SlideShare a Scribd company logo
1 of 25
Download to read offline
Current development status of
Auto-catalytic Silver bath
Uyemura Advanced Surface Finish
1
台灣上村研發部
蕭智遠
Overview
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
2
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
3
Overview
LED lighting to dominate LED applications after 2014
Penetration of LED applications
Reference: Digtimes,2012
4
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
5
Overview
• Advantage of Ag plating
Introduction
High reflection
High speed application
• Skin effect



2

ρ: Resistivity of conductor
ω:angular frequency (2πf)
μ: absolute permeability
δ: Skin depth
63% signal contained!
 Ag has the lowest resistivity
μ=4π×10-7(亨利/公尺)
Reference: National Central University
0
10
20
30
40
50
60
70
80
90
100
350 400 450 500 550 600 650 700 750
reflectionrate(%)
Wave length(nm)
Ag
Cu
Au
Pd
Ni
 Thermal conductivity (20℃) (w・m-1・k-1)  Electrical resistivity (300K) (n Ω・m)
Ag Au Cu Ni Pd
429 318 401 91 72
Ag Au Cu Ni Pd
15.9 22.1 16.8 69.3 105.4
6
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
7
Overview
Advantages of ENES
 No discolor by heat treatment
For applications of the eutectic gold-tin alloy
 Good mechanical properties
Good coverage as normal ENIG
Solder joint reliability is good
 Reflection rate
Reflection rate >95% at visible light
 Wire bonding
Wire bonding be used when Ag thickness >0.4um
8
Process Temp.(oC) Plating con.
Cleaner 50 5 min
Micro Etching 30 1 min
Acid Rinse R.T. 1 min
Pre-dip R.T. 1 min
Activator R.T. 1 min
Post dip R.T. 1 min
EL-Ni 80 3-5 um
Activator 50 1 min
EL-Ag 40 0.2-1.5 um
Anti-tarnish 50 1min
Uyemura ENES Process
 It is necessary to rinse after each process, except for pre-dip.
 The condition of cleaner and post-dip could be adjusted for different substrates.
 The thickness of EL-Ni and EL-Ag could be applied for reliability test and reflection rate.
Cu
Activated Pd
Cu Cu
Ni
Ag
Ni
9
Ni:5um, Ag:0.4-0.8um
KONICA MINOLTA CM-3700d, di:8°, SCI, SAV(3×5mm)
1 2 3
5
1:1 1:10 1:100
Big Pad
4
Small pad
0.32 0.29 0.31 0.30 0.30
4.87 4.92 5.02 4.85 4.90
0.001
0.01
0.1
1
10
1 2 3 4 5
Ag Ni
1min
3min
5min
As-plate
350 400 450 500 550 600 650 700 750
50
55
60
65
70
75
80
85
90
95
100
Reflection rate
Uniform Thx.
Discolor checking
350oC for 5min
 Uniform of Ag thickness as
plating.
 There are no significant
discolor after heat treatment
 Retard Ni diffusion
 Reflection rate > 95%
The number of point
10
Characters of ENES
Wavelength (nm)
Reflectionrate(%)
Cu
Ni(P)
Ni(P)
Cu
Ni(P)
Cu
Ni(P)
Ni(P)
Cu
Ni(P)
Ni(P)
Cu
Cu
Ni(P)
0.2 μm Ag
5 μm 5 μm
5 μm 5 μm5 μm
1 reflow
3 reflow
SAC305
0.4 μm Ag 0.8 μm Ag
• No Detachment of IMC are
observed after 3 times reflow.
Cu
Ni(P)
(Cu,Ni)6Sn5
SAC 305
Cu
Ni(P)
(Ni,Cu)3Sn4
SAC 305
(Cu,Ni)6Sn5
Non-spalling Spalling
IMC determination
Cu
Ni(P)
11
SAC305SAC305
Requirement for ENEPES process
Retard Ni
diffusion to
Ag layer
Reflection
rate
Solder joint
reliability
Wire bonding
reliability
12
solder layer
Al substratePCB
Ag plating
3.2 mm
19 mm
2.2 mm
1.65 mm
0.5 mm
Ag plating
1 2 3 4
Process Temp.(oC) Plating con.
Cleaner 50 5 min
Micro Etching 30 1 min
Acid Rinse R.T. 1 min
Pre-dip R.T. 1 min
Activator R.T. 1 min
Post dip R.T. 1 min
EL-Ni 80 3-5 um
EL-Pd 50 0.02-0.1 um
EL-Ag 40 0.2-1.5 um
Anti-tarnish 50 1min
Uyemura ENEPES Process
Cu
Activated Pd
Cu Cu
Ni
Pd
Ag
Ni
 It is necessary to rinse after each process, except for pre-dip.
 The condition of cleaner and post-dip could be adjusted for different substrates.
 The dipping time of EL-Ni, EL-Pd and EL-Ag could be adjusted for required thickness. 13
Relation of heat treatment and Ni diffusion
0
5000
10000
15000
20000
0 200 400 600 800
Intensity
Depth(nm)
Pd
Ag
Ni
0
5000
10000
15000
20000
0 200 400 600 800
Intensity
Depth(nm)
Pd
Ag
Ni
0
5000
10000
15000
20000
0 200 400 600 800
Intensity
Depth(nm)
Pd
Ag
Ni
0
5000
10000
15000
20000
0 200 400 600 800
Intensity
Depth(nm)
Pd
Ag
Ni
ENEPES =5/0.02/0.2um
No heated
ENEPES =5/0.02/0.8um
No heated
ENEPES =5/0.02/0.2um
Heated (300 deg C-30min.)
ENEPES =5/0.02/0.8um
Heated (300 deg C-30min.)
 ENEPES can retard the diffusion of Ni into the Ag layer after heat treatment .
14
No
Heated
Heated
Ag:0.8umAg:0.2um
15
Reflection rate
As-plate
Ni:5um, Pd:0.03um, Ag:0.2-1.5um
KONICA MINOLTA CM-3700d, di:8°, SCI, SAV(3×5mm)
50
55
60
65
70
75
80
85
90
95
100
350 450 550 650 750
reflectionrate(%)
Wavelength(nm)
NPR-4(6um)/as-plate
0.2um
0.5um
0.8um
1.2um
1.5um
 We are considering that it is necessary to be over 0.2 um for reflection rate.
 When Ag thickness is thicker, the reflection is increased at visible light.
Solder joint reliability
Reflow1
0.2um 0.3um 0.4um 0.5um 0.8um
Ball pull no significant differences (~2183g)
Ball shear no significant differences (~927g)
HSBS no significant differences (~1327g)
Reflow3
0.2um 0.3um 0.4um 0.5um 0.8um
Ball pull no significant differences (~2131g)
Ball shear no significant differences (~913g)
HSBS no significant differences (~1213g)
Reflow5
0.2um 0.3um 0.4um 0.5um 0.8um
Ball pull no significant differences (~2055g)
Ball shear no significant differences (~902g)
HSBS no significant differences (~1131g)
 It is recommended that Ag > 0.2 um for good solder joint.
 solder ball: SAC305(diameter:500um)
 Ball shear strength is the average of 15 points. (shear speed: 170 um/s)
 HSBS strength is the average of 15 points. (shear speed: 1 m/s) (Dage 4000-Schmidt)
16
Wire bonding reliability
Pull
point
A
B
C
D
E
Pull speed: 170um/sec
 It is possible to bond on ENEPES by
optimizing the thickness of Ag.
K&S 4700AD
Good bonding
0%
20%
40%
60%
80%
100%
0.2um 0.3um 0.4um 0.5um 0.2um 0.3um 0.4um 0.5um
RSD-4 ENIG ENEPIG RSD-4 ENIG ENEPIG
as-plate 175deg.C-16hr
Failuremode
A B C D E
8.7 9.2
8.1 8.2
2.7
10.0
6.5 6.4 6.7
7.3
0.0
8.3
0
2
4
6
8
10
12
14
Pullstrength(g)
Average
17
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
18
Overview
Road map of Flip Chip
19
Reference: Amkor TMV - Practical Components
27.3 28.1
27.6
0.1
0.1
SAC305 Sn0.7Cu
Sn Ag Cu
Sn : Ag : Cu= 0.283 : 9.187 : 0.107 (Dollars(USA)/g)
reference:鉅亨網期貨(2012,9,4)
Cost Issue
The Ratio of Gold and Silver
Sn07Cu Solder replaces for
SAC305 on FC(C4 zone)
(Dollars(USA)/particle)
20
About final finish type :
Ag replace Au Cost down≒97%of gold
(the same thickness)
≒ 1600Dollars(USA)/OZ
≒30Dollars(USA)/OZ
Ref: T.Y. Lee, W.J. Choi, and K.N. Tu ”
Morphology, kinetics, and thermodynamics of
solid-state aging of eutectic SnPb and Pb-free
solders (Sn–3.5Ag,Sn–3.8Ag–0.7Cu and Sn–0.7Cu)
on Cu “J. Mater. Res., Vol. 17, No. 2, Feb 2002
Phase diagram of Sn–Ag–Cu
SAC305
More Ag addition
Ag concentration in solder
Plate-type
21
Ag concentration in solder
Ag
4-2434
Ag
-424
Ag/solder
ρ10X)107.53π(])10π[(37.5
3
4
ρ10X)105.37π(
C






Solder type SAC305 Sn0.7Cu
Critical Ag thickness (μm) 0.18 μm 1.27 μm
Critical CAg/solder 0.5% 3.5%
• The effect of electroless Ag thickness : Solder
Pd
CuNi
Ag
75 μm
75 μm
Cu X μm
 According to Ag concentration in solder, the critical Ag thickness is only 0.18um
for SAC305, but 1.27um for Sn0.7Cu.
CAg/solder: Concentration of Ag in solder(wt.%)
ρ : density of SAC305 7.4 (g/cm3), density of Sn0.7Cu 7.3 (g/cm3)
ρAg : density of Ag 10.49 (g/cm3)
X: thickness of Ag (μm)
22
LED market analysis
Introduction for Ag
ENES/ENEPES Process
The future of FC
Summary
23
Overview
ENES ENEPES
Advantages
 No discolor by heat treatment
 Solder joint is good
 Reflection rate
 W/B
 Retard Ni diffusion
 Solder joint is excellent
 Reflection rate
 W/B
Drawbacks
 IMC become spalling until 5
reflow
 Can’t W/B if Ag is thinner
than 0.4 um
 So far so good
Thickness
Ni 3-5 um
Ag 0.2-1.5 um
Ni 3-5 um
Pd 0.02-0.1 um
Ag 0.2-1.5 um
Comprehensive
estimate
Cu
Ni-P
Ag
Cu
Ni-P
Pd-P
Ag
Summary Comparison of each process
24
Reliability
Reflection
Cost Down
Uniform
Thx.
Retard Ni
Diffusion
Reliability
Reflection
Cost Down
Uniform
Thx.
Retard Ni
Diffusion
Thank you for your attention
25

More Related Content

What's hot

Light emission in silicon-based materials and photonic structures
Light emission in silicon-based materials and photonic structuresLight emission in silicon-based materials and photonic structures
Light emission in silicon-based materials and photonic structuresRoberto Lo Savio
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleFundación Ramón Areces
 
Uranium Enrichment Technology
Uranium Enrichment TechnologyUranium Enrichment Technology
Uranium Enrichment Technologycarolala
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Riikka Puurunen
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationPetr Polovodov
 
Optical properties of natural topaz
Optical properties of natural topazOptical properties of natural topaz
Optical properties of natural topazRoppon Picha
 
8.2. microtech.ion implant.3
8.2. microtech.ion implant.38.2. microtech.ion implant.3
8.2. microtech.ion implant.3Bhargav Veepuri
 
EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorElizabeth Buitrago, PhD
 
SiGe epitaxy on a 300 mm batch furnace
SiGe epitaxy on a 300 mm batch furnaceSiGe epitaxy on a 300 mm batch furnace
SiGe epitaxy on a 300 mm batch furnaceJonas Sundqvist
 
Need for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesNeed for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesManish Srivastava
 
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraSTS FORUM 2016
 
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Dynasil Corporation of America
 
2011 6 63158600
2011 6 631586002011 6 63158600
2011 6 63158600sarvari68
 
Research Background
Research BackgroundResearch Background
Research BackgroundBrian Wisner
 

What's hot (20)

Light emission in silicon-based materials and photonic structures
Light emission in silicon-based materials and photonic structuresLight emission in silicon-based materials and photonic structures
Light emission in silicon-based materials and photonic structures
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
SMR_defence_sep3
SMR_defence_sep3SMR_defence_sep3
SMR_defence_sep3
 
Uranium Enrichment Technology
Uranium Enrichment TechnologyUranium Enrichment Technology
Uranium Enrichment Technology
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
 
LinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentationLinkedIn_Phd thesis presentation
LinkedIn_Phd thesis presentation
 
Optical properties of natural topaz
Optical properties of natural topazOptical properties of natural topaz
Optical properties of natural topaz
 
Thesis Defense Amir
Thesis Defense AmirThesis Defense Amir
Thesis Defense Amir
 
8.2. microtech.ion implant.3
8.2. microtech.ion implant.38.2. microtech.ion implant.3
8.2. microtech.ion implant.3
 
EBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW SensorEBuitrago Vertically Stacked SiNW Sensor
EBuitrago Vertically Stacked SiNW Sensor
 
SNT QUV TEST
SNT QUV TESTSNT QUV TEST
SNT QUV TEST
 
OSAPS Poster
OSAPS PosterOSAPS Poster
OSAPS Poster
 
SiGe epitaxy on a 300 mm batch furnace
SiGe epitaxy on a 300 mm batch furnaceSiGe epitaxy on a 300 mm batch furnace
SiGe epitaxy on a 300 mm batch furnace
 
Need for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelinesNeed for sulphur measurement in multi product pipelines
Need for sulphur measurement in multi product pipelines
 
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy MitraA few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
A few Curious Aspects of ZnO Nanostructures - Prof.Joy Mitra
 
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
Advances in Scintillation Material - Dr. Kanai Shah, President, RMD, Inc.
 
2011 6 63158600
2011 6 631586002011 6 63158600
2011 6 63158600
 
14 burgers ecn
14 burgers ecn14 burgers ecn
14 burgers ecn
 
Talk 3_0
Talk 3_0Talk 3_0
Talk 3_0
 
Research Background
Research BackgroundResearch Background
Research Background
 

Similar to Current development status of Auto-catalytic Silver bath

Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...sarmad
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidescdtpv
 
Mehul_C_Raval_PhD_Thesis_Work
Mehul_C_Raval_PhD_Thesis_WorkMehul_C_Raval_PhD_Thesis_Work
Mehul_C_Raval_PhD_Thesis_WorkMehul Raval
 
HTC congress 2009
HTC congress  2009HTC congress  2009
HTC congress 2009xoolio
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Tanvir Hussain
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Pawan Kumar
 
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Raj Kumar, PhD
 
AISI 420 OR 1.4021
AISI 420 OR 1.4021AISI 420 OR 1.4021
AISI 420 OR 1.4021majid4270
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Hamid Arandiyan
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsUniversidad de Oviedo
 
Sputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationSputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationmineralochka
 
Mattson-RTP-3000.pdf
Mattson-RTP-3000.pdfMattson-RTP-3000.pdf
Mattson-RTP-3000.pdfACAllen2
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptxAhsanAwan53
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe Dierk Raabe
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015Swayandipta Dey
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016myrahalimi
 

Similar to Current development status of Auto-catalytic Silver bath (20)

Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 
Atomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxidesAtomic Layer Deposition: a process technology for transparent conducting oxides
Atomic Layer Deposition: a process technology for transparent conducting oxides
 
Mehul_C_Raval_PhD_Thesis_Work
Mehul_C_Raval_PhD_Thesis_WorkMehul_C_Raval_PhD_Thesis_Work
Mehul_C_Raval_PhD_Thesis_Work
 
HTC congress 2009
HTC congress  2009HTC congress  2009
HTC congress 2009
 
Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...Bespoke compositions and microstructures from suspension and solution precurs...
Bespoke compositions and microstructures from suspension and solution precurs...
 
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
AET 3D Aluminium Presentation
AET 3D Aluminium Presentation AET 3D Aluminium Presentation
AET 3D Aluminium Presentation
 
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
Thin Film and Nanowires of Transparent Conducting Oxides for Chemical Gas Sen...
 
AISI 420 OR 1.4021
AISI 420 OR 1.4021AISI 420 OR 1.4021
AISI 420 OR 1.4021
 
Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013Khalid Presentation on BNOC 2013
Khalid Presentation on BNOC 2013
 
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
Au-Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovs...
 
Fabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin filmsFabrication of patterned ferromagnetic shape memory thin films
Fabrication of patterned ferromagnetic shape memory thin films
 
Sputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical applicationSputtering for radiopharmaceutical application
Sputtering for radiopharmaceutical application
 
Mattson-RTP-3000.pdf
Mattson-RTP-3000.pdfMattson-RTP-3000.pdf
Mattson-RTP-3000.pdf
 
Ayida8thnov
Ayida8thnovAyida8thnov
Ayida8thnov
 
final presentation
final presentationfinal presentation
final presentation
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptx
 
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe  MRS  Dec 2010  Steel With  Copper Precipitates Dierk  Raabe
MRS Dec 2010 Steel With Copper Precipitates Dierk Raabe
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016
 

Current development status of Auto-catalytic Silver bath

  • 1. Current development status of Auto-catalytic Silver bath Uyemura Advanced Surface Finish 1 台灣上村研發部 蕭智遠
  • 2. Overview LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 2
  • 3. LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 3 Overview
  • 4. LED lighting to dominate LED applications after 2014 Penetration of LED applications Reference: Digtimes,2012 4
  • 5. LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 5 Overview
  • 6. • Advantage of Ag plating Introduction High reflection High speed application • Skin effect    2  ρ: Resistivity of conductor ω:angular frequency (2πf) μ: absolute permeability δ: Skin depth 63% signal contained!  Ag has the lowest resistivity μ=4π×10-7(亨利/公尺) Reference: National Central University 0 10 20 30 40 50 60 70 80 90 100 350 400 450 500 550 600 650 700 750 reflectionrate(%) Wave length(nm) Ag Cu Au Pd Ni  Thermal conductivity (20℃) (w・m-1・k-1)  Electrical resistivity (300K) (n Ω・m) Ag Au Cu Ni Pd 429 318 401 91 72 Ag Au Cu Ni Pd 15.9 22.1 16.8 69.3 105.4 6
  • 7. LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 7 Overview
  • 8. Advantages of ENES  No discolor by heat treatment For applications of the eutectic gold-tin alloy  Good mechanical properties Good coverage as normal ENIG Solder joint reliability is good  Reflection rate Reflection rate >95% at visible light  Wire bonding Wire bonding be used when Ag thickness >0.4um 8
  • 9. Process Temp.(oC) Plating con. Cleaner 50 5 min Micro Etching 30 1 min Acid Rinse R.T. 1 min Pre-dip R.T. 1 min Activator R.T. 1 min Post dip R.T. 1 min EL-Ni 80 3-5 um Activator 50 1 min EL-Ag 40 0.2-1.5 um Anti-tarnish 50 1min Uyemura ENES Process  It is necessary to rinse after each process, except for pre-dip.  The condition of cleaner and post-dip could be adjusted for different substrates.  The thickness of EL-Ni and EL-Ag could be applied for reliability test and reflection rate. Cu Activated Pd Cu Cu Ni Ag Ni 9
  • 10. Ni:5um, Ag:0.4-0.8um KONICA MINOLTA CM-3700d, di:8°, SCI, SAV(3×5mm) 1 2 3 5 1:1 1:10 1:100 Big Pad 4 Small pad 0.32 0.29 0.31 0.30 0.30 4.87 4.92 5.02 4.85 4.90 0.001 0.01 0.1 1 10 1 2 3 4 5 Ag Ni 1min 3min 5min As-plate 350 400 450 500 550 600 650 700 750 50 55 60 65 70 75 80 85 90 95 100 Reflection rate Uniform Thx. Discolor checking 350oC for 5min  Uniform of Ag thickness as plating.  There are no significant discolor after heat treatment  Retard Ni diffusion  Reflection rate > 95% The number of point 10 Characters of ENES Wavelength (nm) Reflectionrate(%)
  • 11. Cu Ni(P) Ni(P) Cu Ni(P) Cu Ni(P) Ni(P) Cu Ni(P) Ni(P) Cu Cu Ni(P) 0.2 μm Ag 5 μm 5 μm 5 μm 5 μm5 μm 1 reflow 3 reflow SAC305 0.4 μm Ag 0.8 μm Ag • No Detachment of IMC are observed after 3 times reflow. Cu Ni(P) (Cu,Ni)6Sn5 SAC 305 Cu Ni(P) (Ni,Cu)3Sn4 SAC 305 (Cu,Ni)6Sn5 Non-spalling Spalling IMC determination Cu Ni(P) 11 SAC305SAC305
  • 12. Requirement for ENEPES process Retard Ni diffusion to Ag layer Reflection rate Solder joint reliability Wire bonding reliability 12 solder layer Al substratePCB Ag plating 3.2 mm 19 mm 2.2 mm 1.65 mm 0.5 mm Ag plating 1 2 3 4
  • 13. Process Temp.(oC) Plating con. Cleaner 50 5 min Micro Etching 30 1 min Acid Rinse R.T. 1 min Pre-dip R.T. 1 min Activator R.T. 1 min Post dip R.T. 1 min EL-Ni 80 3-5 um EL-Pd 50 0.02-0.1 um EL-Ag 40 0.2-1.5 um Anti-tarnish 50 1min Uyemura ENEPES Process Cu Activated Pd Cu Cu Ni Pd Ag Ni  It is necessary to rinse after each process, except for pre-dip.  The condition of cleaner and post-dip could be adjusted for different substrates.  The dipping time of EL-Ni, EL-Pd and EL-Ag could be adjusted for required thickness. 13
  • 14. Relation of heat treatment and Ni diffusion 0 5000 10000 15000 20000 0 200 400 600 800 Intensity Depth(nm) Pd Ag Ni 0 5000 10000 15000 20000 0 200 400 600 800 Intensity Depth(nm) Pd Ag Ni 0 5000 10000 15000 20000 0 200 400 600 800 Intensity Depth(nm) Pd Ag Ni 0 5000 10000 15000 20000 0 200 400 600 800 Intensity Depth(nm) Pd Ag Ni ENEPES =5/0.02/0.2um No heated ENEPES =5/0.02/0.8um No heated ENEPES =5/0.02/0.2um Heated (300 deg C-30min.) ENEPES =5/0.02/0.8um Heated (300 deg C-30min.)  ENEPES can retard the diffusion of Ni into the Ag layer after heat treatment . 14 No Heated Heated Ag:0.8umAg:0.2um
  • 15. 15 Reflection rate As-plate Ni:5um, Pd:0.03um, Ag:0.2-1.5um KONICA MINOLTA CM-3700d, di:8°, SCI, SAV(3×5mm) 50 55 60 65 70 75 80 85 90 95 100 350 450 550 650 750 reflectionrate(%) Wavelength(nm) NPR-4(6um)/as-plate 0.2um 0.5um 0.8um 1.2um 1.5um  We are considering that it is necessary to be over 0.2 um for reflection rate.  When Ag thickness is thicker, the reflection is increased at visible light.
  • 16. Solder joint reliability Reflow1 0.2um 0.3um 0.4um 0.5um 0.8um Ball pull no significant differences (~2183g) Ball shear no significant differences (~927g) HSBS no significant differences (~1327g) Reflow3 0.2um 0.3um 0.4um 0.5um 0.8um Ball pull no significant differences (~2131g) Ball shear no significant differences (~913g) HSBS no significant differences (~1213g) Reflow5 0.2um 0.3um 0.4um 0.5um 0.8um Ball pull no significant differences (~2055g) Ball shear no significant differences (~902g) HSBS no significant differences (~1131g)  It is recommended that Ag > 0.2 um for good solder joint.  solder ball: SAC305(diameter:500um)  Ball shear strength is the average of 15 points. (shear speed: 170 um/s)  HSBS strength is the average of 15 points. (shear speed: 1 m/s) (Dage 4000-Schmidt) 16
  • 17. Wire bonding reliability Pull point A B C D E Pull speed: 170um/sec  It is possible to bond on ENEPES by optimizing the thickness of Ag. K&S 4700AD Good bonding 0% 20% 40% 60% 80% 100% 0.2um 0.3um 0.4um 0.5um 0.2um 0.3um 0.4um 0.5um RSD-4 ENIG ENEPIG RSD-4 ENIG ENEPIG as-plate 175deg.C-16hr Failuremode A B C D E 8.7 9.2 8.1 8.2 2.7 10.0 6.5 6.4 6.7 7.3 0.0 8.3 0 2 4 6 8 10 12 14 Pullstrength(g) Average 17
  • 18. LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 18 Overview
  • 19. Road map of Flip Chip 19 Reference: Amkor TMV - Practical Components
  • 20. 27.3 28.1 27.6 0.1 0.1 SAC305 Sn0.7Cu Sn Ag Cu Sn : Ag : Cu= 0.283 : 9.187 : 0.107 (Dollars(USA)/g) reference:鉅亨網期貨(2012,9,4) Cost Issue The Ratio of Gold and Silver Sn07Cu Solder replaces for SAC305 on FC(C4 zone) (Dollars(USA)/particle) 20 About final finish type : Ag replace Au Cost down≒97%of gold (the same thickness) ≒ 1600Dollars(USA)/OZ ≒30Dollars(USA)/OZ
  • 21. Ref: T.Y. Lee, W.J. Choi, and K.N. Tu ” Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag,Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu “J. Mater. Res., Vol. 17, No. 2, Feb 2002 Phase diagram of Sn–Ag–Cu SAC305 More Ag addition Ag concentration in solder Plate-type 21
  • 22. Ag concentration in solder Ag 4-2434 Ag -424 Ag/solder ρ10X)107.53π(])10π[(37.5 3 4 ρ10X)105.37π( C       Solder type SAC305 Sn0.7Cu Critical Ag thickness (μm) 0.18 μm 1.27 μm Critical CAg/solder 0.5% 3.5% • The effect of electroless Ag thickness : Solder Pd CuNi Ag 75 μm 75 μm Cu X μm  According to Ag concentration in solder, the critical Ag thickness is only 0.18um for SAC305, but 1.27um for Sn0.7Cu. CAg/solder: Concentration of Ag in solder(wt.%) ρ : density of SAC305 7.4 (g/cm3), density of Sn0.7Cu 7.3 (g/cm3) ρAg : density of Ag 10.49 (g/cm3) X: thickness of Ag (μm) 22
  • 23. LED market analysis Introduction for Ag ENES/ENEPES Process The future of FC Summary 23 Overview
  • 24. ENES ENEPES Advantages  No discolor by heat treatment  Solder joint is good  Reflection rate  W/B  Retard Ni diffusion  Solder joint is excellent  Reflection rate  W/B Drawbacks  IMC become spalling until 5 reflow  Can’t W/B if Ag is thinner than 0.4 um  So far so good Thickness Ni 3-5 um Ag 0.2-1.5 um Ni 3-5 um Pd 0.02-0.1 um Ag 0.2-1.5 um Comprehensive estimate Cu Ni-P Ag Cu Ni-P Pd-P Ag Summary Comparison of each process 24 Reliability Reflection Cost Down Uniform Thx. Retard Ni Diffusion Reliability Reflection Cost Down Uniform Thx. Retard Ni Diffusion
  • 25. Thank you for your attention 25