
PURGE VENT
PURGE
B
A
D C
12
Capillary Liners
TREAT AS ULTRA CLEAN PART!
NOTE: See Supplies Catalog for latest variety of liners.
Untreated Liners
Split/Splitless 4-mm id, 1000 ul nominal volume
Borosilica glass (untreated) with silanized glass wool plug
PN 19251-60540 Split and splitless modes, especially recommended
for rapid injections with the HP Automatic Sampler
Splitless
PN 18740-80220
2-mm id, 250 ul nominal volume
quartz glass (untreated), open tube
Splitless mode for slow injections
(manual and HP7671/7672 automatic samplers)
small sample volumes (< 1 ul)
and higher boiling point solvent systems
(Univeral Liner)
Deactivated Liners
Packed, tapered 4-mm id, 900 ul nominal volume
Borosilica glass (deactivated), silanized glass wool plug
PN 5062-3587
Split and splitless modes,
can be self-packed
Unpacked, tapered
PN 5181-3316
4-mm id,900-ul nominal volume
Dual-tapered
PN 5181-3315
4-mm id, 800 ul nominal volume
borosilicate glass (deactivated)
Split and splitless modes,
but preferred for splitless
(deactivated)
borosilicate glass (deactivated)
Split and splitless modes,
can be self-packed
13
Split Injection and Selective Inlets
Split injection may be used with:
– Valves
– Head Space Autosamplers
– Thermal Desorbers
– Purge and Trap Samplers
– Analytical Prolyzers
For additional information on these techniques, see:
GC Inlets – An Introduction, by Mathew Klee, Chapters 9-13.
14
Standard Split/Splitless Capillary Inlet with
Electronic Pressure Control (EPC)
This inlet has the same features as the
standard inlet plus the following:
Pressure Control:
Programming: 3 ramps, 0.01-99
psi/min.
Range: 1-100 psi (7-689 kPa) digital
readout of head pressure.
Flow Range: 0-450 mL/min.
Constant Flow Mode: Inlet pressure is
adjusted real time to maintain constant
volumetric flow at column outlet.
INCR
TOTAL FLOW
SPLIT PROGRAMMABLE
PRESSURE
SPLIT/SPLITLESS SEPTUM PURGE
INLET VENT VENT
INJECTION PORT
15
Example Applications
Type of Column
Carrier Conditions
Oven Conditions
Injection Parameters
Detector Parameters
Sample Information
16
The Analysis Process
Sample Preparation
Sample Introduction
Separation
Detection
Data Reduction
Pressure programming at
injection can enhance
transfer to the column
Pressure/temperature
programming can
optimize separations,
reduce analysis times
Constant flow can
stablize detector
response, improve peak
shapes for quantitation
Advantages of EPC for GC Inlets
17
Flow vs. Temperature
30M x 0.32 x 0.25uM HP-5
1.0
.8
.6
.4
.2
50 100 150 200 250 300
TEMPERATURE
Constant Flow Mode
FLOW
(mL/min)
10
8
6
4
2
50 100 150 200 250 300
TEMPERATURE
0.92 mL/min
PRESSURE
(psi)
1.0
.8
.6
.4
.2
1 2 3 4 5
FLOW
HETP
(mm)
1.2
1.4
1.6
1.8
Constant Pressure Mode
1.0
.8
.6
.4
.2
50 100 150 200 250 300
FLOW
(mL/min)
TEMPERATURE
10
8
6
4
2
50 100 150 200 250 300
TEMPERATURE
5 psi
PRESSURE
(psi)
18
EPC Constant Flow Off
1
2
4
5
6
7
8
9
10&11
12
Capillary Column Analysis:
Column Flowrate = 0.98 mL/min
Linear Velocity = 20.4 cm/sec
Constant Flow Off
Initial Pressure = 8 psi
Temperature Program:
Initial Temp 110
Initial Time 3 min
Final Time 7 min
30 M x 0.32 mm x 0.25 uM HP5
Rate 10
Final Temp 180
FID
1 uL Column Checkout
Sample at split ratio 100:1
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.451 25442 20280 BV 0.020 0.1190 Pentane
2 2.830 2.09577E+07 1.27598E+07 BB 0.026 98.0245 Solvent
4 5.160 19123 10431 BB 0.029 0.0894 Undecane
5 6.504 29426 12560 BB 0.037 0.1376 4-Chlorophenol
6 7.347 30184 13787 BB 0.033 0.1412 1-Decylamine
7 8.114 35244 17470 BB 0.032 0.1648 Tridecane
8 8.489 16991 8203 BB 0.033 0.0795 Methyl caprate
9 9.647 68633 32942 BB 0.033 0.3210 Tetradecane
10 10.774 126729 33598 BB 0.062 0.5927 Acenaphthylen
11 1-Dodecanol
12 11.194 70585 29393 BB 0.038 0.3301 Pentadecane
Total area = 2.13801E +07
19
EPC Constant Flow On
1
2
4
5
6
7
8
9
10
11
12
Capillary Column Analysis:
Column Flowrate = 0.98 mL/min
Linear Velocity = 20.4 cm/sec
Constant Flow On
Initial Pressure = 8 psi
Temperature Program:
Initial Temp 110
Initial Time 3 min
Final Temp 180
Final Time 7 min
FID
1 uL Column Checkout
Sample at split ratio 100:1
30 M x 0.32 mm x 0.25 uM HP5
Rate 10
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.455 41934 33092 BV 0.020 0.1861 Pentane
2 2.834 2.20908E+07 1.33684E+07 BV 0.026 98.0502 Solvent
4 5.089 19648 11683 BB 0.027 0.0872 Undecane
5 6.319 30584 14331 BB 0.034 0.1357 4-Chlorophenol
6 7.074 31033 16251 BB 0.029 0.1377 1-Decylamine
7 7.756 35357 20627 BB 0.027 0.1569 Tridecane
8 8.087 17026 9657 BB 0.028 0.0756 Methyl caprate
9 9.103 68292 39287 BB 0.028 0.3031 Tetradecane
10 10.018 67524 32943 BV 0.032 0.2997 Acenaphthylen
11 10.058 58702 33436 VB 0.027 0.2605 1-Dodecanol
12 10.385 69202 38486 BV 0.028 0.3072 Pentadecane
Total area = 2.25301E +07
20
Important Considerations in Using EPC
 Bubble meters are ____________ obsolete.
Compare measured and calculated flows during setup and for
troubleshooting.
 EPC pressure/flow calculations apply to flow through
____________ columns.
Calibrate and evaluate conditions for work with packed
columns.
 EPC has significant advantage for the analysis of ____________
mixture and _____________ amounts.
21
Splitless Injection:
Inlet Design Requirements
 The majority of the injected sample is introduced into the
column.
 Higher sensitivity than the split method and therefore, used for
trace analysis.
 Peak broadening must be minimized.
22
Back to Bourbon Street
One Bus with a Few Tourists
Split Vent
Column
Bourbon
Street
Canal Street
23
Inlet Design and Operation Schematic
Total
To Detector Head Pressure
Gauge
Column
Head
Pressure
Split Vent
Purge Vent
3 ml/min
50 ml/min
Septum
Purge
Purge Control
Valve
3 ml/min Septum Purge Flow
Flow
Total
To Detector Head Pressure
Gauge
Column
Head
Pressure
Split Vent
Purge Vent
3 ml/min
50 ml/min
Septum
Purge
Purge Control
Valve
53 ml/min
Flow
1
ml/min
Purge On
Purge Off
3 ml/min
1 ml/min
54 ml/min
ml/min Inlet Purge Flow
54 ml/min
24
Split Mode
1:100 Dilution of the Column Evaluation Sample
1 2
3
4
5
6
7
8
9 10
12
11
30 M x 0.32 mm x 0.25 uM HP5
Capillary Column Analysis:
Column Flowrate = 1.53 mL/min
Linear Velocity = 31.7 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 110
Initial Time 3 min
Rate 10
Final Temp 180
Final Time 7 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Split Mode:
Split Vent Flow = 44.8
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 1.574 3.98305E+07 3.85324E+07 BBAS 0.017 97.3335 Pentane
2 1.838 1069149 1209434 BV 0.015 2.6127 Solvent
3 2.074 174 229 BB 0.016 0.0004 Impurity
4 3.583 909 657 BB 0.022 0.0022 Undecane
5 4.761 1302 808 BB 0.025 0.0032 4-Chlorophenol
6 5.567 833 392 BB 0.030 0.0020 1-Decylamine
7 6.211 1683 1105 BB 0.024 0.0041 Tridecane
8 6.553 796 533 BB 0.024 0.0019 Methyl caprate
9 7.585 3318 2189 BB 0.024 0.0081 Tetradecane
10 8.400 3070 1843 BB 0.026 0.0075 Acenaphthylene
11 8.555 2543 1695 BB 0.024 0.0062 1-Dodecanol
12 8.882 3449 2285 BB 0.024 0.0084 Pentadecane
Total area = 4.0916E +07
25
Splitless Mode
1:100 Dilution of the Column Evaluation Sample
1
2
3
4 5 6
7
8
9
10
11
12
Capillary Column Analysis:
Column Flowrate = 1.32 mL/min
Linear Velocity = 27.4 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 40
Initial Time 0 min
Rate 10
Final Temp 180
Final Time 5 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 44.8
Purge On Time = 0.77 min.
30 M x 0.32 mm x 0.25 uM HP5
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 1.828 1.20696E+09 7.34754E+07 BBAS 0.199 97.7130 Pentane
2 3.443 2.78214E+07 4639343 BV 0.074 2.2524 Solvent
3 4.460 4628 2001 BV 0.035 0.0004 Impurity
4 7.807 22671 14703 BB 0.024 0.0018 Undecane
5 9.174 26020 14153 BB 0.029 0.0021 4-Chlorophenol
6 9.919 27289 12118 BB 0.032 0.0022 1-Decylamine
7 10.562 39871 28096 BB 0.023 0.0032 Tridecane
8 10.881 19061 13238 BB 0.023 0.0015 Methyl caprate
9 11.842 76661 52722 BB 0.023 0.0062 Tetradecane
10 12.599 68145 43525 BB 0.025 0.0055 Acenaphthylen
11 12.746 62741 43356 BB 0.023 0.0051 1-Dodecanol
12 13.050 80267 52718 BB 0.024 0.0065 Pentadecane
Total area = 1.2352E+09
26
Splitless Injection
Solvent Effect: Initial oven temperature is maintained
below the boiling point of the solvent
causing the solvent to condense at
the head of the column "swelling" the
stationary phase and trapping the
analyte.
SOLVENT BOILING POINT INITIAL OVEN TEMP
( C) ( C)
o o
DICHLOROMETHANE
CHLOROFORM
CARBON DISULFIDE
DIETHYL ETHER
PENTANE
HEXANE
ISO-OCTANE
40
61
46
35
36
69
99
10-30
25-50
10-35
10-25
10-25
40-60
70-90
S
S
S
S
S S
S S S
S
S S
S
S
S S
S
S
S
S
S
S
S
S S
S
S
S
S
S
S
S
S
S
S
S S S
S
S
S S
S
S
S
S
S
S
S
S
S S
S
S S
S
S
S
S
S
S
A
A
A A
A
A
A
A A
A
A
A
A
A
A
A = ANALYTE
S = SOLVENT
SOLVENT AND STATIONARY PHASE MUST BE COMPATIBLE
27
No Solvent Effect
1
4 5 6
7
8
9
10
11
12
Capillary Column Analysis:
Column Flowrate = 1.63 mL/min
Linear Velocity = 33.8 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 110
Initial Time 3 min
Rate 10
Final Temp 180
Final Time 7 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 21 ml/min
Purge On Time = 0.77 min.
30 M x 0.32 mm x 0.25 uM HP5
Solvent = Pentane
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 1.479 1.25642E+09 6.6195E+07 BB 0.237 99.9661 Pentane
4 3.504 19422 2160 BB 0.108 0.0018 Undecane
5 4.698 22937 2857 BB 0.108 0.0018 4-Chlorophenol
6 5.499 31525 4229 BV 0.101 0.0025 1-Decylamine
7 6.183 40959 8540 VV 0.069 0.0033 Tridecane
8 6.526 19182 4464 VB 0.061 0.0015 Methyl caprate
9 7.571 76488 24623 BB 0.046 0.0061 Tetradecane
10 8.387 67132 21269 BV 0.047 0.0053 Acenaphthylene
11 8.546 63400 25018 VV 0.038 0.0050 1-Dodecanol
12 8.876 80189 34399 VB 0.036 0.0064 Pentadecane
Total area = 1.25685E+07
28
Demonstration of the Purge Function
Purge Off the Entire Run (No Purge On Time)
1
4
5
6
7
8
9
10
11
12
Capillary Column Analysis:
Column Flowrate = 1.2 mL/min
Linear Velocity = 24.8 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 40
Initial Time 0 min
Rate 10
Final Temp 180
Final Time 4 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 21 ml/min
Purge On Time = 0.77 min.
30 M x 0.32 mm x 0.25 uM HP5
Solvent = Pentane
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.014 8.44044E+08 6.36828E+07 BBAS 0.160 99.9294 Pentane
4 8.083 19245 18112 BBA 0.019 0.0023 Undecane
5 9.449 48844 21638 PV 0.033 0.0058 4-Chlorophenol
6 10.188 42947 20065 PV 0.031 0.0051 1-Decylamine
7 10.820 60389 37891 PV 0.025 0.0071 Tridecane
8 11.136 30027 19510 PV 0.025 0.0036 Methyl caprate
9 12.090 101257 66142 VV 0.024 0.0120 Tetradecane
10 12.863 93363 55617 VV 0.026 0.0111 Acenaphthylene
11 12.989 86959 54461 PV 0.025 0.0103 1-Dodecanol
12 13.291 113651 67001 PV 0.026 0.0135 Pentadecane
Total area = 8.4464E+08
29
Comparing Purge-On Times
Purge On 0.3 minutes
1 2
3
4 5
6
7
8
9
10
11
Capillary Column Analysis:
Column Flowrate = 1.6 mL/min
Linear Velocity = 24.3 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 40
Initial Time 0 min
Rate 10
Final Temp 180
Final Time 4 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 44 ml/min
Purge On Time = 0.3 min.
30 M x 0.32 mm x 0.25 uM HP5
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.081 7.90249E+08 6.14638E+07 BBAS 0.156 97.3732 Pentane
2 3.759 2.08811E+07 13516 BB 0.061 2.579 Solvent
3 8.100 19300 13516 BB 0.023 0.0024 Undecane
4 9.464 20503 11491 BB 0.028 0.0025 4-Chlorophenol
5 10.209 21299 8985 BB 0.034 0.0026 1-Decylamine
6 10.830 35759 25381 BB 0.022 0.0044 Tridecane
7 11.146 16794 11700 BB 0.023 0.0021 Methyl caprate
8 12.099 70123 48453 BB 0.023 0.0086 Tetradecane
9 12.873 59637 37232 BB 0.025 0.0073 Acenaphthylene
10 12.997 56760 38181 BB 0.023 0.0070 1-Dodecanol
11 13.299 76695 49076 BB 0.025 0.0095 Pentadecane
Total area = 8.11567E+08
30
Comparing Purge-On Times
Purge On 0.7 minutes
1 2
3 4 5
6
7
8
9
11
10
Capillary Column Analysis:
Column Flowrate = 1.18 mL/min
Linear Velocity = 24.3 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 40
Initial Time 0 min
Rate 10
Final Temp 180
Final Time 4 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 44 ml/min
Purge On Time = 0.7 min.
30 M x 0.32 mm x 0.25 uM HP5
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.038 1.15306E+09 6.32523E+07 BBAS 0.217 97.6632 Pentane
2 3.726 2.71199E+07 4285045 BV 0.079 2.2970 Solvent
3 8.097 23268 14782 BB 0.025 0.0020 Undecane
4 9.465 27011 14779 BB 0.028 0.0023 4-Chlorophenol
5 10.207 23593 10473 BB 0.033 0.0020 1-Decylamine
6 10.831 40884 28411 BB 0.023 0.0035 Tridecane
7 11.147 19385 13693 BB 0.022 0.0016 Methyl caprate
8 12.101 80177 54745 BB 0.023 0.0068 Tetradecane
9 12.874 70910 43647 BV 0.026 0.0060 Acenaphthylene
10 13.000 66676 44021 PB 0.024 0.0056 1-Dodecanol
11 13.301 84329 54693 BB 0.024 0.00715 Pentadecane
Total area = 1.18065E+09
31
Comparing Purge-On Times
Purge On 1.5 minutes
1 2
3 4 5
6
7
8
9
10
11
Capillary Column Analysis:
Column Flowrate = 1.19 mL/min
Linear Velocity = 24.3 cm/sec
Constant Flow On
Initial Pressure = 12 psi at 110 degrees
Temperature Program:
Initial Temp 40
Initial Time 0 min
Rate 10
Final Temp 180
Final Time 4 min
FID
1 uL Column Checkout
Sample diluted to 1:100
Splitless Mode:
Split Vent Flow = 44 ml/min
Purge On Time = 1.5 min.
30 M x 0.32 mm x 0.25 uM HP5
Area Percent Report
Pk# Ret. Time Area Height Type Width Area% Name
1 2.025 1.07664E+09 6.34994E+07 BBAS 0.203 97.3248 Pentane
2 3.710 2.91426E+07 4250357 BB 0.087 2.6344 Solvent
3 8.093 23913 14883 BB 0.025 0.0022 Undecane
4 9.459 28871 14475 BB 0.031 0.0026 4-Chlorophenol
5 10.202 27145 11717 BB 0.033 0.0025 1-Decylamine
6 10.829 42931 30353 BB 0.022 0.0039 Tridecane
7 11.144 20543 14155 BB 0.023 0.0019 Methyl caprate
8 12.099 82470 57485 BB 0.023 0.0075 Tetradecane
9 12.872 73083 45772 BB 0.025 0.0066 Acenaphthylene
10 12.997 66749 45916 PB 0.023 0.0066 1-Dodecanol
11 13.299 86018 56588 BB 0.024 0.0078 Pentadecane
Total area = 1.110623E+09
32
Liners
Untreated Liners
Split/Splitless 4-mm id, 1000 ul nominal volume
Borosilica glass (untreated) with silanized glass wool plug
PN 19251-60540 Split and splitless modes, especially recommended
for rapid injections with the HP Automatic Sampler
Splitless
PN 18740-80220
2-mm id, 250 ul nominal volume
quartz glass (untreated), open tube
Splitless mode for slow injections
(manual and HP7671/7672 automatic samplers)
small sample volumes (< 1 ul)
and higher boiling point solvent systems
(Univeral Liner)
Deactivated Liners
Packed, tapered 4-mm id, 900 ul nominal volume
Borosilica glass (deactivated), silanized glass wool plug
PN 5062-3587
Split and splitless modes,
can be self-packed
Unpacked, tapered
PN 5181-3316
4-mm id,900-ul nominal volume
Dual-tapered
PN 5181-3315
4-mm id, 800 ul nominal volume
borosilicate glass (deactivated)
Split and splitless modes,
but preferred for splitless
(deactivated)
borosilicate glass (deactivated)
Split and splitless modes,
can be self-packed

More Related Content

Similar to introduccion a los Inyectores para cromatografía de gases

Steam water analysis system
Steam water analysis systemSteam water analysis system
Steam water analysis system
priyank.modi
 
POWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECTPOWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECT
Wasiu Oseni
 

Similar to introduccion a los Inyectores para cromatografía de gases (20)

Valve type-modi-11
Valve type-modi-11Valve type-modi-11
Valve type-modi-11
 
Flash chromatography
Flash chromatographyFlash chromatography
Flash chromatography
 
Dc lab 5
Dc lab 5Dc lab 5
Dc lab 5
 
Coconut water extraction mass production machine
Coconut water extraction mass production machineCoconut water extraction mass production machine
Coconut water extraction mass production machine
 
HPLC_basics.ppt
HPLC_basics.pptHPLC_basics.ppt
HPLC_basics.ppt
 
Exp 10 flow rate
Exp 10 flow rateExp 10 flow rate
Exp 10 flow rate
 
Exp 10 flow_rate
Exp 10 flow_rateExp 10 flow_rate
Exp 10 flow_rate
 
Steam water analysis system
Steam water analysis systemSteam water analysis system
Steam water analysis system
 
Hplc review
Hplc reviewHplc review
Hplc review
 
Hplc review
Hplc reviewHplc review
Hplc review
 
heat exchangers | column components | couplings
heat exchangers | column components | couplingsheat exchangers | column components | couplings
heat exchangers | column components | couplings
 
Understanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment StallUnderstanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment Stall
 
Hydraulic ppt.pptx
Hydraulic ppt.pptxHydraulic ppt.pptx
Hydraulic ppt.pptx
 
Steam and power.pptx
Steam and power.pptxSteam and power.pptx
Steam and power.pptx
 
HPLC Instrumentation & Techniques_basics.ppt
HPLC Instrumentation & Techniques_basics.pptHPLC Instrumentation & Techniques_basics.ppt
HPLC Instrumentation & Techniques_basics.ppt
 
POWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECTPOWER POINT PRESENTATION-MSC PROJECT
POWER POINT PRESENTATION-MSC PROJECT
 
Epa 7.1
Epa 7.1Epa 7.1
Epa 7.1
 
Distillation Column Design.pdf
Distillation  Column Design.pdfDistillation  Column Design.pdf
Distillation Column Design.pdf
 
Distillation Column Design
Distillation Column DesignDistillation Column Design
Distillation Column Design
 
Leak testing-steam-turbine-condensers-application
Leak testing-steam-turbine-condensers-applicationLeak testing-steam-turbine-condensers-application
Leak testing-steam-turbine-condensers-application
 

Recently uploaded

Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
IJECEIAES
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
MaherOthman7
 

Recently uploaded (20)

Intro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney UniIntro to Design (for Engineers) at Sydney Uni
Intro to Design (for Engineers) at Sydney Uni
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptx
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 

introduccion a los Inyectores para cromatografía de gases

  • 2. 2 Sample Introduction Purpose: To introduce the sample on to the column in the vapor state.  Syringe Injection: – Manual injection – Autosampler injection  Valve Injection – Gas sampling valves – Liquid sampling valves  Auxiliary Sampling Devices – Purge and Trap – Headspace
  • 3. 3 Types of Inlet Systems Purpose: To allow the insertion of a sample into the gas chromatograph in a repeatable, reproducible manner. The sample should be representative of the bulk, and unless specifically desired, should be inserted without chemical change. – Packed column inlet – Septum-purged packed column inlet – Split/splitless capillary inlet – Split-only capillary inlet – Electronic pressure controlled (EPC) cool on-column – EPC Purged packed inlet – EPC Capillary split/splitless inlet Inlet design must consider the characteristics of capillary columns: – High efficiency – Low sample capacity
  • 4. 4 Back to Bourbon Street Four buses of tourists unload at the same time. Split Vent Column Bourbon Street Canal Street Too many people would overload Bourbon Street. Therefore, a large proportion of the tourists go down Canal Street.
  • 5. 5 Split/Splitless Capillary Inlet (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN SEPTUM COLUMN HEAD PRESSURE TOTAL FLOW SPLIT VENT SEPTUM PURGE VENT BACK REGULATOR VALVE FLOW CONTROLLER PRESSURE PURGE Column flow is set by altering COLUMN HEAD PRESSURE. SEPTUM PURGE should be set to 2-3 mL/min. SPLIT VENT flow is TOTAL FLOW minus COLUMN FLOW and SEPTUM PURGE flow. PURGE VENT PURGE VALVE Changing TOTAL FLOW should NOT change COLUMN HEAD PRESSURE or SEPTUM PURGE flow.
  • 6. 6 Capillary Flow Diagram: Pre-Injection SEAL (Small grooves in the seal allow the split to occur.) (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN SEPTUM = CARRIER GAS LINER 50 mL/min 2 mL/min 0.6 mL/min 48 mL/min 47.4 mL/min PURGE VENT PURGE VALVE
  • 7. 7 Capillary Flow Diagram: Sample Injection (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN = CARRIER GAS = LIQUID SAMPLE PURGE VALVE PURGE VENT
  • 8. 8 Capillary Flow Diagram: Sample Vaporization (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN = CARRIER GAS = SAMPLE MOLECULES = SOLVENT MOLECULES PURGE VENT PURGE VALVE Vaporization takes place when sufficient thermal energy is transferred to the sample. This can occur in the carrier gas, but is more likely upon contact with a solid surface, such as the liner or mixing medium.
  • 9. 9 Capillary Flow Diagram: Sample/Carrier Mixing (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN = CARRIER GAS = SAMPLE MOLECULES = SOLVENT MOLECULES PURGE VALVE PURGE VENT For the concept of SPLIT RATIO to be valid, the sample (solvent + analyte) must be mixed with the carrier gas to give a homogeneous mixture. At the bottom of the injection port a small part of this mixture will transfer to the column, while the bulk of the mixture will leave the inlet via the SPLIT VENT. SPLIT RATIO = COLUMN FLOW + SPLIT VENT FLOW COLUMN FLOW
  • 10. 10 Capillary Flow Diagram: Liner Overload (INLET) (SEPTUM) SPLIT VENT TOTAL FLOW COLUMN = CARRIER GAS = SAMPLE MOLECULES = SOLVENT MOLECULES PURGE VENT PURGE VALVE A large injection of a solvent with a large expansion volume can cause an overload of the injection port liner. This can result in loss of sample out the PURGE VENT as well as contamination of the in-coming carrier gas line.
  • 11. 11 Split Ration Calculation Split Ratio = Split Vent Flow + Column Flow Column Flow Column I.D. (um) Total Column Septum Split Split Ratio Flow Flow Purge Flow 200 320 530 100 0.5 2.0 97.5 196:1 100 100 1.0 3.0 2.0 2.0 97 95 98:1 33:1 A B C D Split Vent Flow = (Split Ratio)(Column Flow) - Column Flow COLUMN HEAD PRESSURE TOTAL FLOW SPLIT VENT SEPTUM PURGE VENT PURGE B A D C
  • 12. 12 Capillary Liners TREAT AS ULTRA CLEAN PART! NOTE: See Supplies Catalog for latest variety of liners. Untreated Liners Split/Splitless 4-mm id, 1000 ul nominal volume Borosilica glass (untreated) with silanized glass wool plug PN 19251-60540 Split and splitless modes, especially recommended for rapid injections with the HP Automatic Sampler Splitless PN 18740-80220 2-mm id, 250 ul nominal volume quartz glass (untreated), open tube Splitless mode for slow injections (manual and HP7671/7672 automatic samplers) small sample volumes (< 1 ul) and higher boiling point solvent systems (Univeral Liner) Deactivated Liners Packed, tapered 4-mm id, 900 ul nominal volume Borosilica glass (deactivated), silanized glass wool plug PN 5062-3587 Split and splitless modes, can be self-packed Unpacked, tapered PN 5181-3316 4-mm id,900-ul nominal volume Dual-tapered PN 5181-3315 4-mm id, 800 ul nominal volume borosilicate glass (deactivated) Split and splitless modes, but preferred for splitless (deactivated) borosilicate glass (deactivated) Split and splitless modes, can be self-packed
  • 13. 13 Split Injection and Selective Inlets Split injection may be used with: – Valves – Head Space Autosamplers – Thermal Desorbers – Purge and Trap Samplers – Analytical Prolyzers For additional information on these techniques, see: GC Inlets – An Introduction, by Mathew Klee, Chapters 9-13.
  • 14. 14 Standard Split/Splitless Capillary Inlet with Electronic Pressure Control (EPC) This inlet has the same features as the standard inlet plus the following: Pressure Control: Programming: 3 ramps, 0.01-99 psi/min. Range: 1-100 psi (7-689 kPa) digital readout of head pressure. Flow Range: 0-450 mL/min. Constant Flow Mode: Inlet pressure is adjusted real time to maintain constant volumetric flow at column outlet. INCR TOTAL FLOW SPLIT PROGRAMMABLE PRESSURE SPLIT/SPLITLESS SEPTUM PURGE INLET VENT VENT INJECTION PORT
  • 15. 15 Example Applications Type of Column Carrier Conditions Oven Conditions Injection Parameters Detector Parameters Sample Information
  • 16. 16 The Analysis Process Sample Preparation Sample Introduction Separation Detection Data Reduction Pressure programming at injection can enhance transfer to the column Pressure/temperature programming can optimize separations, reduce analysis times Constant flow can stablize detector response, improve peak shapes for quantitation Advantages of EPC for GC Inlets
  • 17. 17 Flow vs. Temperature 30M x 0.32 x 0.25uM HP-5 1.0 .8 .6 .4 .2 50 100 150 200 250 300 TEMPERATURE Constant Flow Mode FLOW (mL/min) 10 8 6 4 2 50 100 150 200 250 300 TEMPERATURE 0.92 mL/min PRESSURE (psi) 1.0 .8 .6 .4 .2 1 2 3 4 5 FLOW HETP (mm) 1.2 1.4 1.6 1.8 Constant Pressure Mode 1.0 .8 .6 .4 .2 50 100 150 200 250 300 FLOW (mL/min) TEMPERATURE 10 8 6 4 2 50 100 150 200 250 300 TEMPERATURE 5 psi PRESSURE (psi)
  • 18. 18 EPC Constant Flow Off 1 2 4 5 6 7 8 9 10&11 12 Capillary Column Analysis: Column Flowrate = 0.98 mL/min Linear Velocity = 20.4 cm/sec Constant Flow Off Initial Pressure = 8 psi Temperature Program: Initial Temp 110 Initial Time 3 min Final Time 7 min 30 M x 0.32 mm x 0.25 uM HP5 Rate 10 Final Temp 180 FID 1 uL Column Checkout Sample at split ratio 100:1 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.451 25442 20280 BV 0.020 0.1190 Pentane 2 2.830 2.09577E+07 1.27598E+07 BB 0.026 98.0245 Solvent 4 5.160 19123 10431 BB 0.029 0.0894 Undecane 5 6.504 29426 12560 BB 0.037 0.1376 4-Chlorophenol 6 7.347 30184 13787 BB 0.033 0.1412 1-Decylamine 7 8.114 35244 17470 BB 0.032 0.1648 Tridecane 8 8.489 16991 8203 BB 0.033 0.0795 Methyl caprate 9 9.647 68633 32942 BB 0.033 0.3210 Tetradecane 10 10.774 126729 33598 BB 0.062 0.5927 Acenaphthylen 11 1-Dodecanol 12 11.194 70585 29393 BB 0.038 0.3301 Pentadecane Total area = 2.13801E +07
  • 19. 19 EPC Constant Flow On 1 2 4 5 6 7 8 9 10 11 12 Capillary Column Analysis: Column Flowrate = 0.98 mL/min Linear Velocity = 20.4 cm/sec Constant Flow On Initial Pressure = 8 psi Temperature Program: Initial Temp 110 Initial Time 3 min Final Temp 180 Final Time 7 min FID 1 uL Column Checkout Sample at split ratio 100:1 30 M x 0.32 mm x 0.25 uM HP5 Rate 10 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.455 41934 33092 BV 0.020 0.1861 Pentane 2 2.834 2.20908E+07 1.33684E+07 BV 0.026 98.0502 Solvent 4 5.089 19648 11683 BB 0.027 0.0872 Undecane 5 6.319 30584 14331 BB 0.034 0.1357 4-Chlorophenol 6 7.074 31033 16251 BB 0.029 0.1377 1-Decylamine 7 7.756 35357 20627 BB 0.027 0.1569 Tridecane 8 8.087 17026 9657 BB 0.028 0.0756 Methyl caprate 9 9.103 68292 39287 BB 0.028 0.3031 Tetradecane 10 10.018 67524 32943 BV 0.032 0.2997 Acenaphthylen 11 10.058 58702 33436 VB 0.027 0.2605 1-Dodecanol 12 10.385 69202 38486 BV 0.028 0.3072 Pentadecane Total area = 2.25301E +07
  • 20. 20 Important Considerations in Using EPC  Bubble meters are ____________ obsolete. Compare measured and calculated flows during setup and for troubleshooting.  EPC pressure/flow calculations apply to flow through ____________ columns. Calibrate and evaluate conditions for work with packed columns.  EPC has significant advantage for the analysis of ____________ mixture and _____________ amounts.
  • 21. 21 Splitless Injection: Inlet Design Requirements  The majority of the injected sample is introduced into the column.  Higher sensitivity than the split method and therefore, used for trace analysis.  Peak broadening must be minimized.
  • 22. 22 Back to Bourbon Street One Bus with a Few Tourists Split Vent Column Bourbon Street Canal Street
  • 23. 23 Inlet Design and Operation Schematic Total To Detector Head Pressure Gauge Column Head Pressure Split Vent Purge Vent 3 ml/min 50 ml/min Septum Purge Purge Control Valve 3 ml/min Septum Purge Flow Flow Total To Detector Head Pressure Gauge Column Head Pressure Split Vent Purge Vent 3 ml/min 50 ml/min Septum Purge Purge Control Valve 53 ml/min Flow 1 ml/min Purge On Purge Off 3 ml/min 1 ml/min 54 ml/min ml/min Inlet Purge Flow 54 ml/min
  • 24. 24 Split Mode 1:100 Dilution of the Column Evaluation Sample 1 2 3 4 5 6 7 8 9 10 12 11 30 M x 0.32 mm x 0.25 uM HP5 Capillary Column Analysis: Column Flowrate = 1.53 mL/min Linear Velocity = 31.7 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 110 Initial Time 3 min Rate 10 Final Temp 180 Final Time 7 min FID 1 uL Column Checkout Sample diluted to 1:100 Split Mode: Split Vent Flow = 44.8 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 1.574 3.98305E+07 3.85324E+07 BBAS 0.017 97.3335 Pentane 2 1.838 1069149 1209434 BV 0.015 2.6127 Solvent 3 2.074 174 229 BB 0.016 0.0004 Impurity 4 3.583 909 657 BB 0.022 0.0022 Undecane 5 4.761 1302 808 BB 0.025 0.0032 4-Chlorophenol 6 5.567 833 392 BB 0.030 0.0020 1-Decylamine 7 6.211 1683 1105 BB 0.024 0.0041 Tridecane 8 6.553 796 533 BB 0.024 0.0019 Methyl caprate 9 7.585 3318 2189 BB 0.024 0.0081 Tetradecane 10 8.400 3070 1843 BB 0.026 0.0075 Acenaphthylene 11 8.555 2543 1695 BB 0.024 0.0062 1-Dodecanol 12 8.882 3449 2285 BB 0.024 0.0084 Pentadecane Total area = 4.0916E +07
  • 25. 25 Splitless Mode 1:100 Dilution of the Column Evaluation Sample 1 2 3 4 5 6 7 8 9 10 11 12 Capillary Column Analysis: Column Flowrate = 1.32 mL/min Linear Velocity = 27.4 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 40 Initial Time 0 min Rate 10 Final Temp 180 Final Time 5 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 44.8 Purge On Time = 0.77 min. 30 M x 0.32 mm x 0.25 uM HP5 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 1.828 1.20696E+09 7.34754E+07 BBAS 0.199 97.7130 Pentane 2 3.443 2.78214E+07 4639343 BV 0.074 2.2524 Solvent 3 4.460 4628 2001 BV 0.035 0.0004 Impurity 4 7.807 22671 14703 BB 0.024 0.0018 Undecane 5 9.174 26020 14153 BB 0.029 0.0021 4-Chlorophenol 6 9.919 27289 12118 BB 0.032 0.0022 1-Decylamine 7 10.562 39871 28096 BB 0.023 0.0032 Tridecane 8 10.881 19061 13238 BB 0.023 0.0015 Methyl caprate 9 11.842 76661 52722 BB 0.023 0.0062 Tetradecane 10 12.599 68145 43525 BB 0.025 0.0055 Acenaphthylen 11 12.746 62741 43356 BB 0.023 0.0051 1-Dodecanol 12 13.050 80267 52718 BB 0.024 0.0065 Pentadecane Total area = 1.2352E+09
  • 26. 26 Splitless Injection Solvent Effect: Initial oven temperature is maintained below the boiling point of the solvent causing the solvent to condense at the head of the column "swelling" the stationary phase and trapping the analyte. SOLVENT BOILING POINT INITIAL OVEN TEMP ( C) ( C) o o DICHLOROMETHANE CHLOROFORM CARBON DISULFIDE DIETHYL ETHER PENTANE HEXANE ISO-OCTANE 40 61 46 35 36 69 99 10-30 25-50 10-35 10-25 10-25 40-60 70-90 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S A A A A A A A A A A A A A A A A = ANALYTE S = SOLVENT SOLVENT AND STATIONARY PHASE MUST BE COMPATIBLE
  • 27. 27 No Solvent Effect 1 4 5 6 7 8 9 10 11 12 Capillary Column Analysis: Column Flowrate = 1.63 mL/min Linear Velocity = 33.8 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 110 Initial Time 3 min Rate 10 Final Temp 180 Final Time 7 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 21 ml/min Purge On Time = 0.77 min. 30 M x 0.32 mm x 0.25 uM HP5 Solvent = Pentane Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 1.479 1.25642E+09 6.6195E+07 BB 0.237 99.9661 Pentane 4 3.504 19422 2160 BB 0.108 0.0018 Undecane 5 4.698 22937 2857 BB 0.108 0.0018 4-Chlorophenol 6 5.499 31525 4229 BV 0.101 0.0025 1-Decylamine 7 6.183 40959 8540 VV 0.069 0.0033 Tridecane 8 6.526 19182 4464 VB 0.061 0.0015 Methyl caprate 9 7.571 76488 24623 BB 0.046 0.0061 Tetradecane 10 8.387 67132 21269 BV 0.047 0.0053 Acenaphthylene 11 8.546 63400 25018 VV 0.038 0.0050 1-Dodecanol 12 8.876 80189 34399 VB 0.036 0.0064 Pentadecane Total area = 1.25685E+07
  • 28. 28 Demonstration of the Purge Function Purge Off the Entire Run (No Purge On Time) 1 4 5 6 7 8 9 10 11 12 Capillary Column Analysis: Column Flowrate = 1.2 mL/min Linear Velocity = 24.8 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 40 Initial Time 0 min Rate 10 Final Temp 180 Final Time 4 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 21 ml/min Purge On Time = 0.77 min. 30 M x 0.32 mm x 0.25 uM HP5 Solvent = Pentane Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.014 8.44044E+08 6.36828E+07 BBAS 0.160 99.9294 Pentane 4 8.083 19245 18112 BBA 0.019 0.0023 Undecane 5 9.449 48844 21638 PV 0.033 0.0058 4-Chlorophenol 6 10.188 42947 20065 PV 0.031 0.0051 1-Decylamine 7 10.820 60389 37891 PV 0.025 0.0071 Tridecane 8 11.136 30027 19510 PV 0.025 0.0036 Methyl caprate 9 12.090 101257 66142 VV 0.024 0.0120 Tetradecane 10 12.863 93363 55617 VV 0.026 0.0111 Acenaphthylene 11 12.989 86959 54461 PV 0.025 0.0103 1-Dodecanol 12 13.291 113651 67001 PV 0.026 0.0135 Pentadecane Total area = 8.4464E+08
  • 29. 29 Comparing Purge-On Times Purge On 0.3 minutes 1 2 3 4 5 6 7 8 9 10 11 Capillary Column Analysis: Column Flowrate = 1.6 mL/min Linear Velocity = 24.3 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 40 Initial Time 0 min Rate 10 Final Temp 180 Final Time 4 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 44 ml/min Purge On Time = 0.3 min. 30 M x 0.32 mm x 0.25 uM HP5 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.081 7.90249E+08 6.14638E+07 BBAS 0.156 97.3732 Pentane 2 3.759 2.08811E+07 13516 BB 0.061 2.579 Solvent 3 8.100 19300 13516 BB 0.023 0.0024 Undecane 4 9.464 20503 11491 BB 0.028 0.0025 4-Chlorophenol 5 10.209 21299 8985 BB 0.034 0.0026 1-Decylamine 6 10.830 35759 25381 BB 0.022 0.0044 Tridecane 7 11.146 16794 11700 BB 0.023 0.0021 Methyl caprate 8 12.099 70123 48453 BB 0.023 0.0086 Tetradecane 9 12.873 59637 37232 BB 0.025 0.0073 Acenaphthylene 10 12.997 56760 38181 BB 0.023 0.0070 1-Dodecanol 11 13.299 76695 49076 BB 0.025 0.0095 Pentadecane Total area = 8.11567E+08
  • 30. 30 Comparing Purge-On Times Purge On 0.7 minutes 1 2 3 4 5 6 7 8 9 11 10 Capillary Column Analysis: Column Flowrate = 1.18 mL/min Linear Velocity = 24.3 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 40 Initial Time 0 min Rate 10 Final Temp 180 Final Time 4 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 44 ml/min Purge On Time = 0.7 min. 30 M x 0.32 mm x 0.25 uM HP5 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.038 1.15306E+09 6.32523E+07 BBAS 0.217 97.6632 Pentane 2 3.726 2.71199E+07 4285045 BV 0.079 2.2970 Solvent 3 8.097 23268 14782 BB 0.025 0.0020 Undecane 4 9.465 27011 14779 BB 0.028 0.0023 4-Chlorophenol 5 10.207 23593 10473 BB 0.033 0.0020 1-Decylamine 6 10.831 40884 28411 BB 0.023 0.0035 Tridecane 7 11.147 19385 13693 BB 0.022 0.0016 Methyl caprate 8 12.101 80177 54745 BB 0.023 0.0068 Tetradecane 9 12.874 70910 43647 BV 0.026 0.0060 Acenaphthylene 10 13.000 66676 44021 PB 0.024 0.0056 1-Dodecanol 11 13.301 84329 54693 BB 0.024 0.00715 Pentadecane Total area = 1.18065E+09
  • 31. 31 Comparing Purge-On Times Purge On 1.5 minutes 1 2 3 4 5 6 7 8 9 10 11 Capillary Column Analysis: Column Flowrate = 1.19 mL/min Linear Velocity = 24.3 cm/sec Constant Flow On Initial Pressure = 12 psi at 110 degrees Temperature Program: Initial Temp 40 Initial Time 0 min Rate 10 Final Temp 180 Final Time 4 min FID 1 uL Column Checkout Sample diluted to 1:100 Splitless Mode: Split Vent Flow = 44 ml/min Purge On Time = 1.5 min. 30 M x 0.32 mm x 0.25 uM HP5 Area Percent Report Pk# Ret. Time Area Height Type Width Area% Name 1 2.025 1.07664E+09 6.34994E+07 BBAS 0.203 97.3248 Pentane 2 3.710 2.91426E+07 4250357 BB 0.087 2.6344 Solvent 3 8.093 23913 14883 BB 0.025 0.0022 Undecane 4 9.459 28871 14475 BB 0.031 0.0026 4-Chlorophenol 5 10.202 27145 11717 BB 0.033 0.0025 1-Decylamine 6 10.829 42931 30353 BB 0.022 0.0039 Tridecane 7 11.144 20543 14155 BB 0.023 0.0019 Methyl caprate 8 12.099 82470 57485 BB 0.023 0.0075 Tetradecane 9 12.872 73083 45772 BB 0.025 0.0066 Acenaphthylene 10 12.997 66749 45916 PB 0.023 0.0066 1-Dodecanol 11 13.299 86018 56588 BB 0.024 0.0078 Pentadecane Total area = 1.110623E+09
  • 32. 32 Liners Untreated Liners Split/Splitless 4-mm id, 1000 ul nominal volume Borosilica glass (untreated) with silanized glass wool plug PN 19251-60540 Split and splitless modes, especially recommended for rapid injections with the HP Automatic Sampler Splitless PN 18740-80220 2-mm id, 250 ul nominal volume quartz glass (untreated), open tube Splitless mode for slow injections (manual and HP7671/7672 automatic samplers) small sample volumes (< 1 ul) and higher boiling point solvent systems (Univeral Liner) Deactivated Liners Packed, tapered 4-mm id, 900 ul nominal volume Borosilica glass (deactivated), silanized glass wool plug PN 5062-3587 Split and splitless modes, can be self-packed Unpacked, tapered PN 5181-3316 4-mm id,900-ul nominal volume Dual-tapered PN 5181-3315 4-mm id, 800 ul nominal volume borosilicate glass (deactivated) Split and splitless modes, but preferred for splitless (deactivated) borosilicate glass (deactivated) Split and splitless modes, can be self-packed